説明

Fターム[3C081BA26]の内容

マイクロマシン (28,028) | 形状、構成 (11,743) | 構成要素 (3,421) | マイクロチャンネル (794) | 加熱、冷却部 (94)

Fターム[3C081BA26]に分類される特許

61 - 80 / 94


【課題】 基体の熱設計の自由度が高いマイクロ流路体を提供すること。
【解決手段】 マイクロ流路体1は、基体2の内部に、流体が流通される流路2aを有し、流路2aに沿って面が対向するように基体2内部に金属層3が設けられている。金属層3の形成されている箇所において熱伝導率を異ならせることができ、熱伝導率の異なる箇所を適宜に設置することで、熱設計の自由度が高いマイクロ流路体1を提供することができる。 (もっと読む)


【課題】連続的に安定な微細エマルションを調製することのできる装置及び方法を提供する。
【解決手段】転相温度乳化装置1は、連続相となる第1の液体を導入するための第1入口ポート2、分散相となる第2の液体を導入するための第2入口ポート3、これら第1及び第2入口ポートに連通し、導入された二液を合流させて第1の液体中に第2の液体が分散したエマルションを調製するマイクロ流路6、及びマイクロ流路6に連通しエマルションを回収するための出口ポート4とを具える合流マイクロリアクタユニット5と、エマルションを転相温度以上に加熱する少なくとも1つの加熱マイクロリアクタユニット9と、加熱されたエマルションを転相温度以下に冷却する少なくとも1つの冷却マイクロリアクタユニット10とを積層してなる。 (もっと読む)


【課題】反応部で発生する熱が隣り合う反応部へ伝達することを抑制し、高い反応効率を有するとともに消費電力が小さい反応器、反応器収納用容器および反応装置を提供すること。
【解決手段】複数の反応部7を備えた反応器6において、反応部7間に少なくとも一つの放射熱防止板10を設けた。また、複数の反応部7を備えた反応器6’を収納するための収納容器Aを具備する反応器収納用容器12であって、収納容器Aの内面に反応部7間に配置される放射熱防止板10’を設けた。 (もっと読む)


【課題】直接通電デバイスを提供する。
【解決手段】金属細管の両端に交流電圧を印加して、細管自身に流れる電流によるジュール熱を利用して細管内部を流通する流体を加熱する直接通電方式の加熱デバイスにおいて、電圧を印加する電極が上記金属細管の上流部、中間部、及び下流部の3ヶ所に設置されており、中間電極部に高圧電圧を、上流電極部及び下流電極部にコモン電圧(0ボルト)を印加する方式とすることにより漏電対策機能を付したことを特徴とする直接通電加熱デバイス。
【効果】本発明の直接通電加熱デバイスにより、従来材では対応が困難であった漏電の問題と熱膨張の問題を確実に解消することができる。 (もっと読む)


【課題】本発明の課題は、マイクロ流体デバイスを局所的に温度制御することである。
【手段】温度制御する部位の近傍に開口部を備えるマイクロ流体デバイスにより、マイクロ流体デバイスを局所的に温度制御することが可能になる。また、本発明は、マイクロ流体デバイスの開口部に、熱交換流体を導入あるいは熱交換部材を挿入する工程と、該熱交換流体または該熱交換部材を介してマイクロ流体デバイスと熱交換を行う工程とを含む、マイクロ流体デバイスの温度制御方法を提供する。 (もっと読む)


【課題】マイクロチップの流路内において一定量の液体を加熱して、所望の化学反応を得るに際し、蒸発に伴う液量の減少・濃縮、液の移動、気泡の発生が生じないようにし、検体の安定した検出を図る。
【解決手段】平面板内に形成された微細な反応流路35を有するマイクロ流体チップ200に対して、反応流路35に溜められた液体の温度を制御するマイクロ流体チップ200の温調方法であって、反応流路35を所定の反応温度に加熱すると同時に、反応流路35の一端に連通する第1の流路49aと反応流路の他端に連通する第2の流路49bとを、加熱又は冷却によって所定の反応温度と異なる同一の温度に保持する。 (もっと読む)


【課題】周りの温度にかかわらず効率的に作動することのできる温度適応型光変調器素子を提供する。
【解決手段】本発明の温度適応型光変調器素子は、基板295と、中央部分が基板295と所定の間隔を置いて位置する構造物層280と、構造物層280上に位置して構造物層280の中央部分を上下に動かす圧電層240と、構造物層280の中央部分の上部に位置して入射光を反射して回折させる上部反射層270と、基板295上に位置して入射光を反射して回折させる下部反射層287と、構造物層280の上部及び圧電層240の側面に位置して所定の印加電圧によって熱を発生するヒータ205とを備えていることを特徴とする。 (もっと読む)


【課題】弁閉鎖ユニット及びそれを備えた反応装置を提供する。
【解決手段】常温で固体の相転移物質及び相転移物質内に分散され、外部からの電磁波の照射による電磁気波エネルギーを吸収して発熱する複数の微細発熱粒子を含んでなる充填物が充填された充填物チャンバと、充填物チャンバとチャンネルを連結する連結通路と、充填物に電磁波を照射するための外部エネルギー源と、を備えており、外部エネルギー源からの電磁波の照射によって発熱した複数の微細発熱粒子は、相転移物質を溶融及び膨脹させることによって充填物を膨張させ、膨張した充填物は、連結通路を通ってチャンネルに流入してチャンネルを閉鎖することを特徴とする弁閉鎖ユニット及びそれを備えた反応装置である。 (もっと読む)


本発明は、少なくとも1つのマニホールドと、該マニホールドに接続する複数の接続マイクロチャネルとを同じデバイス内に収容した、マイクロチャネル装置に関する。デバイス内の優れた熱流または物質移動流を実現するためには、接続マイクロチャネルの容量は、単一または複数のマニホールドの容量を上回らなければならない。また、マイクロチャネルを通じて、分裂流および非分裂流を同時に有するマイクロチャネルデバイスにおいて単位操作を実行する方法も開示する。
(もっと読む)


モジュール式で再構成可能な多段型マイクロ反応器カートリッジ装置は、マイクロ反応器などの複数のマイクロ流体構成要素を取外し可能に取り付けるためのマニホールドを提供する。マイクロ流体構成要素は、2つの入力/出力端子を有したマイクロ流体構成要素ポートに取り付けられており、マイクロ流体構成要素ポートは、マニホールドの内部の接続を介して他のマイクロ流体構成要素ポートに接続され、マイクロ流体回路を提供している。マイクロ流体構成要素は、マイクロ流体回路差込口、または、2つの入力/出力端子および締結開口を有した装着ブロックと、第1および第2の輸送部分ならびに本体部分を有した流体チューブとを有するカートリッジであることが可能であり、これらの3つの部分は、実質的に平行な平面内に配置され、本体部分は、スプールの周囲にコイル状に巻かれている。コイルは、エポキシ製のプロテクタまたはL形ブラケットによって装着ブロックに接続されている。カートリッジは、それぞれ、第1および第2の輸送ラインに接続された第1および第2の遠隔入力/出力端子を有している。
(もっと読む)


【課題】 ミクロ流体回路のドロップを処理する方法を提供することである。
【解決手段】 本発明は、ミクロ流体回路のドロップを処理する方法に関し、ドロップが流れる少なくとも1つのマイクロチャネル(12)を具備し、レーザー(26)が移送液体(F3)の前記ドロップのインターフェースに、または、前記ドロップのインターフェースに向けられ、ドロップの選別、より大きいドロップからナノドロップを形成、またはコンタクトのドロップ(60、64)を融合させ、および、前記ドロップに含まれる流体の間の反応を起こすことを特徴とする。 (もっと読む)


マイクロ反応デバイスまたは装置(4)は、少なくとも1つの熱制御流体通路(C,E)および0.25から100mm2の範囲の平均断面積を持ち主要入口(92)と多数の副入口(94)を有する主要作用流体通路(A)を備え、副入口(94)の間の間隔が、通路(A)の平均断面積の平方根の少なくとも2倍の、通路(A)に沿った長さを有している。デバイスまたは装置(4)は、入口(102)および最後の出口(106)を含む多数の出口(106)を有する少なくとも1つの副作用流体通路(B)も備え、各出口(106)は、主要流体通路(A)の多数の副入口(94)の対応する1つと流体連絡している。 (もっと読む)


マイクロリアクターシステムアッセンブリーは、少なくともnのプロセスモジュール(1−6)であって、ここにおいて、nは1以上の整数であり、強固な第1の材料で作られており、および、反応液を収容しおよび導くために、少なくとも1つの反応液通路(1A、1B、2A、3A、6A)を含むプロセスモジュール、および少なくともn+1の熱交換モジュール(7、8)であって、前記第1の材料とは異なる延性のある第2の材料で作られており、および、熱交換液を収容しおよび導くために、少なくとも1つの熱交換液通路(7A、8A)を含む熱交換モジュールのスタックを含み、ここにおいて、それぞれのプロセスモジュール(1−6)は、2つの隣接する熱交換モジュール(7、8)により挟まれる。 (もっと読む)


本発明は集積電子マイクロ流体素子に関する。当該素子は、第1支持体(122)上に存在する半導体基板(106)、該半導体基板の第1半導体基板面上に存在する電子回路(102,104)、及び外部素子への信号インターフェース構造を有する。前記信号インターフェース構造は、前記第1半導体基板面上に備えられ、かつ前記電子回路から電気信号を受け取るように備えられている。マイクロ流体構造(126)は、前記半導体基板内に形成され、かつ流体を閉じこめて、該流体が、前記第1半導体基板面に対向して、かつ前記第1支持体の反対を向く第2半導体基板面上にのみ存在する前記マイクロ流体構造から流れること、及び前記マイクロ流体構造へ流れることを可能にするように備えられている。当該電子マイクロ流体素子は、様々なシステム・イン・パッケージ用途を構築するための柔軟性を有するプラットフォームを形成する。それにより、電気面と液体化学面とが明確に分離される。本発明の素子を作製する方法についての請求項に係る方法はまた、単純な断熱マイクロ流体構造の構築をも可能にする。

(もっと読む)


特定の塑性度を有する材料でできたシートの表面に密封チャネル(125)を形成する本発明による方法において、回転加工面を有するツールの加工面を、リアクタブロックを構成するシートの表面に形成されるチャネル(125)の第1のポイントに接触させる。次に、前記加工面は、形成されるチャネル(125)の深さを達成するのに必要な圧縮力(F)でシートの表面に押し付けられ、それによりプラスチック材料が、形成されるくぼみの周辺でシート表面から押し出され隆起する。この後で、圧縮力(F)を維持しながら、前記加工面をシート表面上のチャネル(125)の中心線に沿って移動させることによって、前記加工面が、形成されるチャネル(125)の第1のポイントから第2のポイントまで回転され、それによりチャネル(125)が、シートの材料内に加工され、チャネル(125)の周辺上に、押し出され隆起した材料から密封エッジ(127)が作製される。前記密封エッジ(127)を作製した後で、密封エッジ(127)に載っている閉鎖部材が、チャネル(125)と密封エッジ(127)を有するシートの表面に配置され、前記閉鎖部材が、前記密封エッジ(127)を変形するのに必要な圧縮力でシートに押し付けられ、得られた位置に固定され、それにより第1と第2のポイントの間に延在する密封チャネル(125)がリアクタブロック内に形成される。
(もっと読む)


【課題】MEMSプロセスで吊り下げられたビームを製造するための優れた方法を提供する。
【解決手段】MEMSプロセスで吊り下げられたビームを形成する方法が開示される。プロセスでは、基板(5)にピット(8)をエッチングする。犠牲材料(10)を、ピット(8)内及び周囲の基板表面上に付着させる。次に、周囲の基板表面及びピット(8)の周囲から犠牲材料(10)を除去し、したがって犠牲材料とピットの少なくとも2つの側壁の間にギャップがある。次に、残りの犠牲材料がピットの側壁と接触するように、犠牲材料をリフローするように加熱する。次に、通常は金属であるビーム(12)の材料を、基板表面及びリフローした犠牲材料に付着させ、次に犠牲材料を除去して、吊り下げられたビームを形成する。ビームは、インクジェットプリンタの加熱要素として使用することができる。 (もっと読む)


ラボ・オン・チップ(LOC)およびマイクロ・トータル・アナリシス・システムズ(Micro Total Analyses Systems)の製造のための相互接続およびパッケージング方法が提供される。バイオセンサー、ヒーター、クーラー、バルブおよびポンプといった種々の機能が、電子的/機械的/流体的モジュール内に、超音波接合処理を使ったフリップチップ技術によって組み合わされる。チップ上での所定のポリマー環がシールのはたらきをする。
(もっと読む)


マイクロ流体システムは、流体を案内するためのマイクロチャネル構造と、マイクロチャネル構造から少なくとも1つの隔壁によって隔離され熱伝達流体を案内するための他のチャネル構造とを有する。マイクロ流体システムにおける内部漏れの危険を適切な時機に認識することができるようにするために、マイクロチャネル構造(2)が少なくとも1つの個所において他の隔壁(11)によって空洞(12)から隔離され、他の隔壁(11)が、少なくとも局所的に、マイクロチャネル構造(2)と他のチャネル構造(5)との間の隔壁(8)よりも弱く構成され、空洞(12)が侵入流体を検出するための検出装置(14)に接続されている。
(もっと読む)


開示技術は、少なくとも1つの液体反応体と少なくとも1つの気体反応体との間の化学反応を少なくとも1つの触媒を含むプロセスマイクロチャネルの中で行うためのプロセスに関する。触媒は、固相触媒または固体上に固定化された均一系触媒を含む。一実施態様では、プロセスマイクロチャネルは、流体の流れを撹乱するための1つ以上の構造体を含むプロセス処理区域と、触媒と接触および/または担持するための1つ以上の構造体を含む反応区域とを含み、触媒と接触および/または担持するための1つ以上の構造体は、反応体が1つ以上の構造体を通って流れ、触媒と接触することができるようにする開口部を含む。本プロセスは、少なくとも1つの液体反応体と少なくとも1つの気体反応体とを含む反応体混合物を形成させる工程、反応体混合物をプロセス処理区域の中に流し、流体の流れを撹乱するための1つ以上の構造体と接触させ、液体反応体と気体反応体との混合を促進する工程、触媒と接触および/または担持するための1つ以上の構造体の開口部の中に反応体混合物を流して触媒と接触させる工程、および少なくとも1つの液体反応体を少なくとも1つの気体反応体と反応させて少なくとも1つの生成物を生成させる工程を含む。一実施態様では、本プロセスは、少なくとも1つのフィッシャー‐トロプシュ合成触媒を含むプロセスマイクロチャネルの中でフィッシャー‐トロプシュ合成を行うためのプロセスに関する。触媒は、固相触媒または固体上に固定化された均一系触媒を含む。本プロセスは、HとCOとを含む反応体をプロセスマイクロチャネルの中に流す工程であって、反応体の入り口空塔速度は少なくとも約0.1m/sである工程、フィッシャー‐トロプシュ合成触媒を反応体と接触させる工程、および触媒の存在下で反応体を反応させて少なくとも1つの生成物を生成させる工程を含む。
(もっと読む)


能動流体デバイス(4)を含む第一の層(1)、デバイス(4)を流体源および/または出口および/または他のデバイスに連結するための1つの相互連結流路(6)を含む第二の層(3)、およびデバイス(4)と相互連結流路(6)間の流体通路を定める少なくとも1つのビア(5)を定める中間層(2)を含むマイクロ流体構造であって、ここでデバイス(4)および相互連結通路(6)を通る流路が概して平行である。
(もっと読む)


61 - 80 / 94