説明

Fターム[2G052GA24]の内容

サンプリング、試料調製 (40,385) | 分析方法、装置 (3,239) | 電気的・電気化学的方法によるもの (584) | 質量分析(例;ICP−MS) (313)

Fターム[2G052GA24]に分類される特許

241 - 260 / 313


【目的】流体中に含まれる粒子状態およびガス状態の両方の形態の残留性有機汚染物質を簡単に採取し、しかも、採取した残留性有機汚染物質を容易に抽出できるようにする。
【構成】採取器3は、排出路12aを有するホルダー6内に配置された採取用フイルター7を有している。採取用フイルター7は、繊維材料と、当該繊維材料同士を結合するための無機系結合材とを含む、一端に開口部71を有しかつ他端が閉鎖された円筒状の成形体70と、開口側が成形体70の開口部71側に位置するよう、成形体70の外側に重ねて配置された円筒ろ紙75とを備えている。焼却施設の煙道から導入管8を経由してホルダー6内へ流入する、ダイオキシン類等の残留性有機汚染物質を含む試料ガスは、そこに含まれる粒子状態およびガス状態の両方の形態の各種の残留性有機汚染物質および煤塵等の粒子状物が採取用フイルター7を通過する際に捕捉されて採取され、排出路12aから外部へ排出される。 (もっと読む)


【課題】従来に比べて簡易かつ正確に試料中の水銀の含有量を測定することのできる試料前処理方法及び試料中の水銀量測定方法を提供する。
【解決手段】まず、白金、金、銀、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウムのうちの少なくとも一つを添加し、これらの金属イオンを含有させた溶液中で、樹脂材料を含む試料を酸により分解する分解工程を行う(101)。分解工程の後、温度を上昇させ有機物を分解除去する有機物除去工程を行う(102)。この後、試料中の水銀を、誘導結合プラズマ質量分析装置等により定量する定量工程を行う(103)。 (もっと読む)


【課題】無侵襲、無麻酔、無拘束、常圧でストレスを与えず、生理的条件に近い状態で動物からの経時的呼気採取を可能とし、しかも簡易で汎用性の高い、呼気採取システムを提供する。
【解決手段】動物に13C-標識体を投与した後、動物の体躯より大きな動物収納容器に入れることにより動物を無麻酔、無拘束、常圧の状態におくことを可能とし、ストレスを極力かけない状態での呼気採取を実現した。また排出された呼気は、動物収納容器に収納された動物の体躯以下に設けた呼気採取口より、呼気移送装置を用いて試験期間中一定速度で継続的に移送させ、呼気貯留容器に捕集する。また、呼気移送装置に複数ラインの呼気移送を可能とするヘッドを装着し、ライン毎に動物収納容器および呼気貯留容器を装着すれば同時に多数の個体から呼気を採取することも可能である。 (もっと読む)


【課題】臨床プロテオーム解析をする際に、微量成分の検出に対して妨害となる過剰な
タンパク質を取り除くための方法を得る。
【解決手段】血液由来試料から、分子量6万のデキストランのふるい係数が0.001以上0.5以下であり、分子量3万のデキストランと分子量6万のデキストランの透過比率が3以上である分離膜を用いた分離システムを用い、更に分子量3万以上の特定のタンパク質に対するアフィニティーリガンドおよび/または抗体を用いて特定のタンパク質に対するアフィニティーリガンドおよび/または抗体を用いない場合に比べ、特定のタンパク質を10%以下の濃度に低減した生体成分分離方法および生体成分分離装置。
本分離方法および装置により得られた溶液は、質量分析、電気泳動、液体クロマトグラフィー等のプロテオーム解析を目的としたタンパク質分析に用いられ、高感度の分析が可能になる。 (もっと読む)


【課題】 ナノレベル構造組成観察用試料の作製方法に関し、試料にダメージを与えることなく、より容易に保護層を除去する。
【解決手段】 試料母体の表面に保護層2を形成したのち、保護層2上から加工を施すことによって試料母体を針状試料1に加工する際に、針状試料1の頂部から遊離した保護層成分4を検出することによって加工の終点を検出する。 (もっと読む)


【課題】1回のガスクロマトグラフ質量分析手間のみで揮発性有機化合物の全放散量を測定可能とする。
【解決手段】1つの捕集管7の一方側に試験体1を収容するとともに、他方側に捕集剤10を収容し、前記試験体収容側を上流側として、所定温度のキャリアガスを所定流量及び所定時間で供給し、前記試験体1から放散される揮発性有機化合物を捕集管内壁面に付着させるとともに、前記捕集剤で捕集した後、この捕集管を熱脱着型ガスクロマトグラフ質量分析計(GC/MS)の加熱脱着部にセットし、揮発性有機化合物の全放散量を算出する。 (もっと読む)


【課題】コークス炉で石炭を乾留する際に発生するガス中に含まれる有機化合物のオンサイトでの分析を可能とすると共に高精度の分析を可能とするための被分析ガスの前処理装置及び前処理方法を提供する。
【解決手段】
前記前処理装置は、被分析ガス中の異物を除去するための異物除去手段と、前記異物除去後の被分析ガス中に含まれる有機化合物を吸着させ、その後、吸着させた有機化合物を加熱脱着することで濃縮を行う濃縮手段とを備える。
また、前記前処理方法は、被分析ガス中の異物を除去する異物除去工程と、前記異物除去後の被分析ガス中に含まれる有機化合物を吸着させる吸着工程と、前記吸着させた有機化合物の内の少なくとも分析対象の有機化合物を加熱脱着する脱着工程とを備える。 (もっと読む)


【課題】 試料分析装置に対する試料溶液の導入量の変動を抑制して、試料分析装置における分析精度の向上を図り得る試料導入方法及び試料導入装置を提供する。
【解決手段】 試料導入装置3によれば、試料溶液Sの導入から洗浄液Wの導入への切り替えは、ICP質量分析装置2における分析条件に基づいて演算された分析終了時点を基準として、試料溶液Sが試料容器4から質量分析装置2に達するのに要する時間を遡った時点において行われる。そのため、試料溶液Sの導入から洗浄液Wの導入への切り替えを、質量分析装置2における分析の終了と同時に行う試料導入装置に比べ、試料溶液Sの導入時間が短くなり、導入管6の下流側端部6aに接続される部品の所定の部分等に試料溶液S中の溶質が析出して付着し難くなる。従って、質量分析装置2に対する試料溶液Sの導入量の変動を抑制して、質量分析装置2における分析精度の向上を図り得る。 (もっと読む)


【課題】 基板搬送容器内空間の汚染状態を簡便に評価する方法を提供すること。
【解決手段】 容器本体と蓋体とを有し、該容器本体は一側面に開口部が形成され、また、該蓋体は該開口部を閉塞可能に、かつ該容器本体に開閉自在に取り付けられてなる基板搬送容器内空間の汚染状態の評価方法であって、該基板搬送容器に袋体を該開口部が該袋体で外気と遮断されるように装着した後、前記蓋体による該開口部の閉塞状態を解除して該容器本体内部空間と該袋体内部とを連通させ、該袋体に設けられたガス導入孔から不活性ガスを前記容器本体内に導入しながら、該袋体に設けられたガス排出口から排出される排出ガスを捕集し、該排出ガス中の汚染物質を分析することを特徴とする基板搬送容器内空間の汚染状態の評価方法 (もっと読む)


【課題】 分析精度を十分向上させることができる液体試料導入装置等を提供すること。
【解決手段】 本発明は、液体試料Sが収容された試料容器4を保持する保持部材5と、キャリアガスの導入によって、試料容器4から導入される液体試料Sを霧状化してICP質量分析部2に導入するネブライザ6と、試料容器4内の液体試料Sをネブライザ6に導入する液体試料導入管7と、保持部材5を上下に移動させる可動手段9と、試料容器4内の液体試料Sの液面位置L1を検知する検知手段26とを備え、液体試料導入管7の一端7aがネブライザ6に接続され、液体試料導入管7の他端7bが自由端である液体試料導入装置である。 (もっと読む)


本発明は、流体精製デバイスを用いる製造プロセスにおける汚染物質濃度の監視に関する。本発明は、全プロセスにわたりプロセス流体流中に含まれる汚染物質を吸着させるために精製材料を用いるプロセス流体流中の汚染物質濃度を分析するための高感度方法を提供する。
(もっと読む)


【課題】 レーザー脱離イオン化質量分析用試料基板において、レーザー光を照射されたときに、妨害ピークを発生させることなく、正確な測定ができ、試料作成にあたっては、試料を均一に塗布することができ、かつ測定後の洗浄が容易であるソフトLDI-MS測定のための試料基板およびそれを用いる測定装置の提供。
【解決手段】 レーザー脱離イオン化質量分析に用いるレーザー光を吸収するイオン化媒体として、焦電性素子、又は前記焦電性素子が強誘電体素子、又は前記焦電性素子が結晶性の素子、又は前記強誘電体素子が結晶性の素子、又は前記結晶性素子の表面が平滑な特定の単結晶を用いる。 (もっと読む)


【課題】 本発明における課題は、液体用紙容器の内容物接触面に裏移りしたオフセットインキ、オフセットニス由来のアクリル酸エステルが、アルコール飲料等の内容物を充填した際に、どの程度内容物中に溶出するかを、紙容器を製函、実包することなしに、再現性良く定量分析する手法を提供することを目的とするものである。
【解決手段】 本発明は、液体用紙容器の内容物接触面をアルコールを含有する溶液に浸漬して抽出したアクリル酸エステルを、ガスクロマトグラフで分離し、質量分析することで、アクリル酸エステルを精度良く定量する分析方法を提供する。 (もっと読む)


【課題】 ユーザーの要望に応じた複数種のガスを任意に組合せることができ、複数種のガスが含まれる標準ガスを簡単且つ効率良く調製する。
【解決手段】 複数の液状試薬が収容可能な試薬容器2(例えば2a〜2n)有し、各試薬容器2からの液状試薬を適量分配して供給する試薬分配手段1と、この試薬分配手段1から分配された液状試薬が滴下される気化受4を有し、この気化受4に滴下された液状試薬を完全に気化させる気化チェンバー3と、この気化チェンバー3と連通し且つ気化チェンバー3にて気化された気化ガスを希釈する希釈チェンバー5と、この希釈チェンバー5に希釈ガスを適量供給する希釈ガス供給手段6と、希釈チェンバー5に連通接続され、気化チェンバー3内で気化された気化ガスと希釈チェンバー5内の希釈ガスとが混合された標準ガスを排出する標準ガス排出手段7とを備える。 (もっと読む)


【課題】臨床プロテオーム解析をする際に、微量成分の検出に対して妨害となる物質を取り除くことができる分離膜を得る。
【解決手段】処理原液中で最も多量に含まれるタンパク質もしくはペプチドの分子量を4Aとした場合、分子量Aのデキストランと分子量4Aのデキストランとの透過比率が10以上である分離膜を用いることによって、分子量の高い妨害物質を効率よく除去する。本分離膜により得られた溶液は、質量分析、電気泳動、液体クロマトグラフィー等のタンパク質分析に用いられ、高感度の分析が可能になる。 (もっと読む)


【課題】 マトリックス支援レーザー脱離イオン化質量分析(MALDI−MS)法による測定において、試料中に存在する無機塩、界面活性剤などの夾雑物によるイオンサプレッションを抑止し、簡便かつ効率的なサンプル調製方法を提供する。
【解決手段】 分析対象物と、マトリックス分子とを、多孔性微粒子の存在下で共結晶化する。前記共結晶化は、ターゲットプレート上にて、分析対象物と、マトリックス分子と、多孔性微粒子とを接触させ、次いで該混合物を乾燥して行うことが好ましい。前記多孔性微粒子は、大きくとも50μmの平均粒子径を有するイオン交換体であり、好ましくは、強塩基性陰イオン交換体である。
なし (もっと読む)


【課題】 大気中の半揮発性有機化合物(SVOC)は、低濃度であるため、長時間の測定が必要であるが、高濃度に存在する他の浮遊物質により石英フィルタの目詰まりが発生し、SVOCを精度よく測定することが困難であった。石英フィルタの目詰まりを発生させずに精度よく、SVOCの濃度を測定する。
【解決手段】 吸引ポンプにより、被測定大気9と筐体1内の気圧差を利用し、遮蔽体のピストン5を移動させ、円筒形石英フィルタ4の目詰まりが起こっていない新しい捕集面4bを露出させることにより、円筒形石英フィルタ4の捕集面積を捕集されるSVOCの量に応じて自動的に変化させる。 (もっと読む)


【課題】 試料室等の内壁への微粒子の付着を抑えることができるレーザアブレーション用試料室、レーザアブレーション装置及び試料分析装置を提供すること。
【解決手段】 レーザアブレーション用試料室5は、試料4を収容するための試料室本体5aと、この試料室本体5aの上部に設けられ、試料4に照射されるレーザ光を透過させる窓部5bとを有している。試料室本体5aは導電性材料で形成されている。試料室本体5aは接地電極34と電気的に接続されている。このため、試料室5内に発生した静電気は、試料室5の外部に逃されることになる。これにより、試料室5の内壁への微粒子の静電的な付着が抑えられる。 (もっと読む)


【課題】 複数の抽出剤を用いたオンライン土壌中金属逐次抽出分析における抽出剤同士の混合、抽出剤溶液の送液安定性、抽出された金属の検出における抽出装置由来の金属コンタミネーションによる干渉、及び抽出反応の促進とその再現性に関する問題を解決する。
【解決手段】 複数の抽出剤溶液または気体を貯蔵できるチューブ(R1、R2)、流路切り替えバルブ(V1、V2、V3)及びポンプ(PP2、HP2)を備え、当該バルブの切り替え動作によって各抽出剤溶液の前後に気体を挟むことで、当該抽出剤同士が接触せずに土壌試料(9)を充填したカラム(10)に順次流入し、各抽出剤の流入完了後、直ちにその気体が流入され、土壌試料中に残存する抽出剤を押し出し、抽出剤同士の混合を防止する。 (もっと読む)


【課題】 照射するレーザ光についての光吸収率が比較的低い試料に対しても効率良くレーザアブレートすることができる試料分析方法を提供する。
【解決手段】 この試料分析方法によれば、レーザ光Lについての光吸収率が試料10より高い材料からなる膜20を試料10の一表面に形成するため、その膜20にレーザ光Lを照射することで、レーザ光Lの吸収率を高くすることができる。このとき、吸収されたレーザ光Lのエネルギは熱に変換され、その熱が試料10に伝わって試料10がレーザアブレートされるので、レーザ光Lについての光吸収率が比較的低い試料10に対しても効率良くレーザアブレートすることが可能になる。 (もっと読む)


241 - 260 / 313