説明

Fターム[2G043CA06]の内容

蛍光又は発光による材料の調査、分析 (54,565) | 試料の形態 (2,819) | 固体 (949) | 粉体、粒体 (169)

Fターム[2G043CA06]に分類される特許

61 - 80 / 169


【課題】選択的レーザ焼結法のような層付加製造法において構築材料として使用できる粉末に標識付けすることを可能にする方法を提示すること。
【解決手段】粉末を少なくとも1種類の希土類金属の塩と混合する。この塩は可視スペクトル外の波長を有する光子または粒子放射線を照射した時に発光する特性を有するものであり、それによって層付加製造法によって製造した部品の製造者、製造地、または製造データを識別することができる。 (もっと読む)


【課題】検出器としてチャンネル数が多い光電子倍増管を使用しても、試料から発せられる蛍光を高感度で検出することが可能で、かつ装置全体をコンパクト化することができる光学的測定装置を提供する。
【解決手段】流路内を通流する試料に光を照射する光照射部3と、レーザ光が照射された試料から発せられた蛍光6を検出する蛍光検出部4を備えた光学的測定装置1において、蛍光検出部4に、少なくとも、複数の光を同時に検出可能な多チャンネル光電子倍増管49と、蛍光6を波長毎に分光する透過型回折格子47と、透過型回折格子47で分光された複数の光を、その光軸を相互に平行にして、多チャンネル光電子倍増管49の各検出チャンネルに向けて出射するテレセントリック集光レンズ48を設ける。 (もっと読む)


【課題】長期間に亙って安定して被測定ガス中の煤塵の計測ができる煤塵濃度計測装置を提供する。
【解決手段】被測定ガス12にレーザ光11を照射するレーザ装置13と、発生するミー散乱光30を計測する第1の光検出器31と、発生するラマン散乱光15を計測する第2の光検出器18とを具備してなり、予め第1の光検出器31によりミー散乱光の信号強度(=M0)を計測すると共に、第2の光検出器18により測定領域に存在する濃度校正用ガスのラマン散乱光15の信号強度(=R0)を計測しておき、煤塵濃度の校正を行う際に、第1の光検出器31によりミー散乱光の検出信号強度(=M1)を計測すると共に、第2の光検出器18により測定領域に存在する濃度校正用ガスのラマン散乱光15の信号強度(=R1)を計測し、得られたR0/R1を校正定数(K)とし、前記M1に校正係数(K=R0/R1)を乗じて煤塵濃度(M2)を算出してなる。 (もっと読む)


【課題】DNAチップ用色素として利用する場合に、効率的な蛍光標識が出来ること、並びに蛍光色素の取り込みが良く蛍光強度が十分であり、かつ退色しにくい蛍光ナノシリカ粒子、及び上記蛍光による生体分子の検出・定量方法を提供する。
【解決手段】基板上に固定した標的生体分子認識分子と、前記標的生体分子とを分子認識させる工程、前記第1の分子認識物質を分子認識する第2の物質によって表面修飾された、蛍光色素化合物とシリカ成分とが化学的に結合もしくは吸着してなる蛍光色素化合物含有コロイドシリカ粒子であって、少なくとも1種の前記蛍光色素化合物が前記シリカ粒子全体に分散しており、その平均粒径が30nm以下である蛍光色素化合物含有コロイドシリカ粒子を、基板上に固定した前記標的生体分子認識分子と分子認識した後の前記標的生体分子と分子認識させる工程、及び基板上の前記コロイドシリカ粒子の蛍光を検出もしくは定量する。 (もっと読む)


【課題】計測エリア内における微粒子を高効率で計測可能なようにトラップすること。
【解決手段】本トラップ方法は、計測エリア内の浮遊微粒子を分光的手段で計測するに際して、その浮遊微粒子を当該計測エリア内でトラップする微粒子トラップ方法であって、上記計測エリア内に微粒子通過路を配置し、この微粒子通過路内に微粒子が通過できないサイズの細孔を多数備えた多孔質ガラスをトラップフィルタとして配置する。 (もっと読む)


【解決課題】一般には困難と考えられる環境試料中の多様な物質からアスベストを簡便に識別する方法を提供する。
【解決手段】検体試料に対してレーザー光を照射し、検体試料中の物質から物質固有のレーザー誘起蛍光を発生させる第一の工程、顕微鏡観察視野内で発生したレーザー誘起蛍光を照射レーザー波長よりも長波長域にある任意の波長域に光透過特性を有する光学ローパスフィルターを通して光検出し、微粒子からの蛍光を2次元光検出器で画像計測する第二の工程、画像計測した微粒子の蛍光画像から微粒子のレーザー誘起蛍光を発する面積とその面積から発生する積算蛍光量を求める第三の工程、微粒子が蛍光を発生する面積とその面積から発生する蛍光量から単位照射面積当たりの蛍光量を算出し、予め同計測条件で求めておいたアスベストの単位面積当たりの蛍光量と比較する第四の工程を具備する、単位面積あたりのレーザー誘起蛍光量を指標とするアスベスト識別法。 (もっと読む)


本発明は、タンパク質(例えば、免疫グロブリン)に結合する分子を単離するおよび/または除去するために使用される、タンパク質をベースとするアフィニティークロマトグラフィー媒質(例えば、プロテインA、プロテインGおよびプロテインLをベースとするアフィニティークロマトグラフィー媒質)からの、タンパク質漏出を定量する方法を提供する。
(もっと読む)


システムと方法は、薬剤の取得したスペクトルから特徴抽出を実施する。薬剤の取得したスペクトルは、分光計を用いて測定される。取得したスペクトルは、プロセッサを用いて分光計から取得される。分光計のシステム応答関数は、プロセッサを用いて、取得したスペクトルから除去される。取得したスペクトルの強度は、プロセッサを用いて、所定のスケールに正規化される。プロセッサを用いて、取得したスペクトルから蛍光が除去される。最後に、薬剤の抽出した特徴は、プロセッサを用いて、取得したスペクトルの残部から取得される。薬剤の取得したスペクトルが薬剤を保持する容器を介して分光計によって測定される場合は、プロセッサを用いて、容器のスペクトルが取得したスペクトルの残部から除去され、薬剤の抽出した特徴が生成される。 (もっと読む)


本発明は、物質もしくは物質混合物を検査する方法、および物質もしくは物質混合物の作用様式を特定する、および/または特徴付けるための、または、物質もしくは物質混合物に暴露後の生物もしくは生物群またはその一部(1つもしくは複数)の生化学的状態および/または代謝状態を測定するための、その使用に関する。 (もっと読む)


【課題】金属元素物質が測定対象試料と同じ状態でフィルタに付着しており、最適化されたレーザー誘起プラズマ分光装置の定量下限値と測定範囲を確認できる程度の付着量を包含している較正用標準試料を提供する。
【解決手段】水中に既知の金属元素物質を設置して微粒化手段の破砕あるいは/および融砕条件を変化させ、量と粒径を制御して、融砕を行い、制御された量と粒径の融砕した金属元素物質が懸濁した懸濁液を形成する方法によって、量と粒径が制御された既知の同種のおよび異種の金属元素物質についての一又は複数の懸濁液を形成し、形成された懸濁液を適宜混合希釈調整して調整懸濁液をそれぞれ形成し、該調整懸濁液をフィルタに付着させて乾燥させ、既知の分析、検定方法によって前記フィルタに付着した既知の一又は複数の金属元素物質についてのそれぞれの付着量と粒径からなる付着状況データを特定する。 (もっと読む)


【課題】 積分球内で試料容器に保持された試料の分光測定を好適に行うことが可能な分光測定装置、測定方法、及び測定プログラムを提供する。
【解決手段】 試料Sが内部に配置される積分球20と、入射開口部21を介して積分球20の内部に励起光を供給する照射光供給部10と、積分球20の内部で試料Sを保持する試料容器400と、出射開口部22からの被測定光を分光して波長スペクトルを取得する分光分析装置30と、波長スペクトルに対してデータ解析を行うデータ解析装置50とを備えて分光測定装置1Aを構成する。解析装置50は、試料容器400による光の吸収を考慮した波長スペクトルの補正データを取得する補正データ取得部と、波長スペクトルを補正するとともに解析を行って試料情報を取得する試料情報解析部とを有する。 (もっと読む)


入射エネルギーを伝達するよう作製され、エネルギー放出源のアレイを有する励起源および入射光が送られた時に組成物から放出された光を受光するよう作製された複数の光度検出器を有する、組成物を分析する装置。 (もっと読む)


【課題】試料の表面性状の影響を受けることなく試料に含有される元素含有量を精度良く定量することができる元素分析装置を提供する。
【解決手段】本発明による元素分析装置は、パルスレーザ光4を分析対象試料1の表面に照射してこの試料1を気化・励起させるプラズマ生成手段2と、生成したプラズマ7中の定量対象元素から放出する蛍光8を集光する蛍光集光レンズ9とを備えている。また、この蛍光集光レンズ9により集光された蛍光8の波長と強度を測定して元素含有量を定量する分光器11が設けられている。さらに、分析対象試料1の表面に、レーザ光4を透過するテープ23を置いて発光強度を高めている。 (もっと読む)


【課題】液体状の物質をレーザ光ブレイクダウン分光分析によって再現性よく安定して元素分析できる分析装置11を提供する。
【解決手段】元素分析する対象が液体状の物質である場合、組成元素が明確な基体の表面に浸透体を固定し、浸透体に液体状の物質を浸透させ、液体状の物質を固定化する。元素分析する対象が粒子状または粉末状の物質である場合、組成元素が明確な基体の表面に接着体を固定し、接着体の表面に粒子状または粉末状の物質を接着させ、粒子状または粉末状の物質を固定化する。試料12にパルスレーザ光Lを集光照射し、試料12がパルスレーザ光Lを受けて生成するプラズマPから放出される蛍光Fを検出し、検出した蛍光Fから液体状の物質の元素分析をする。 (もっと読む)


本発明は、溶解している粒子サンプルを解析する装置に関し、該装置は、顕微鏡システムを含み、該顕微鏡システムは、サンプルを支持するための支持手段、発光性の活性化ビーム、該発光性の活性化ビームを該サンプル上の焦点に合わせするための焦点合わせ手段、及び解析空間を焦点の周りに定義することが可能な空間選別手段、を含み、前記顕微鏡システムは、また、前記発光性の活性化ビームを拡大するための拡大手段を含み、該拡大手段は、完全に正の焦点距離及び前記サンプルの屈折率よりも高い屈折率を有し、該拡大手段の1部分は、前記発光性の活性化ビームの経路上に、前記支持手段から下流に及び前記焦点から上流に配置され、前記拡大手段の少なくとも1部分は、前記支持手段に堅く固定されている、ことを特徴とする、装置に関する。本発明は、また、溶解している粒子サンプルをそのような解析装置によって解析する方法にも関する。
(もっと読む)


【課題】微弱光から強い蛍光まで広範囲に、精度良く測定できる、構造の簡単な蛍光検出装置を提供する。
【解決手段】蛍光検出装置は、流路中の測定点を通過する測定対象物に対してレーザ光を照射するレーザ光源部と、レーザ光の照射された測定対象物の蛍光を散乱させる光散乱板と、散乱した蛍光の一部を取り込んで受光することにより、受光信号を出力する光電子増倍管およびフォトダイオードが、並列して構成された受光部と、この受光部の光電子増倍管から出力した受光信号に基づいて求められるパルス信号の計数値と、フォトダイオードから出力した受光信号に基づいて求められる受光信号積分値とのいずれか一方を選択することにより、測定対象物の発する蛍光強度を求める処理部と、を有する。 (もっと読む)


【課題】試料中の1つ以上の分析物の特異的な検出法を提供する。
【解決手段】この方法は、試料中の1つ以上の任意の分析物を、散乱光の検出が可能な粒子と特異的に会合させる段階と、前記粒子から散乱光が生じ、かつ1個以上の該粒子から散乱した光を、電子増幅せずに500倍未満の倍率で肉眼検出し得る条件下で、該分析物と会合した任意の粒子に光を照射する段階とを含む。この方法はまた、このような任意の粒子によってそれらの条件下で散乱された光を、分析物の存在の目安として検出する段階をも含む。 (もっと読む)


【課題】キャリアガスの熱膨張に起因する気化した試料の移送速度の増大を可及的に抑える。
【解決手段】試料を加熱して気化するための加熱気化部2と、前記加熱気化部2を収容する気化チャンバ3と、前記気化チャンバ3に連通し、前記気化チャンバ3内にキャリアガスを供給するためのキャリアガス供給路4と、前記気化チャンバ3に連通し、前記気化チャンバ3内で気化された試料を前記キャリアガスとともに前記元素分析装置Zに導出するための試料導出路5と、前記キャリアガス供給路4に設けられ、前記加熱気化部2により前記試料を加熱する際に、前記気化チャンバ3内へのキャリアガスの供給量を減ずる供給量調整機構6と、を具備する。 (もっと読む)


【課題】 試料中に多量の夾雑物が混入していても、試料に由来するノイズを除去して検出対象微生物を容易に高精度で検出、計数する。
【解決手段】 試料1中の検出対象微生物の個数が、蛍光微粒子計測器の測定下限値よりも低くなる希釈倍率(φ倍)で、試料の一部1aを希釈し、この希釈試料11を蛍光微粒子計測30して、希釈試料中に検出対象微生物が存在しない場合の測定値(α値)を得る。この測定値と希釈倍率とを乗算してブランク値(α×φ)を算出する。試料の一部1bを同様の希釈倍率(φ倍)で希釈した希釈試料41に、蛍光微粒子計測器で検出対象微生物として計数される蛍光粒子4を既知の個数(γ値)添加し、蛍光微粒子計測60して測定値(β値)を得る。これらα値、β値、γ値、ブランク値から作成した検量線を用いて、試料の別の一部1cを蛍光微粒子計測80して得られた測定値(ζ値)を補正する。 (もっと読む)


【課題】レーザ光を照射することにより測定対象物が発する蛍光を検出する際、従来に比べて正確に蛍光緩和時定数を算出する蛍光検出方法及び蛍光検出装置を提供する。
【解決手段】所定の周波数の変調信号で光強度を変調したレーザ光の照射位置を測定対象物が通過するとき、受光手段が受光する蛍光の第1の蛍光信号を収集する。さらに、測定対象物がレーザ光の照射位置を通過した後の、測定対象物がレーザ光の照射位置に無い状態において、受光手段が受光する蛍光の第2の蛍光信号を収集する。収集した第1の蛍光信号と第2の蛍光信号とを用いて、測定対象物の発する蛍光の蛍光信号の、レーザ光の変調信号に対する位相差情報を求め、この求めた測定対象物の発する蛍光の蛍光信号の位相差情報から、測定対象物の発する蛍光の蛍光緩和時定数を求める。 (もっと読む)


61 - 80 / 169