説明

Fターム[3D235FF06]の内容

Fターム[3D235FF06]に分類される特許

21 - 40 / 362


【課題】車載機器に外力が作用して車体から離脱した後、車載機器を確実に移動させることが可能な車載機器の搭載構造を得る。
【解決手段】インバータ30が離脱可能に取り付けられるインバータトレイ20は、トレイ前部20Fとトレイ前部20Fよりも大きく傾斜したトレイ後部20Bを備えている。トレイ前部20Fは車体14に固定され、トレイ後部20Bは後端部がブレーキユニット70から所定寸法離間している。インバータ30に前方から外力が入力すると、インバータ30がインバータトレイ20から離脱してトレイ後部20Bに接触してトレイ後部20Bの傾斜角度が小となるので、インバータ30は車両後方へ移動し易くなる。 (もっと読む)


【課題】エンジン及びジェネレータからオーバハングしているモータの振動を抑制し、モータ及びジェネレータを連結する冷却水配管を保護する。
【解決手段】エンジンでジェネレータを駆動し、ジェネレータの発電電力でモータを駆動する場合に、ジェネレータケース2をエンジン1の車両幅方向端部に連結し、モータケース3をジェネレータケース2の車両後側に連結し、電力ケーブル10をジェネレータケース2及びモータケース3の上方の空間に配置し、冷却水配管12をモータケース3の下方で且つジェネレータケース2の車両前後方向後方の空間に配置し、ジェネレータケース2の下面及びモータケース3の下面を連結するスティフナー16で冷却水配管12の下方を覆う。また、リヤマウント部材9の車両前方にスティフナー16を配置することで、リヤマウント部材9に主として上下方向の振動だけを入力し、振動を効率よく抑制する。 (もっと読む)


【課題】後突に伴う衝撃を吸収しながら、バッテリーを保護できる車体後部構造を提供することを目的とする。
【解決手段】本発明にかかる車体後部構造100は、ハイブリット車または電気自動車の車体後部の床面を形成するリアフロアパネル120と、車体後部に搭載されるバッテリー114とを備えた車体後部構造において、リアフロアパネルの側端に沿って配置され車両前後方向に延びた一対のサイドメンバ122、124と、一対のサイドメンバ間に差し渡されたクロスメンバ126と、バッテリーの全周を囲んでバッテリーを支持する枠状のフレーム部材128とを備え、フレーム部材は、車外側が一対のサイドメンバに固定され、車両前方側がクロスメンバに固定され、クロスメンバよりも前方に位置するリアフロアパネルを含む領域よりも剛性が高いことを特徴とする。 (もっと読む)


【課題】後突時に燃料タンクを保護できる車体後部構造を提供することを目的とする。
【解決手段】車体後部構造100は、車体後部に搭載されるバッテリー114と、バッテリーを支持する枠状のフレーム部材120とを備え、フレーム部材の前方で一対のサイドメンバ124、126間に差し渡された第1クロスメンバ128と、第1クロスメンバの前方で一対のサイドメンバ間に差し渡された第2クロスメンバ130と、車体中央付近で第1および第2クロスメンバ間に差し渡されたブリッジ部材132と、ブリッジ部材と一方のサイドメンバ124との間に搭載される燃料タンク116とをさらに備え、燃料タンクは、前方に張り出し第2クロスメンバに固定された第1取付部140a、140bと、側方に張り出しブリッジ部材に固定された第2取付部140cと、側方に張り出し一方のサイドメンバに固定された第3取付部140dとを有する。 (もっと読む)


【課題】バッテリパック間寸法とサイドメンバ間寸法に寸法差がある場合、寸法差を許容してバッテリパックを車体のサイドメンバに支持すること。
【解決手段】バッテリモジュール2を収容したバッテリパックケース1を、車体下面に車両前後方向に延びて設けられた一対のサイドメンバ109,109に対して支持する。この電気自動車のバッテリパック車体支持構造において、バッテリパックケース1のロア側バッテリケース11に、固定面71aを有する第1バッテリ側ブラケット71を設けた。一対のサイドメンバ109,109に、第1バッテリ側ブラケット71の固定面71aと車幅方向に符合する位置に固定面72aを有する第1サイドメンバ側ブラケット72を設けた。そして、第1バッテリ側ブラケット71の固定面71aと第1サイドメンバ側ブラケット72の固定面72aを互いに重ね合わせて固定した。 (もっと読む)


【課題】軽量化及び低コスト化を図りつつ、後面衝突時にバッテリを保護することができる車両用バッテリ搭載構造を提供する。
【解決手段】車両用バッテリ搭載構造10では、リアサスペンションビーム22が、車両幅方向に延びるビーム本体部36と、このビーム本体部36の車両幅方向外側に形成され車両側面視した場合の断面積がビーム本体部36よりも大きいビーム端部38とを有している。また、バッテリフレーム24のリア部を構成するバックボード44は、車両幅方向に延びてビーム本体部36の車両前側に配置されたボード本体部46を有している。このボード本体部46における車両幅方向外側の端部46Bには、車体フレームに取り付けられた車体取付部54が設けられており、この車体取付部54は、ビーム本体部36における車両幅方向外側の端部36Aの車両前側に該端部36Aと対向して配置されている。 (もっと読む)


【課題】車体重量の増加を抑制しつつ、車両衝突時にバッテリを確実に保護することができる車体後部構造を提供する。
【解決手段】バッテリフレーム9は、バッテリケース11の前壁面21の下部とリアフロア7とを連結するフロントフレーム27と、バッテリケース11の後壁面23の上部とリアフロア7とを連結するリアフレーム29と、バッテリケース11の側壁面25に取り付けられたサイドフレーム31とからなる。前記リアフレーム29はフロントフレーム27よりも上方に配置され、前記サイドフレーム31は、フロントフレーム27の側端部27aとリアフレーム29の側端部29aとを連結すると共に、側面視において、車両後方に向かうに従って斜め上方に傾斜して延在するように配設している。 (もっと読む)


【課題】リヤホイールハウスに配置される駆動モータユニットの冷却性向上を図ること。
【解決手段】4輪インホイールモータ車のホイール内ユニット冷却装置は、フロントホイールハウス3と、リヤホイールハウス4と、フロント駆動モータ5と、リヤ駆動モータ6と、床下気流通路7と、を備える。フロント駆動モータ5は、フロントホイールハウス3内に配置される。リヤ駆動モータ6は、リヤホイールハウス4内に配置される。床下気流通路7は、フロアパネル13とサイドシルインナー14とサイドメンバ15で囲まれる凹溝空間に設けられ、フロントホイールハウス3の後端に気流入口が開口し、リヤホイールハウス4の前端に気流出口が開口する。 (もっと読む)


【課題】バッテリ群とインバータ等の電気機器との間に介在する接続制御機器の配置を最適化することで、ハーネス長さを短くする。
【解決手段】車両1のフロアパネル16の下側に複数のバッテリ3からなるバッテリユニットと、バッテリユニットに関する電気的接続を制御する接続制御機器35aを配置し、バッテリユニットはスペースを挟んで配置した2個のバッテリS2R,S2Lを備え、接続制御機器35aはスペースの内側に配置することで、接続制御機器35aの配置を最適化し、ハーネスの長さを短縮可能とする。 (もっと読む)


【課題】支持部材の第2装置を支持する部分に第2装置の荷重による曲げ応力が発生されず、その支持部材における第2装置を支持する部分のこじり変形が防止される電気自動車を提供する。
【解決手段】燃料電池用酸化ガス送給機20は、その固定用突部20aが締結部材70によって支持部材60の他端部60bにおける燃料電池用酸化ガス送給機20の重心G1を含む鉛直面68に位置する第1取付面60cに固定されることにより、支持部材60が燃料電池用酸化ガス送給機20をその重心G1の位置で支持できるので、その支持部材60における燃料電池用酸化ガス送給機20を支持する他端部60bに燃料電池用酸化ガス送給機20の荷重による曲げ応力Mが発生しなくなり、その支持部材60における燃料電池用酸化ガス送給機20を支持する他端部60bのこじり変形が防止される。 (もっと読む)


【課題】衝撃荷重を吸収するために必要なフロントサイドメンバの変形量を確保でき、衝撃荷重を効果的に吸収可能なエンジンの支持構造を提供する。
【解決手段】エンジンの支持構造は、車両の前部に配置された右フロントサイドメンバ10と、右フロントサイドメンバ10に固定されたマウント部材30Rと、を備えている。右フロントサイドメンバ10には、マウント部材30Rが固定される第1固定部14が形成されている。マウント部材30Rは、エンジン3を支持するエンジンマウントフォルダ31及びエンジンマウントフォルダ31を第1固定部14に連結する第1連結部材32を有している。第1固定部14は、エンジンマウントフォルダ31よりも車両の後方側に形成されている。 (もっと読む)


【課題】車両用中継部材を、車両とパワートレーンとの連結部分に実装する際に取り扱い易くしながら、製造コストを低減可能とする。
【解決手段】緩衝シート40は、パワートレーン側の支持部材に備える一対の平行な壁部のうちの一方の壁部とそれに対向するインシュレータ30の軸方向一端面との間に、それらの直接接触を回避させる状態で介装される。緩衝シート40には、ブラケット20にインシュレータ30を組み付ける前段階において弾性体33の軸方向一端面側の所定位置に軸方向内側に凹むよう設けられる凹み34a内に入れられて挟まれることで非分離とされる第1係止部42と、ブラケット20の筒部25の外周に引っ掛けられることで非分離とされる第2係止部43とが設けられている。 (もっと読む)


【課題】車体空間において高圧電線を簡単に配設でき、ハイブリッド車や電気自動車の組み立て作業効率を高める上で有利な車両における高圧電線の配設構造を提供すること。
【解決手段】走行用バッテリ46から高圧電線50により直流電流がインバータ44に供給される。高圧電線50は、束部50Aと切り離し部50Bと車体空間用配線部50Cとを有している。束部50Aは、2本の電線5002、5004が一体的にまとめられフロアパネル32の下方で前後方向に延在しその前部がダッシュパネル34の近傍の後方箇所に位置している。切り離し部50Bは、束部50Aの前部から2本の電線5002、5004が車幅方向に別々に切り離され、ダッシュパネル34の下部の幅方向の両側を通りエンジンルーム38に至る。エンジンルーム38の全域では、車体空間用配線部50Cを構成する2本の電線5002、5004が切り離されて別々に配線される。 (もっと読む)


【課題】機体フレームに支持される駆動部の上部の横揺れを抑制する。
【解決手段】エンジンEとミッションケースMとを連結して駆動部Cが構成され、エンジンEの左右下部と、ミッションケースMの左右の下部とを下部防振マウント45により下部フレームUFに支持する。左右の上部フレーム24に架け渡される形態で横フレーム37が備えられ、ミッションケースMの上部を上部防振マウント48により横フレーム37の中間部に支持する。 (もっと読む)


【課題】本発明は、エンジンフードが高くなるのを抑えつつ、動力装置の占有スペースの増加を抑制するとともに、車体に伝わる振動を低減することを目的としている。
【解決手段】このため、エンジンルームに左右一対のサイドメンバを配置するとともに、エンジンルーム後部に車両幅方向に延びるサブフレームを配置し、エンジンと発電機とを備える発電装置と、走行用モータとデファレンシャル装置とを備える駆動装置とをエンジンルーム内に配置し、発電装置と駆動装置とをマウント機構を介して車体に取り付けたハイブリッド車用動力装置の搭載構造において、マウント機構は、発電装置用マウント部と駆動装置用マウント部とから構成されるとともに、発電装置と駆動装置との間に、両方の装置が動作した場合において両装置が接触しない程度の空間を有する。 (もっと読む)


【課題】車両前方から力が作用したときでもマスタシリンダやダッシュパネルの車室内への押し出しを抑制することが可能な車両のインバータ搭載構造を提供する。
【解決手段】インバータブラケット8の支持部10を鋳造品とし、取付部9の車両後方端部がサスペンションタワー3の車両前面部から所定距離Lだけ車両前方に位置するようにインバータブラケット8をサイドメンバ1に取付けたことにより、車両前方からの力Fが作用したとき、サスペンションタワー3が連結される部分とインバータブラケット8の取付けられている部分との間でサイドメンバ1が車両幅方向外側に屈曲し、インバータブラケット8及びインバータが車両幅方向斜め外側に押され、マスタシリンダとの接触を抑制することができる。また、インバータのコネクタに取付けたプロテクタの傾斜面がマスタシリンダに接触するとインバータが車両幅方向斜め外側に押される。 (もっと読む)


【課題】車室内のこもり音発生を防止しつつ、電源装置の損傷防止と車体重量の軽量化とを両立可能な車両の電源装置支持構造を提供する。
【解決手段】前後方向へ延びる左右1対のリヤサイドフレーム2と、これら1対のリヤサイドフレーム2に亙って設けられたリヤフロアパネル3と、駆動用バッテリ6を載置可能で且つリヤフロアパネル3よりも上方に離隔配置された後側支持部材40と、後側支持部材40よりも上側位置において一端がホイールハウス15の固定座15aに連結され且つ他端が後側支持部材40の連結部43bに連結された左右1対の直線状の連結部材50と、左右1対の連結部材50の一端同士を直線的に連結して車幅方向に延びる第1車幅方向連結部材51とを備えている。 (もっと読む)


【課題】高電圧電装部品のサービス部を保護しつつ、そのサービス性も確保する。
【解決手段】高電圧バッテリユニット5は、操作者に操作されるサービス部6を有し、車両の荷室フロア部2に配設される。サービス部6を保護するプラグプロテクタ7が設けられている。サービス部6は、車両後方を臨むようにして高電圧バッテリユニット5に設けられている。プラグプロテクタ7は、車両後方に向かって開口する、サービス部6を操作するための開口部70を有し、サービス部6と車両前後方向に間隔を有した状態でサービス部6を車両後方から覆っている。 (もっと読む)


【課題】バッテリー冷却性能を良好にすることができる自動車のバッテリー搭載構造を得る。
【解決手段】バッテリー搭載構造10では、バッテリーフレーム36に設けられた左右一対のサイドフレーム38が、バッテリーモジュール12の車体幅方向両端部に取り付けられている。これら一対のサイドフレーム38は、前後両端部が開口した筒状に形成されており、前端開口部46を介して筒内に導入された走行風Wが後端開口部48から排出される。この走行風Wによってバッテリーモジュール12の熱を奪うことができるので、バッテリー冷却性能を良好にすることができる。また、一対のサイドフレーム38は、車体前後方向に延在しているため、これらのサイドフレーム38内を走行風Wが通過することにより、走行風Wを整流することができる。これにより、車両の走行性能(特に直進安定性)を良好にすることができる。 (もっと読む)


【課題】シート下方側にバッテリユニットの一部を搭載しても、シート性能を維持しつつ側面衝突時の衝突性能を向上させることができるバッテリ搭載車両の構造を得る。
【解決手段】バッテリユニット40の突出部40Aは、シートクッション30Aの下方側で車体フロア20の一般面22よりも高い位置に配置されている。車体フロア20には、車両上方側へ隆起して突出部40Aを覆う凸部26が形成されている。また、突出部40Aの上方側には、フロントシート30のシートパイプ36が配置されており、シートパイプ36には車両平面視で凸部26と重ならない位置に弱化部38A、38Bが形成されている。弱化部38A、38Bは、車両幅方向外側からの所定値以上の荷重が入力された場合にシートパイプ36をバッテリユニット40の突出部40Aから外れた位置方向へ向けてZ字状に折り曲げる起点となるように設定されている。 (もっと読む)


21 - 40 / 362