説明

Fターム[3D038AB01]の内容

推進装置の冷却、吸排気、燃料タンクの配置 (22,903) | 適用車種 (1,615) | 一般車両 (1,167)

Fターム[3D038AB01]の下位に属するFターム

Fターム[3D038AB01]に分類される特許

281 - 300 / 1,137


【課題】従来と同等なトルクと出力を得ながら、電動車両に用いられるモータとインバータ電源の体格を小さくする。
【解決手段】車両を電動駆動する電動駆動手段1、2に冷却媒体を循環させる冷媒循環路6と、冷却媒体と外気との間で熱交換を行う熱交換手段3と、冷媒循環路6を通して熱交換手段3と電動駆動手段1、2との間で冷却媒体を循環させる冷媒循環手段5と、熱交換手段3に送風する送風手段4と、冷媒循環手段5と送風手段4を制御して電動駆動手段1、2の冷却を制御する制御手段23とを備え、制御手段23によって、電動駆動手段1、2による車両の駆動力が第一作動領域にある場合は、冷媒循環手段5と送風手段4を第一冷却モードで制御し、電動駆動手段1、2による車両の駆動力が第一作動領域よりも高い第二作動領域にある場合には、冷媒循環手段5と送風手段4を第一冷却モードよりも冷却能力が高い第二冷却モードで制御する。 (もっと読む)


【課題】ダクトの吸気口をシートバックの側方に大きく開口させて形成することができると共に、シートバックを保持するストライカの強度を向上させることができるダクトの配設構造を提供すること。
【解決手段】ダクト1の配設構造は、シートバック23と、シートバック23に設けられ、車体側壁3に支持されたストライカ5に係合してシートバック23を起立位置でロックするロック機構4とを有する車両用シート2と、シートバック23の側方に設けられて、上下方向に延び、空気を流通するダクト1と、を備えている。ストライカ5は、シートバック23のロック機構4と係合する係合位置から車幅方向の外側で、かつ、車両後方に向けて延びる傾斜部51を備えている。ダクト1は、シートバック23の側方でかつストライカ5の傾斜部51よりも前側に配置されている。 (もっと読む)


【課題】左右独立駆動車両において、熱源から左右輪をそれぞれを駆動させるモータへの熱の影響を遮断もしくは遮熱する冷却装置を提供する。
【解決手段】左右一対の左右輪を個別に駆動するモータMFR,MFLと、エンジン1と、エンジン1を冷却するための空気の取り入れ部とを備えた左右独立駆動車両において、エンジン1を遮熱板4で隔離し、かつエンジン1を冷却するために取り入れられ昇温した空気はモータMFR,MFLを避けて流す。 (もっと読む)


【課題】シャッタが凍結して動かなくなる環境下での牽引登板でもオーバーヒートすることなく走行可能な技術を提供する。
【解決手段】エンジンルーム12前方に、冷却空気の流入を制御するために開閉自在に設けられたシャッタ10を備え、車両後部に形成される連結部材(カプラ3)を介して連結された被牽引車両(トレーラ2)を牽引する、牽引車両(トラクタ1)におけるエンジン冷却装置であって、被牽引車両が連結部材を介して牽引車両に電気的に連結されたことを検知する連結検知部23と、連結検知部23が連結を検知したときにシャッタ10を開状態に維持する制御部21aと、を備える。 (もっと読む)


【課題】バッテリに十分な電池容量を確保しつつ、バッテリを効率良く冷却してその性能と寿命の低下を防ぐことができる車両のバッテリ冷却構造を提供すること。
【解決手段】フロアパネル3の車幅方向中央に車両前後方向に形成されたセンタトンネル部にバッテリパック7を配置して成る車両1のバッテリ配置構造において、前記バッテリパック7を前部バッテリパック7Aと後部バッテリパック7Bとに車両前後方向に2分割して両者間に空間Sを形成し、前部バッテリパック7Aと後部バッテリパック7B内のバッテリをそれぞれ独立に冷却する冷却経路を設ける。 (もっと読む)


【課題】ラジエータに空気を導入する吸気口の大きさを十分に確保できない車両にあっても、ラジエータを良好に冷却可能な冷却装置のシュラウド構造を提供する。
【解決手段】ボンネット22の前端が側面視でラジエータ25の上部より前方まで延出し、前面視でラジエータ25の冷却フィン35と一部重なり合うように形成された車両において、ファンシュラウド27でボンネット22と冷却フィン35とが重なり合う領域の冷却フィン35を後方から覆うようにし、その他の冷却フィン35はファンシュラウド27で覆わないようにする。 (もっと読む)


【課題】圧縮空気作動装置の作動に支障を生じさせることなく、車載電池を効率よく冷却させる。
【解決手段】圧縮空気を供給する圧縮空気供給手段から車載電池の近傍に圧縮空気を導き、車載電池の温度が温度閾値を超えたら、車載電池の近傍で圧縮空気を噴出する。圧縮空気供給手段は、貨物用車両などに通常装備されているものを用いる。更に、圧縮空気貯留槽内の圧縮空気の圧力が圧力閾値を下回っていたなら、検出温度が閾値を越えていても、圧縮空気の噴出を行わない。これにより、圧縮空気を用いて車載電池を冷却でき、かつ圧縮空気の不足を防止できる。 (もっと読む)


【課題】冷却システムをコンパクト化することができる燃料電池車両を提供する。
【解決手段】燃料電池を冷却する冷媒が循環する冷媒循環配管27と、冷媒循環配管27中に設けられる冷媒ポンプ23,24およびラジエータ21と、冷媒循環配管27を流れる冷媒中に溶出したイオンを除去するイオン交換器25と、を備えた燃料電池の冷却装置1が搭載された燃料電池車両において、冷媒ポンプ23,24とラジエータ21とイオン交換器25を収容するボックス10を備え、ボックス10の前面にはラジエータ21が配置され、ボックス10内の底面には、イオン交換器25と冷媒ポンプ23,24とが配置され、ボックス10には、燃料電池への冷媒の導出口24aと燃料電池からの冷媒の導入口26aとが、燃料電池に接続可能に設けられている。 (もっと読む)


本発明は、少なくとも1つの熱交換器(2,3,4)を含んでいる、自動車用の熱交換ブロック(1)に関する。当該ブロック(1)は、車両のフロントグリルパネル(6)の後ろに配置されるように、またグリルの開口から生じる空気によって横切られるように企図されている。当該ブロックは、熱交換器(2,3,4)を通過する空気(A)の流れを調節するために開放位置と閉鎖位置との間で動くことのできるルーバ(13)の群と、グリルの開口と当該熱交換ブロック(1)との間に配置することのできる導管(9)とを備えている。本発明は、如何なる自動車にも適しているが、特にハイブリッド自動車や電気自動車に適している。
(もっと読む)


【課題】この発明は、ハイブリッド車両に搭載したエンジンやモータ機器の冷却を十分に果たせるように冷却性能を向上させることを目的とする。
【解決手段】この発明は、エンジンと発電機と走行用モータとデファレンシャル装置とからなるパワーユニットをエンジンルームの両サイドメンバ間に配置し、インバータを発電機および走行用モータの上方に配置し、エンジン用冷却回路の第1ラジエータとモータ機器用冷却回路の第2ラジエータとを車両幅方向に並べてエンジンルームの前面部に配置したハイブリッド車両の冷却装置において、発電機とこの発電機の側方に位置するサイドメンバとの間に形成される隙間をエンジンとこのエンジンの側方に位置するサイドメンバとの間に形成される隙間より大きくするようにパワーユニットを両サイドメンバ間でエンジンの側方に位置するサイドメンバ側に偏った位置に配置したことを特徴とする。 (もっと読む)


【課題】燃料電池の温度制御を精度よく行うことが可能な燃料電池車両を提供する。
【解決手段】燃料電池FCを冷却する冷媒が循環する冷媒循環路と、冷媒循環路中に設けられるラジエータと、を備えた燃料電池の冷却装置1が搭載された燃料電池車両Vにおいて、ラジエータを収容するボックス10と、ボックス10内に外気を取り入れ可能なフラップ装置12と、フラップ装置12のフラップの開度を調整可能なフラップ制御手段と、燃料電池FCの温度を含む燃料電池FCの運転状態を検知する運転状態検知手段と、を備え、フラップ制御手段は、運転状態検知手段によって判断される燃料電池FCの運転状態の情報に基づいてフラップ装置12のフラップの開度を調整する。 (もっと読む)


【課題】ハイブリッド車両の冷却装置において、車両前方からの外力作用時に、電動ウォータポンプが車両後方へ移動するラジエータと駆動装置との間に挟まれて損傷することを防止することにある。
【解決手段】エンジンルーム(6)の前面部に配置されるラジエータ(30)とインバータ(41)及び駆動装置(10)との間をモータ機器用冷却回路(44)によって連結し、モータ機器用冷却回路(44)に冷却水を循環させる電動ウォータポンプ(45)を配置し、駆動装置(10)を車体(4)に支持するマウント装置(15)を駆動装置(10)の車両幅方向(Y)側方に配置し、マウント装置(15)の下方に電動ウォータポンプ(45)を配置している。 (もっと読む)


【課題】冷却水温の上昇を予測し、ぎりぎりまでフラップの閉状態を維持させることで、エンジンの冷却性能と空力特性との双方をバランス良く調和させ、燃費向上を実現させる。
【解決手段】冷却水温Twと暖機終了判定値Wとを比較し(S10)、Tw≧Wの暖機運転終了と判定したときは、燃料噴射量に基づいて算出した燃料消費率Tiと、車速毎に設定されている高温燃焼判定値Tとを比較し(S12)、Ti<Tの場合は、導風ユニット12に設けられている、ラジエータ7に対する外気の通風量を制御する上側フラップ16を閉動作させる運転モード3を実行する(S14)。又、Ti≧Tの場合は、上側フラップ16を閉動作させる運転モード1或いは2を実行する(S5,S6)。 (もっと読む)


【課題】冷却ダクトを既存の部品を利用して保護することによって部品点数の削減とコストダウンを図ることができる車両のバッテリ冷却構造を提供すること。
【解決手段】車両のシート4下方のフロアパネル3上に配設されるバッテリ6の冷却構造として、前記フロアパネル3のシート4下方の部位に基本面より下方に膨出する凹部3Aを形成し、該凹部3Aに前記バッテリ6を配置するとともに、該バッテリ6の車両前方且つシート4下方に電動ファン7を配設し、該電動ファン7から延びる冷却ダクト8を前記フロアパネル3を貫通して該フロアパネル3とフロアサイドメンバ9とで形成される閉断面空間S内に通し、その端部を前記バッテリ6に接続する。 (もっと読む)


【課題】本発明は、ハイブリッド車用冷却装置において、エンジンフードの高さを低くするとともに、冷却水通路に混入したエアを排出し易い構造とすることを目的としている。
【解決手段】このため、エンジンフードに覆われたエンジンルーム前部にラジエータを配置し、その後方に発電機と駆動モータとを配置し、駆動モータと発電機との上方の空間に駆動モータを駆動するインバータを配設し、ラジエータとインバータと駆動モータと発電機とを冷却水が循環される冷却水通路によって連結し、冷却水通路に所定圧力で開弁する圧力キャップと、圧力キャップにオーバーフロー配管を介して連結されるリザーブタンクとを設けたハイブリッド車用冷却装置において、インバータをエンジンフードに沿って前傾させた状態で車体に取り付け、インバータの前部に冷却水入口を設けるとともに、インバータの後部に冷却水出口を設け、冷却水出口に圧力キャップを配設する。 (もっと読む)


【課題】部品点数を削減して軽量化とコストダウン及び室内空間の有効利用を図ることができる車両のバッテリ冷却構造を提供すること。
【解決手段】車両のフロアパネル3上に配置されたバッテリ9の冷却構造において、前記バッテリ9を車両前後方向において前席下から後席足元までに配設するとともに、車両前部に搭載されたエアコンユニットから車両後方へ延びる後席足元暖房用ダクト10を前記バッテリ9に接続し、バッテリ9から車両後方へと延びる排気ダクト12をリヤフロア13の立ち上がり部に形成された閉断面空間Sに接続し、該閉断面空間Sを構成するパネル14に排気孔14aを形成する。 (もっと読む)


【課題】被冷却体に対し車両下方から良好に冷却風を導くことができる冷却風導入構造を得る。
【解決手段】冷却風導入構造10は、車体11の前部を下方から覆うアンダカバー26を有し、アンダカバー26には、パワーユニット12の後方に配置された冷却ユニット22に導く空気を導入口28Aから導入するダクト部28と、ベンチュリ壁30とが形成されている。ベンチュリ壁30は、車両導入口28Aで前端側よりも路面Rに近接するように傾斜されている。 (もっと読む)


【課題】駆動システムをオフとするための運転者の操作であるシステムオフ指示がなされた後にメイン二次電池を冷却する必要があるときにできるだけ電力消費を抑制しつつメイン二次電池を冷却する。
【解決手段】ファンECU66は、パワースイッチ80がオフとされて電源用リレー57がオフとされたときに高圧バッテリを冷却するための冷却条件が成立するときには、所定デューティ比を用いたファンインバータ64の制御である固定デューティ制御を実行する。これにより、電動ファン61を制御する際にハイブリッドECU70やエンジンECU24,モータECU40,バッテリECU52への電力供給を継続する必要がなく、電力消費を抑制しつつ高圧バッテリを冷却することができる。 (もっと読む)


【課題】部品点数を増加させず、小型化、コスト削減が図れるラジエータ通風構造を提供する。
【解決手段】車体前端部の開口部から車体前部に走行風を導入可能とする外気導入部に開閉手段が設けられ、この開閉手段を制御部27で制御されるトルクモータ26で開閉して車体前部に設けられたラジエータに送られる走行風の量を制御するラジエータ通風構造において、トルクモータ26は、少なくとも一部のステータコア65が金属部材(珪素鋼板)で形成され、制御基板からなる制御部27は、金属部材に接触している。 (もっと読む)


【課題】水撃等の外力を吸収できるとともにシャッターの開閉状態を復帰でき、更に、構造の簡素化、省スペース化、コスト削減、省エネルギー化を図る。
【解決手段】シャッター機構は、回動軸がトルクモータ26の回転軸63側に連結されて、開状態と閉状態とが選択可能に切り換えられ、トルクモータ26は、回動軸と同一方向に延びる回転軸63で支持されるロータ62を備え、ステータ61は、ロータ62に向けて突出する主歯部65a、副歯部65b,65cと、主歯部65aに装着されるコイル66とを備え、ロータ62は、ロータコア76に取付けられた異なる磁極を有する永久磁石77,78を備え、ロータ62の回転方向が、コイル66への通電を制御する制御部27によって切り換えられ、シャッター機構13の所定位置での位置決め及び保持は少なくとも、永久磁石77,78と副歯部65b,65cとの吸引力によって行われる。 (もっと読む)


281 - 300 / 1,137