説明

Fターム[3D038AB01]の内容

推進装置の冷却、吸排気、燃料タンクの配置 (22,903) | 適用車種 (1,615) | 一般車両 (1,167)

Fターム[3D038AB01]の下位に属するFターム

Fターム[3D038AB01]に分類される特許

261 - 280 / 1,137


【課題】熱交換器の重複配置回避による冷却効率の向上と、車両重量、当該部品が占める体積および原価節減ができるようにした環境に優しい車両用冷却システムを提供する。
【解決手段】本発明の環境に優しい車両用統合冷却システムは、第1ラジエータと、前記第1ラジエータを含む排循環冷却回路に設置されて冷却が行われる電気動力部品と、前記第1ラジエータを含む排循環冷却回路に設置されて冷却が行われるエアコンコンデンサと、を含んで構成されることを特徴とする。
また、本発明は、第2ラジエータと、前記第2ラジエータを含む排循環冷却回路に設置されて冷却が行われるスタックと、前記第2ラジエータを含む排循環冷却回路に設置されて冷却が行われるエアコンコンデンサと、を含んで構成されることを特徴とする。 (もっと読む)


【課題】バッテリケースに収容されている各バッテリの温度の均一化を図ることができる電池パックの冷却構造を提供する。
【解決手段】バッテリケース50の短手方向中央部にバッテリケース50の長手方向に沿って設けられるメイン送風路101を少なくとも有し冷却風が通過する送風路100を備え、冷却ユニット60から供給された冷却風が、送風路100を介してバッテリケース50内を上下方向に循環して冷却ユニット60に戻るようにして、複数のバッテリ20の温度バラツキを抑制する。 (もっと読む)


【課題】車両のエンジンに連結される冷却システムのために種々のシステムおよび方法を提供する。
【解決手段】1つの実施例の方法は、エンジンの停止中に、補助ポンプを作動させて、冷却液をヒータコアに流し、エンジンの作動中に、エンジンポンプを作動させて、冷却液をヒータコア、およびラジエータに流し、作動条件に基づいて、選択的に補助ポンプを作動させ、ヒータコアへの流れを補助することを含む。 (もっと読む)


【課題】燃料電池車のスタックと電気動力部品を冷却させる環境に優しい車用冷却システムを提供する。
【解決手段】本発明の環境に優しい車用冷却システムは、電気動力部品を冷却する作動流体とエアコンコンデンサを冷却する作動流体がすべて通過して冷却する統合ラジエータ、前記統合ラジエータの作動流体を前記電気動力部品または前記エアコンコンデンサにポンピングするように前記統合ラジエータと直列に設置されたポンプ、前記統合ラジエータと前記ポンプに対し、前記電気動力部品と前記水冷式エアコンコンデンサを並列に連結する第1分岐管および第2分岐管、および前記冷媒ポンプからの冷媒を前記第1分岐管と第2分岐管に調節して供給するように設置されたバルブ装置、を含んで構成されることを特徴とする。 (もっと読む)


【課題】車両の高速走行時、低速走行時のそれぞれに熱交換器に所要の冷却性能を発揮させることができる冷却風導入構造を得る。
【解決手段】冷却風導入構造10は、車両下向きに開口された開口部26Aからフロアトンネル20内に空気を導く前側ダクト部26と、フロアトンネル20内に設けられた後側ダクト部28とを含むダクト部24と、ダクト部24内における車両前後方向の中間部に設けられた空冷式の冷却ユニット22と、作動することで空気流を生じるファンユニット38とを備える。ファンユニット38は、冷却ユニット22の前面22Aに沿って位置する作動位置と、前側ダクト部26を形成する天壁34に沿って位置する退避位置とをとり得る。 (もっと読む)


【課題】冷却効率を向上できる電動車両の冷却システムを提供する。
【解決手段】車両の前方から見たときの投影面積が大きな圧縮機7や中間熱交換器8をラジエータ3通過後の空気の流出経路内に配設しないように構成した。これにより、ラジエータ3を通過する空気の圧力損失を低下させて、冷却システムの効率を向上できる。また、ラジエータ3を通過して温度上昇した空気が圧縮機7や中間熱交換器8に当たってこれらを温めてしまうことによる、冷却システムの効率低下を防止できる。 (もっと読む)


【課題】冷却負荷を平準化して冷却器の小容量化、小型化を図る。
【解決手段】前後左右の四つの車輪FL,FR,RL,RRのそれぞれを互いに独立して駆動することのできる駆動ユニットDU1,DU2を備えた左右独立駆動車両の駆動ユニット冷却装置において、前記駆動ユニットDU1,DU2は、左前輪FLと左後輪RLとをそれぞれ独立して駆動することのできる第1駆動ユニットDU1と、右前輪FRと右後輪RRとをそれぞれ独立して駆動することのできる第2駆動ユニットDU2とから構成され、前記第1駆動ユニットDU1から熱を奪って第1駆動ユニットDU1を冷却する第1冷却器CS1と、前記第2駆動ユニットDU2から熱を奪って第2駆動ユニットDU2を冷却する第2冷却器CS2のとを備えている。 (もっと読む)


【課題】可動部材の作動状態が異常であるか否かを適切に判定でき、コストや搭載性に優れた車両用グリル制御機構を提供する。
【解決手段】開位置と閉位置とに切換可能な可動部材と、可動部材を駆動する電動モータと、ロック電流値を検出するまで電動モータに電流を印加して、可動部材の開作動又は閉作動を実行する制御手段とを備え、制御手段は、開作動又は閉作動の作動開始からロック電流値を検出するまでの時間が予め設定された所定時間の範囲外であれば(#15,Yes)、可動部材を作動開始側の位置に戻す作動と再度開作動又は閉作動とを行う確認作動を実行し(#16)、確認作動において、作動開始側の位置から作動を開始した後にロック電流値を検出するまでの時間が所定回数所定時間の範囲外となった場合に(#18,Yes)、可動部材の作動状態が異常状態にあると判定する(#19)。 (もっと読む)


【課題】可動部材の開作動条件又は閉作動条件が継続している場合に、その作動条件に応じてあるべき可動部材の位置と実際の可動部材の位置とが一致しない場合に、その是正を図ることが可能な車両用グリル制御機構を提供する。
【解決手段】車両に備えたラジエータ3に外気を導入する開位置と、外気の導入を禁止又は抑制する閉位置とに切換可能な可動部材21と、可動部材21を駆動する電動モータと、可動部材21を開位置に作動すべき開作動条件又は閉位置に作動すべき閉作動条件が確定すると、電動モータに電流を印加して可動部材21の開作動又は閉作動を行う制御手段11とを備え、制御手段11は、可動部材21の開作動又は閉作動を行った後、異なる作動条件が確定するまでの間、継続中の作動条件に応じて断続的に電流を印加する。 (もっと読む)


【課題】回転電機冷却システムにおいて、回転電機内部に発生するサージ電圧が高くなる場合でも回転電機の絶縁破壊を有効に防止して、しかも、回転電機の高性能を確保しつつ省エネルギ化を図ることである。
【解決手段】モータ冷却システム24は、モータジェネレータMG1,MG2を冷却するモータ冷却装置26と、モータジェネレータMG1,MG2の駆動を制御するモータコントローラ30と、冷却装置コントローラ32とを備える。冷却装置コントローラ32は、判定手段と冷却制御手段とを含む。判定手段は、モータジェネレータMG2に加わるサージ電圧が高い高サージ領域を含む特定領域で、モータジェネレータMG2を駆動するか否かを判定する。冷却制御手段は、モータジェネレータMG2を特定領域で駆動すると判定された場合にモータ冷却装置26の冷却能力を増大させる。 (もっと読む)


【課題】センサを設けることなく、可動部材をより正確にコントロールできるようにする。
【解決手段】姿勢変化を伴って車両のラジエータへの空気の流入量を調節する可動部材21と、可動部材21を動作させる電動モータ12と、電動モータ12に対する通電によって、可動部材21を開作動位置と閉作動位置との間で動作させるにあたり、可動部材21が開作動位置或いは閉作動位置に達した後に生じるロック電流を検出して電動モータ12への通電を停止する制御手段11と、可動部材21の動作に影響を与える外部要因に基づいて、ロック電流の閾値を変化させる閾値変更手段31とを備えてある。 (もっと読む)


【課題】車両を電動駆動するための機器から周囲環境への放熱が抑制され、機器から吸収した熱の車室内空気への放出を効率的に行うことができる車両用空調システムの提供。
【解決手段】車両用空調システムは、冷媒40を圧縮する圧縮機1、および冷媒40と外気との熱交換を行う室外熱交換器2を有して車室内空気の温度調節を行う空調装置と、車両50を電動駆動するための機器であるモータ53,インバータ54と室内熱交換器7Bとの間で機器冷却媒体41Bを循環させて、モータ53,インバータ54から吸収した熱を室内熱交換器7Bにおいて車室内空気へと放出する機器冷却回路91Bと、を備え、さらに、モータ53,インバータ54から周囲環境への放熱を抑制する放熱抑制手段としての仕切り板60を備えている。 (もっと読む)


【課題】車両の高速走行時、低速走行時のそれぞれに熱交換器に所要の冷却性能を発揮させることができる冷却風導入構造を得る。
【解決手段】冷却風導入構造10は、フロアトンネル20の前部に設けられた空冷式の熱交換器を含む冷却ユニット22と、冷却ユニット22を通過した走行風が導かれるようにフロアトンネル20内における冷却ユニット22に対する後方に形成された第1通風路42と、フロアトンネル20内における冷却ユニット22に対する後方に第1通風路42とは独立して形成された第2通風路44と、第2通風路44に設けられたクロスフローファン50とを備えている。 (もっと読む)


【課題】消費電力を抑えることができる電気自動車の空調及び電池冷却システムを得る。
【解決手段】エアコンユニット22と電池26との間には、ブロアファン30が配設されており、エアコンユニット22と電池26との間のスペース35は連通孔42Aを介してダクト部42内に連通している。ダクト部42は、その前端側がコンデンサ40側に向けて開口されており、ダクト部42内にはコンデンサ用ファン48が配置されている。コンデンサ用ファン48には、駆動力伝達機構部50によってブロアファン30用のモータ32の駆動力が伝達される。 (もっと読む)


【課題】走行用モーターやインバーターの廃熱をより有効に利用することのできるハイブリッド車両の冷却システムを提供する。
【解決手段】放熱を通じて冷却水を冷却するエンジン用ラジエーター11とエンジン4とを通ってエンジン冷却水を循環させるエンジン冷却回路5と、走行用モーター2と直流電流を交流に変換して走行用モーター2に供給するインバーター1とを通ってHV冷却水を循環させるHV冷却回路3とを備えるハイブリッド車両の冷却システムにおいて、走行用モーター2及びインバーター1を通過したHV冷却水をエンジン冷却回路5に導入するEV冷却モードと、エンジン冷却回路5とHV冷却回路3との間の冷却水の流通のないノーマルモードとを切り替える第1水路切替弁17及び第2水路切替弁21を設けるようにした。 (もっと読む)


【課題】 電気機械装置用の冷却装置を提供する。
【解決手段】 本発明は、少なくとも1つの電気機械を備えた電気機械装置用の冷却装置であって、電気機械の外周面が冷却装置(1)によって包囲され、冷却の目的で冷却装置(1)内を流れる冷却媒体流の出入りを可能にする2つの開口部(7、9)を備える冷却装置に関する。
冷却装置を用いて、特に温度分布に関して電気機械装置の冷却を改善するために、冷却装置(1)は、らせん形状で電気機械装置の周囲を取り巻く冷却ダクトを備え、冷却媒体流の出入りを可能にする2つの開口部は、冷却装置(1)の一端(11)に配置される。 (もっと読む)


【課題】製造時の労力削減を図るとともに、充電器を好適に冷却することが可能な充電器冷却構造等を提供することを目的とする。
【解決手段】本発明にかかる充電器冷却構造102の代表的な構成は、車両100に搭載された充電器150と、充電器150へ電力を供給するコネクタケーブル22を差し込むコネクタケーブル差込口122と、コネクタケーブル差込口122から充電器150まで延びていて、電力をこの充電器150に送電する導線142と、コネクタケーブル差込口122に隣接して設けられ、外気を取り入れる空気取込口124と、空気取込口124から充電器150まで延びている吸気ダクト144と、吸気ダクト144の途中に設置され、外気をこの吸気ダクト144から充電器150へ吸引してこの充電器150を空冷する送風機148と、を有し、導線142が吸気ダクト144に固定されていることを特徴とする。 (もっと読む)


【課題】エンジン温度を容易且つ適切に制御することが可能なハイブリッド電気自動車のエンジン温度制御装置を提供する。
【解決手段】エンジン(2)と電動機(10)とを搭載し、エンジンを発電機(4)の駆動源とすると共に、電動機(10)のみを走行用の動力源として用いるハイブリッド電気自動車(1)のエンジン温度制御装置であって、エンジン(2)が載置されるエンジンルーム(52)内と車外との間で空気の流動が生じる流動経路に設けられ、上記空気の流動を規制する規制位置と、上記規制を解除する規制解除位置とに切り換え可能な第1シャッタ(56)及び第2シャッタ(58)を備え、HEV−ECU18は、エンジン(2)を構成するエンジン本体(28)の温度として冷却水温センサ(50)が検出したエンジン本体(28)の冷却水温(Tw)が基準温度(To)より低いときに、第1シャッタ(56)及び第2シャッタ(58)を規制位置に制御する。 (もっと読む)


【課題】電動機に熱影響を及ぼす発熱源での発熱を予測して電動機の冷却量を制御する。
【解決手段】左右輪にそれぞれ設けられたインホイールモータと、そのインホイールモータに熱影響を及ぼすエンジンとを備えた車両の電動機冷却制御装置において、そのエンジンの発熱量の増大を予測する昇温予測(ステップS1)手段と、その昇温予測手段(ステップS1)によってエンジンの発熱量の増大が予測された場合にインホイールモータの温度が上昇する前にインホイールモータに対する冷却量を増大させる冷却量増大手段(ステップS2,S3)とを備え、インホイールモータの温度が上昇する前に冷却性能を向上させ、インホイールモータの過度な温度上昇や温度による出力トルク制約を未然に防止もしくは抑制する。 (もっと読む)


【課題】従来と同等なトルクと出力を得ながら、電動車両に用いられるモータとインバータ電源の体格を小さくする。
【解決手段】車両を電動駆動する電動駆動手段1、2に冷却媒体を循環させる冷媒循環路6と、冷却媒体と外気との間で熱交換を行う熱交換手段3と、冷媒循環路6を通して熱交換手段3と電動駆動手段1、2との間で冷却媒体を循環させる冷媒循環手段5と、熱交換手段3に送風する送風手段4と、冷媒循環手段5と送風手段4を制御して電動駆動手段1、2の冷却を制御する制御手段23とを備え、制御手段23によって、電動駆動手段1、2による車両の駆動力が第一作動領域にある場合は、冷媒循環手段5と送風手段4を第一冷却モードで制御し、電動駆動手段1、2による車両の駆動力が第一作動領域よりも高い第二作動領域にある場合には、冷媒循環手段5と送風手段4を第一冷却モードよりも冷却能力が高い第二冷却モードで制御する。 (もっと読む)


261 - 280 / 1,137