説明

Fターム[2G052GA19]の内容

サンプリング、試料調製 (40,385) | 分析方法、装置 (3,239) | 放射線、粒子線によるもの (214) | X線分析 (150)

Fターム[2G052GA19]に分類される特許

101 - 120 / 150


【課題】撮像のための組成物、方法、及び装置、特に、X線顕微鏡コンピュータ断層撮影法から得られた試料画像の調製、収集、及び処理の改善を提供する。
【解決手段】コンピュータ断層撮像を用いて表現型に関してエキソビボ胎芽を選別するための高速かつ廉価で高処理量の高解像度撮像の方法のための処理と共に、X線顕微鏡コンピュータ断層撮影法を用いて仮想組織像のためのマイクロCT画像を生成する方法を説明する。高品質画像生成及び解剖学的構造の識別、並びに分子ターゲットの位置確認に寄与する、試料の特定の構成要素を1つ又はそれよりも多くの染色剤で染色することを説明する。生成した画像の撮像後処理の低減を考慮する革新的な動物及び試料ホルダを詳細に説明する。特に、透過性の低い構造から動物又は試料を分離する透過性の高いベッド又はライナを含む動物及び試料ホルダを提供する。動物の身体に適合するベッドを含む、撮像手順又は複数の撮像手順の間に動物を望ましい位置に配置及び/又は維持するための更に別の動物ホルダを提供する。 (もっと読む)


小さくデリケートな試料を操作するのに有用な微細加工ツールは、薄いプラスチックフィルムから形成される。上記フィルムは適度に柔軟性があるが、いくらかの硬さを与えるため円筒若しくは平らな支柱の周りに巻くことで好ましくは曲げられるように、僅かな厚さ(好ましくは5〜50マイクロメートルで、一般的に10マイクロメートル)及び僅かな横寸法(好ましくは2mm以下、一般的に0.1〜1mm)を有する。プラスチックの柔軟性及び薄さは、ツールとの偶然の接触の間における試料の損傷の危険を減じる。その薄さは、光学的に及びX線の透過を可能にし、その結果、試料は、操作の間、明らかに視覚化することができ、ツールは、試料からのX線データを収集するのに使用可能である。オプションとして、X線感知蛍燐光体が低濃度でフィルムに組み入れられる。このことは、X線ビームがマウントつまりツール上に視覚的に位置決めされるのを可能にする。プラスチックは、また、所望の疎水性か親水性を得るために処理され、あるいは機械的に浮き彫りされ又はすりはがされ、あるいは試料の付着を促進するか抑制するフィルム(例えばペグレーション手順によるポリエチレングリコール又はPDMSの)で覆われることができる。
(もっと読む)


【目的】
本発明は、溶液中に含まれる元素を蛍光X線分析法で高精度に定量分析する手法を提供し、飲料の品質管理や、河川水や湖・沼水、地下水などの陸水に関しての環境評価等の化学分析分野で活用するものであり、実験室内で高精度溶液分析を実施する溶液試料中の元素濃度を簡便にスクリーニングする手法としても利用可能である。
【構成】
疎水剤を塗布した有機高分子膜上に溶液試料を滴下・乾固させて、その残渣を蛍光X線分析法によって分析することで、溶液中の元素の濃度を定量分析する方法であり、標準溶液を前述した方法で調整・分析し、X線強度と濃度との相関関係を明らかにすることで、定量の下限と精度の検証を行う構成。 (もっと読む)


【課題】効率よく金属を表面に析出させる金属析出装置を提供する。
【解決手段】金属析出装置100は、シリコンウェハ900中に含まれる不純物金属を表面に析出させる。金属析出装置100は、シリコンウェハ900に向けてX線を発射するX線発射部300を備える。X線の波長は、不純物金属のK吸収端の波長以下であってK吸収端に近い波長である。例えば、不純物金属がNiであるとき、特性X線を発射するターゲット331をZnとする。また、例えば、不純物金属がCuであるとき、特性X線を発射するターゲット331をZnとする。 (もっと読む)


【課題】水溶液中に存在する微量元素の濃度分析を、蛍光X線分析装置を使用し、簡便に比較的高いレベルの精度で行うことができる水溶液中の微量元素分析方法の提供。
【解決手段】微量元素を含む水溶液1を吸着材2ともに煮沸容器3に入れ、これを加熱して水分を蒸発させ、水分蒸発後に残った煮沸容器内の吸着材を含む固形成分5を微粉状又は粒状にすりつぶし、得られた粉状又は粒状試料中の微量元素の含有量を、蛍光X線分析装置9を用いて計測する。 (もっと読む)


【課題】半導体用研磨スラリー中に含有される不純物粒子等の異物の検査を行い、その異物に関する情報を取得することができるスラリー中の異物の検査方法を提供する。
【解決手段】半導体用研磨スラリーを採取するサンプリング工程と、スラリー中に含まれる砥粒は通過させ、砥粒よりも大きな異物は捕捉することが可能である孔径を有したろ過膜に、サンプリング工程で採取したスラリーを通液し、ろ過するろ過工程と、ろ過工程で得られた、スラリーを通液したろ過膜の表面に存在する異物を検査する異物検査工程と、を有する異物検査方法。 (もっと読む)


【課題】金属試料であっても、溶融るつぼである白金るつぼを損傷させないでガラスビードを作製する方法および装置を提供するとともに、金属試料の組織、熱履歴、偏析、粒度などの影響を受けずに蛍光X線分析を正確かつ精度良く行うことができる蛍光X線分析方法および装置を提供する。
【解決手段】耐熱耐酸性の非金属製である溶解容器に金属粉末試料と鉱酸または鉱酸および溶解用酸化剤を入れ、金属粉末試料を溶解後、蒸発乾固し試料を金属酸化物にし、この乾固試料を白金るつぼに所定量採取し、所定量の融剤と溶融用酸化剤を加え加熱溶融しガラスビードを作製する。このガラスビードを用いて蛍光X線分析を行う。 (もっと読む)


基材を識別するために、X線蛍光分光法を用いて試料を分析し、電子部品および電子組立品における6価クロムを測定する。確認された基材に基づき、様々な抽出および分析の手順から手順を選択し、選択した手順を用いて6価クロムを試料から抽出する。抽出された6価クロムを1,5−ジフェニルカルバジドと反応させ、各種類の識別された基材に対し独自の校正曲線を用いて、紫外分光法を用いて測定する。測定された6価クロムの量に基づき、試料の単位面積の関数として6価クロムの濃度を算出する。
(もっと読む)


本発明の1つの態様によれば、基板処理システムが提供される。このシステムは、チャバを囲むチャンバ壁と、基板を支持するようにチャンバ内に位置付けられた基板支持体と、基板上の材料から光電子を放出させる電磁放射線を基板支持体上の基板に放出させる電磁放射線源と、基板から放出された光電子を捕らえるアナライザと、チャンバ内に磁場を発生させ基板からアナライザに光電子を誘導する磁場発生器と、を含む。
(もっと読む)


【課題】内容物を観察することなく、内容物の面出し及び構成元素の把握が確実にできる石英ガラス内に存在する内容物分析の前処理方法を提供する。
【解決手段】本石英ガラス内に存在する内容物分析の前処理方法は、石英ガラス内に存在する内容物分析に先行して、レーザ光により内容物の3次元座標を特定し、その座標に基づいて内容物の端部から100μm以上離れた位置で石英ガラスを切断し、内容物が分析面となるように切断面を鏡面研磨して、内容物を研磨面に露出させる。 (もっと読む)


【課題】従来、定量基準となるハンダ試料が存在しないため、蛍光X線分析装置によるハンダ材料の定量分析が行えない。また、溶融ハンダは冷却固化の際に含有成分が偏析するため、表面分析装置では、十分な分析精度が得られない。
【解決手段】溶融状態のハンダ材料を冷却固化してハンダ試料とする工程と、冷却固化したハンダ試料を折畳んで重ね合わせる工程と、前記ハンダ試料を圧延する工程により、含有成分の偏析の少ないハンダ試料が作製でき、前記ハンダ試料を表面分析装置で定量分析することにより、簡便かつ高精度な分析ができる。 (もっと読む)


【課題】 従来のゲル拡散法における不具合を改善し、蛋白質など生体高分子の単結晶を大型で良質な状態で均一に生成する結晶成長方法及び装置を提供すること。
【解決手段】 生体高分子を含有する溶液から、その生体高分子を結晶成長させる方法において、生体高分子溶液と、半透過性物質と、生体高分子の結晶化を促進する溶液とを、この順に各界面を接触させて並列させると共に、略水平に配置し、結晶化促進溶液を、半透過性物質を通過させ生体高分子溶液中に拡散させることで過飽和状態とし、生体高分子の結晶を析出させる。生体高分子溶液の下面に、生体高分子溶液より比重が大きな不活性液体を接触させて配置して、生体高分子溶液中における結晶化促進溶液の分散の均一化に寄与させてもよい。 (もっと読む)


【課題】 高品質のガラスビードを作成できるガラスビード作製装置及び方法を提供すること。
【解決手段】 試料及び融剤が投入される溶融ルツボ21と、この溶融ルツボ21を加熱する高周波加熱コイル(加熱手段)23と、溶融ルツボ21内にて試料及び融剤が溶融した溶融湯を撹拌する攪拌機20とを備え、この溶融湯を冷却してガラスビードを作製するガラスビード作製装置において、攪拌機20は水平面に対して傾斜した軌道面に沿って溶融ルツボ21を回動させて溶融ルツボ21内の溶融湯を撹拌する。 (もっと読む)


【課題】 簡単な構成で、液滴を静電搬送により2次元的に移送することができる液滴の静電搬送装置及び方法を提供すること。
【解決手段】複数の静電気発生電極線から成る電極郡を少なくとも二つ備え、隣接する電極郡の電極線の方向が異なる回路部と、内部に不活性溶液を収容可能に構成された、電気絶縁層を有する液滴搬送部とを有する液滴の静電搬送装置であって、各電極郡の電極線を制御する制御装置を有し、ある電極郡から隣接する他の電極郡へ液滴を移動させる時には、乗せかえ前の電極郡における乗せかえ後の電極郡に隣接している全ての電極線に正または負の電圧を印加すると共に、前記乗せかえ後の電極郡における前記乗せかえ前の電極郡に隣接している全ての電極線に前記印加電圧と逆相の電圧を印加するように各電極郡の電極線の電圧を制御するように構成したことを特徴とする。 (もっと読む)


【課題】 土壌中の有害物質の分析において、溶出法に極めて近似する測定結果を得られるとともに、簡易的かつ迅速に分析が可能な土壌有害物質含有量分析方法を提供する。
【解決手段】 土壌有害物質含有量分析方法においては、前分析工程として、採取された土壌を試料として蛍光X線分析により有害物質の含有量を分析する。溶出工程として、試料とされた土壌から有害物質を溶出するように前記土壌に水系溶媒を加えて混合した後に固液分離する。後分析工程として、固液分離されたうちの固体成分を試料として蛍光X線分析法により有害物質の含有量を分析する。溶出量算出工程として、前記前分析工程で分析された有害物質の含有量から後分析工程で分析された有害物質の含有量を減算し、溶出された有害物質の含有量を算出する。 (もっと読む)


【課題】 静電気力を利用して微小な液滴を簡便にかつ定量性にすぐれた方法で電極に供給することができる装置及び方法を提供すること。
【解決手段】 本発明に係る液滴供給装置は、静電気発生電極と、前記静電気発生電極上に設けられた電気絶縁疎水性の液滴搬送部とを備え、前記液滴搬送部が不活性溶液を収容可能であり、前記電極に少なくとも正及び負の電圧を、所定のサイクル時間で電圧が移動するように印加して電圧の移動方向に静電気力を発生させるように構成された液滴静電搬送装置に液滴を供給する液滴供給装置であって、液滴として供給すべき溶液を収容し、前記液滴搬送部における不活性溶液中に液滴を供給し得る供給口を備え、供給すべき液滴を接地又はマイナスに帯電させる液滴供給手段を有し、供給口の接地又はマイナスによって帯電された溶液が液滴静電搬送装置における静電気力の影響を受けて供給口から離れて液滴となるのに十分な量の溶液を前記液滴供給手段から供給するように構成したことを特徴とする。 (もっと読む)


【課題】 消耗品のコストを安価にでき、かつ、構造を簡単にすることができる静電搬送によるタンパク質の結晶化前処理装置を提供すること。
【解決手段】 本発明に係る静電搬送によるタンパク質の結晶化前処理装置は、静電気発生電極と、前記静電気発生電極上に、着脱可能に取付けられる電気絶縁疎水性の液滴搬送部とを備え、前記液滴搬送部が不活性溶液を収容可能に構成され、液滴搬送部に収容された不活性溶液中にタンパク質の結晶化のために必要な試薬の液滴とタンパク質溶液の液滴と供給した後、静電搬送により、これらの液滴を合体させ、次いで、合体したサンプル液滴を液滴搬送部上に設けた所望の保管位置まで静電搬送した後、液滴搬送部を静電気発生電極から外して保管することができるように構成したことを特徴とする。 (もっと読む)


【課題】 静電搬送により衝突させて合体させたサンプル液滴を良好に保持して保管することができる静電搬送によるタンパク質の結晶化前処理装置及び方法を提供すること。
【解決手段】 本発明に係る静電搬送によるタンパク質の結晶化前処理装置は、静電気発生用電極と、該静電気発生用電極の上に配置される電気絶縁疎水性層と、該電気絶縁疎水性層の上に配置される不活性溶液層とを有する静電搬送手段を備え、前記電気絶縁疎水性層に、親水性膜から成る複数の親水化スポットを設け、前記電気絶縁疎水性層上に、タンパク質の結晶化のために必要な試薬の液滴とタンパク質溶液の液滴とを滴下した後、これらの液滴を静電搬送により合体させ、次いで、合体後の液滴を前記親水化スポットまで静電搬送して、親水化スポット上に保持させるように構成したことを特徴とする。 (もっと読む)


【課題】 化合物の結晶粒を確実に識別して、その構造解析を容易に行うことができる化合物の観察方法及び該方法に用いる着色溶液を提供すること。
【解決手段】 X線回折実験において、試料である化合物の結晶画像を撮影し、撮影した画像により結晶を観察しながら試料のX線照射位置決め作業を行うに際し、結晶を着色溶液6に入れた後、結晶を着色溶液6とともにすくい上げて固化し、結晶に透過光を照射して結晶画像を撮影するようにした。 (もっと読む)


【解決手段】 本発明は、概括的には、結晶化溶液の蒸発を防ぐために、穿刺可能なリザーバ(14)に結晶化溶液(16)を密封し、膨大な数の蒸気拡散結晶化の実験を行うために使用される事前充填されたマイクロプレート(10)を、作業場から別の作業場へ安全に移送/輸送し、また安全に保管できるようにすることに関している。
(もっと読む)


101 - 120 / 150