説明

Fターム[3G071EA01]の内容

タービンの制御 (4,929) | 調節部 (286) | 電気式 (225)

Fターム[3G071EA01]の下位に属するFターム

Fターム[3G071EA01]に分類される特許

21 - 40 / 66


【課題】ガバナで発電出力を、燃料で主蒸気圧力を、給水流量で1次過熱器入口エンタルピを、互いに影響されずにそれぞれ独立に最適に制御することを可能とするようにボイラの動特性を整形すること。
【解決手段】主蒸気経路に設けたガバナで発電出力を制御し、ボイラに投入する燃料で主蒸気圧力を制御し、ボイラへの給水で1次過熱器入口エンタルピを制御するボイラの制御装置であって、発電出力の偏差52、主蒸気圧力の偏差62、及び1次過熱器入口エンタルピの偏差72がそれぞれガバナの開度、ボイラ投入の燃料量、及び給水の流量を操作する制御ループを形成し、さらに、3つの偏差が3つの操作量に互いに外乱を及ぼさないように補償要素1011,1012,1021,1022,1031,1032を互いの制御ループに設けてボイラの動特性を整形すること。 (もっと読む)


【課題】既存の発電システムを大幅に改造することなく、定期検査などで比較的短期間停止した後、再起動する際に行うウォーミング時の蒸気を用いて発電することができる発電システムを提供する。
【解決手段】
蒸気管60に接続される排出管70を設けると共に、排出管70に復水器40に接続されるバイパス管80を設け、蒸気管60の温度と蒸気管60内の圧力に応じて、それらの管に設けられた弁61、71、81を制御して、蒸気管の圧力が所定の圧力以上になった場合に、蒸気管60内の蒸気を排出管70及びバイパス管80を通して復水器に流す。その際に、バイパス管80に設けられた発電手段90により発電する。 (もっと読む)


【課題】既存の制御ロジックをほとんど変更することなく、かつ制御対象の応答特性を同定することなく、2自由度制御に近い高い応答性を実現することができる火力発電プラントの負荷制御装置を提供する。
【解決手段】要求電力Aに応答してこれに相当する電力出力Bを出力するように発電プラントを制御する火力発電プラントの負荷制御装置。圧力一定制御又は温度一定制御を行いながら目標電力Cに相当する電力出力Bを出力するように発電プラントを制御するプラント制御装置Pと、要求電力Aに修正を加えた修正要求電力A1を出力する周波数応答改善フィルタF1と、要求電力Aと電力出力Bの差dB=A−Bに所定の係数Kを積算して目標電力補正値Dとし、これを修正要求電力A1に加算して前記目標電力Cとするフィードバック回路10とを備える。 (もっと読む)


【課題】 発電設備における主蒸気止弁等の開閉テストに伴う開閉動作時間を正確に測定し得る弁の開閉時間の自動測定装置を提供する。
【解決手段】 主蒸気止弁15を駆動する電磁弁の励磁による閉動作の開始時点でセットされ、主蒸気止弁15の全閉の検出による閉動作の終了時点でリセットされるフリップフロップ回路26を有し、このフリップフロップ回路26がセットからリセットに至る時間を計測する測定タイマ27と、
主蒸気止弁15を駆動する電磁弁の無励磁による開動作の開始時点でセットされ、主蒸気止弁15の全開の検出による開動作の終了時点でリセットされるフリップフロップ回路34を有し、このフリップフロップ回路34がセットからリセットに至る時間を計測する測定タイマ35とを有する。 (もっと読む)


【課題】2つ設けた開度センサーの故障の復旧時のサーボ電流の急変をなくし、各コントローラの定格運転への円滑な移行を実現させる。
【解決手段】複数コイルのサーボ電流の合計でサーボ弁を駆動制御するサーボ弁制御装置であり、複数のコントローラと、サーボ弁の開度を検出する2つの開度センサーを有する。開度センサーからのサーボ弁の開度(サーボ弁の位置)に対応する信号は、サーボ弁位置検出フィードバック回路で検出され、複数のコントローラに供給される。各コントローラの出力段にはバンプレス復帰手段が設けられており、このバンプレス復帰手段により、開度センサーの故障復旧時のサーボ電流を徐々に所定値に変化させる。すなわち、サーボ弁の開度を検出する開度センサーに異常が発生すると、各コントローラは自動的に制御指令値を初期値として徐々にサーボ弁位置検出フィードバック値に変化する制御信号を出力する。そして、サーボコイルに供給される電流がゼロになるようにサーボ弁を制御する。 (もっと読む)


【課題】高速回転する膨張タービンに適した制動機構を提供する。
【解決手段】回転シャフト12の外周上側の互いに対向する2箇所に上側突極26a,26bを形成するとともに、回転シャフト12の外周下側の互いに対向する上側突極26a,26bとは上下方向に重ならない2箇所に下側突極28a,28bを形成する。回転シャフト12の外周に対向した位置にケーシング22を設け、ケーシング22には上側突極26a,26b及び下側突極26a,26b間に磁路を形成するための励磁コイル30を設ける。回転シャフト12の回転と励磁コイル30によって形成される磁路とによって、ケーシング22には渦電流が発生するようにする。 (もっと読む)


【課題】蒸気システムのタービントリップ時の制御の安定性を向上させる。
【解決手段】高圧側ヘッダから低圧側ヘッダに供給される蒸気によって駆動するタービンを備えた蒸気システムにおいて、通常制御時、低圧側ヘッダの圧力が下がったときにタービンバイパス弁が開かれ、高圧側の蒸気が低圧側ヘッダに供給される。タービントリップ時、バイパスを介して低圧側ヘッダに蒸気が急速に流入し、一時的に圧力が高くなり、低圧側ヘッダの蒸気が放出弁を介して放出される。その後、低圧側ヘッダから他のプロセスへの蒸気供給が増加すると、放出弁が閉じられる。放出弁が全閉になった後、低圧側ヘッダの蒸気量が過小とならないように、タービンバイパス弁の開度が通常制御よりも早いタイミングで大きくなるトリップ後制御が実行される。 (もっと読む)


【課題】タービンがトリップしたときに安定的に運転することを可能にする蒸気システム制御方法を提供する。
【解決手段】低圧蒸気を蓄積する低圧側ヘッダと、高圧蒸気を蓄積する高圧側ヘッダと、その間に接続される蒸気タービンと、制御された量の高圧側ヘッダの蒸気を蒸気タービンをバイパスして低圧側ヘッダに流すタービンバイパスラインを備えた蒸気システムに対して適用される蒸気システム制御方法である。低圧側ヘッダは、過剰な蒸気を外部に放出するための放風弁を備える。蒸気システム制御方法は、放風弁の開度をPI制御する通常時放風弁制御ステップと、タービンがトリップしたときにMV値を規定されたトリップ時開度設定値に変更して放風弁の開度を制御するトリップ時放風弁制御ステップとを備える。このような方法により、タービンがトリップしてバイパスに過剰な蒸気が流入した時に、放風弁の開度が規定されたMV値により制御されて、低圧側ヘッダに流入した過剰な蒸気が速やかに外部に放出される。 (もっと読む)


【課題】2次側の低圧蒸気の使用量が変化しても2次側の圧力を一定に保つことができる発電装置を提供する。
【解決手段】発電装置1は、蒸気の膨張を回転力に変換する容積式スチームエキスパンダ5と、容積式スチームエキスパンダ5の回転軸に接続された発電機6と、発電機6の運転周波数を設定するインバータ10と、スチームエキスパンダ5の排気圧力を検出する圧力検出器17と、圧力検出器17の検出した排気圧力の目標値に対する偏差に応じて、インバータ10の設定周波数を変更する制御手段14とを有する。 (もっと読む)


【課題】ガスタービン発電装置の始動を少ない機器で且つ簡単な制御で行うとともに、排気ガスのエネルギーの再利用を高めるガスタービン発電装置を提供する。
【解決手段】内燃機関1の排出する排気ガスによって駆動されるガスタービン発電装置において、排気ガスを遮断する第1の遮断弁7と、排気ガスの流れをバイパスする第2の遮断弁6と、第1の遮断弁を通過し排気ガスを開閉する第3の遮断弁8と、通過可能なガス流量が第3の遮断弁8よりも少なく、且つ第1の遮断弁7を通過し流れる排気ガスを開閉する第4の遮断弁9と、回転軸がガスタービン2及び同期発電機3と同軸に結合され、且つ遮断器13を介して電力系統と接続された誘導機4と、同期発電機3の出力電圧と電力系統の電圧を監視し、遮断器12を介して同期投入する同期投入装置11を備えているので、少ない機器構成で同期発電機3の始動が行え、且つ簡単な制御で発電できる。 (もっと読む)


【課題】タービン発電機出力が目標負荷に速く到達する応答性の良い制御ができる発電プラント負荷制御装置を提供する。
【解決手段】プラント目標負荷信号1に変化率制限を加えてプラント負荷指令信号3を出力する変化率制限器2と、プラント負荷指令信号3に遅れを作用させてタービン発電機負荷指令信号5を出力する遅れ手段4と、プラント負荷指令信号3がプラント目標負荷信号1に到達したことを検知する検知手段21と、遅れ手段4からのタービン発電機負荷指令信号5より速くプラント目標負荷信号1に追従する信号24を出力する信号出力手段23と、プラント負荷指令信号3がプラント目標負荷信号1に到達すると信号24に切り替えてタービン発電機負荷指令信号26とする切替手段25を備える。 (もっと読む)


【課題】蒸気エネルギーから回転力を得る小型の蒸気タービンなどの小型流体機械と発電機とが連結軸によって連結され、発電を行う小規模発電設備において、系統負荷から前記発電機を解列させたときに前記小型流体機械及び前記発電機が過回転速度になることを防止すること。
【解決手段】系統負荷から発電機を解列させたときに、連結軸に対して摩擦により制動力を得るようにした過回転防止機械式制動装置を備える。また、発電機を解列させたときに、連結軸に質量を付加するようにした過回転防止質量付加式制動装置を備える。また、発電機を解列させたときに、連結軸に対して電磁誘導作用により制動力を得るようにした過回転防止電気式制動装置を備える。また、発電機を解列させたときに、小型流体機械の出口側圧力を高めて入口側と該出口側との圧力差を小さくするようにした過回転防止制動装置を備える。 (もっと読む)


【課題】負荷遮断時に、計測負荷が所定値以下のときに、低圧蒸気タービンに発生するランダム制御を抑制して、ランダム振動とフラッシュバックとの重畳による影響を少なくすること。
【解決手段】静翼3と動翼2とから構成される段落を複数有する低圧蒸気タービン1を有する低圧蒸気タービンシステム100であって、負荷遮断時に、計測負荷が所定値以下のときに、低圧蒸気タービン1にフラッシュバック振動が発生する所定時間の間、目標回転速度を所定値低く設定し、ロータ4が所定値低く設定した目標回転速度を所定時間維持するように、低圧蒸気タービン1に供給する蒸気量を調節する指令を蒸気流量調節弁10に出力するようにした。 (もっと読む)


【課題】負荷が遮断され、無負荷での運転に切り替わるときに、フラッシュバック振動の発生を抑制することができる低圧蒸気タービンシステムを提供することにある。
【解決手段】静翼3と動翼2とから構成される段落を複数有する低圧蒸気タービン1を有する低圧蒸気タービンシステム100であって、1つの段落の直前直後に給水加熱器8の給水加熱用蒸気の抽気孔6を有する場合において、低圧蒸気タービン1の負荷が遮断されて無負荷での運転に切り替わるときに、給水加熱器内8の温度を低減する構成とした。 (もっと読む)


【課題】自動周波数制御信号が入力されたときに系統周波数を所定の定格周波数範囲内に速やかに維持することである。
【解決手段】プラント統括制御装置15の周波数調整用負荷指令演算部20は、自動周波数制御信号AFCに基づいて周波数調整用負荷指令信号AFCrを演算し、補正演算部21は周波数調整用負荷指令信号AFCrによる発電機出力の変動に対応した補正信号を演算する。補正信号を周波数調整用負荷指令信号AFCrに加算して補正周波数調整用負荷指令信号AFCaを求め、さらに、負荷指令信号DPCに加算して、発電機14の出力指令値MWrとして出力する。ボイラ制御装置16は出力指令値MWrに見合った蒸気を発生するようにボイラを制御し、タービン制御装置17は、発電機出力MWが出力指令値MWrになるようにタービンを制御し系統周波数を定格周波数の所定範囲内に制御する。 (もっと読む)


【課題】 ボイラ、タービン協調制御装置をもって運転制御される火力発電プラントにおけるランバック運転を安全且確実に実行するために提供する。
【解決手段】 負荷設定器をランバック降下レート設定器の出力に追従させてランバック時においても負荷設定器の出力がランバック目標負荷指令になるようにした。その結果負荷設定器はランバックリセット後もランバック目標負荷指令値をそのまま保持するのでボイラ、タービン協調制御へ移行の際、運転の安定性を高めることが出来た。更に目標負荷指令をボイラ入力量制御指令とタービン加減弁開度制御指令の二つに分けてタービン加減弁開度制御指令中にも変化率制限器を設け、ボイラと別の降下速度で並行して制御する事によってランバック時の主蒸気圧力、ドラムレベル、等の被制御量を過大に変化させることなく実行できるようにした。 (もっと読む)


【課題】 プロセス蒸気の圧力値を、低圧から高圧へ変換するのみならず、高圧から低圧へも変換することができるプロセス蒸気の制御装置を得ること。
【解決手段】 増圧プロセス蒸気供給管2に切換弁5,6を取り付けて、分岐管7を接続する。分岐管7を蒸気圧縮及び膨張機4のスクリュー式ロータ部8と接続する。スクリュー式ロータ部8の下部を、連通管10によって減圧プロセス蒸気供給管3と接続する。
切換弁5,6,15,16を操作して、増圧プロセス蒸気供給管2からスクリュー式ロータ部8にプロセス蒸気を供給することによって、プロセス蒸気は膨張して減圧され、反対に、減圧プロセス蒸気供給管3からスクリュー式ロータ部8にプロセス蒸気を供給することによって、プロセス蒸気は圧縮されて増圧する。 (もっと読む)


【課題】 プロセス蒸気の圧力値を、低圧から高圧へ変換するのみならず、高圧から低圧へも変換することができるプロセス蒸気の制御装置を得ること。
【解決手段】 中圧プロセス蒸気供給管2に切換弁5,6を取り付けて、分岐管7を接続する。分岐管7を蒸気圧縮及び膨張機4のスクリュー式ロータ部8と接続する。スクリュー式ロータ部8の下部を、接続管17によって低圧プロセス蒸気供給管3と接続する。
切換弁5,6,15,16を操作して、中圧プロセス蒸気供給管2からスクリュー式ロータ部8に中圧蒸気を供給することによって、中圧蒸気は膨張して減圧され、反対に、低圧プロセス蒸気供給管3からスクリュー式ロータ部8に低圧蒸気を供給することによって、低圧蒸気は圧縮されて昇圧する。 (もっと読む)


【課題】 プロセス蒸気の圧力値を、低圧から高圧へ変換するのみならず、高圧から低圧へも変換することができるプロセス蒸気の制御装置を得ること。
【解決手段】 中圧プロセス蒸気供給管2に切換弁5,6を取り付けて、分岐管7を接続する。分岐管7に熱交換器18を介して蒸気圧縮及び膨張機4のスクリュー式ロータ部8と接続する。スクリュー式ロータ部8の下部を、接続管17によって低圧プロセス蒸気供給管3と接続する。
切換弁5,6,15,16を操作して、中圧プロセス蒸気供給管2からスクリュー式ロータ部8に中圧蒸気を供給することによって、中圧蒸気は膨張して減圧され、反対に、低圧プロセス蒸気供給管3からスクリュー式ロータ部8に低圧蒸気を供給することによって、低圧蒸気は圧縮されて昇圧する。 (もっと読む)


【課題】運転停止中に蒸気発生器内の圧力が上昇することを防止すると共に、蒸気発生器内への作動媒体の流入を抑止することで、装置内が過圧状態になることを防止できる発電装置を提供する。
【解決手段】タービン31をバイパスして蒸気発生器10で発生した作動媒体蒸気を凝縮器40へ送るバイパス配管70を設けると共に、該バイパス配管70に開閉弁71を設けた発電装置において、蒸気発生器10内の圧力値が規定圧力値を上回ったら開閉弁71を開き、規定圧力値を下回ったら開閉弁71を閉じるように制御する弁開閉制御手段15を設けることで、装置の運転停止中に、蒸気発生器10内の圧力が上昇する前に作動媒体蒸気を凝縮器40へ逃がし、且つ逆止弁52を介して蒸気発生器10内に作動媒体液が流入することを抑止することで、発電装置内が過圧状態になることを防止するように構成した。 (もっと読む)


21 - 40 / 66