説明

Fターム[3G301PD11]の内容

Fターム[3G301PD11]の下位に属するFターム

Fターム[3G301PD11]に分類される特許

41 - 60 / 905


【課題】酸化触媒部12、NOx触媒部11、及びフィルタ13を備えたエンジンの排気浄化装置において、NOx触媒部におけるNOxの還元能力を低下させることなく、燃費の悪化を防止しながらフィルタ13の再生を確実に実行する。
【解決手段】エンジン2の排気通路に、排気上流側から下流側に向かって、酸化触媒部12、NOx触媒部11及びフィルタをこの順で配置するとともに、エンジン2の排気通路を、酸化触媒部12の下流側且つNOx触媒部11の上流側の部分において、排気をNOx触媒部11へと導く第1通路27と排気をNOx触媒部11を介さずにフィルタ13へと導く第2通路28とに分岐させるとともに、該排気通路に制御弁29を設けて、該制御弁29により、該第1通路27に流入する排気の流量と該第2通路28に流入する排気の流量との流量比率を変更可能にした。 (もっと読む)


【課題】NOx触媒部11、酸化触媒部12、及びフィルタ13を排気上流側から下流側に向かってこの順で配置したエンジンの排気浄化装置において、燃費の悪化を防止しながら、フィルタ13の再生を確実に実行する。
【解決手段】エンジン2の排気通路を、NOx触媒部11の上流側において、排気をNOx触媒部へと導く第1通路27と排気をNOx触媒部11を介さずに酸化触媒部12へと導く第2通路28とに分岐させるとともに、該排気通路中に制御弁29を設けて、該制御弁29により、該第1通路27に流入する排気の流量と該第2通路28に流入する排気の流量との流量比率を変更可能にした (もっと読む)


【課題】ストイキ燃焼モードにおけるウィンドウ外れによる不都合を回避するエンジン燃焼制御システムの提供。
【解決手段】三元触媒と、排気路に配置された酸素濃度センサと、酸素濃度センサからの検出信号に基づいて空気過剰率を推定する空気過剰率推定演算部と、ストイキ範囲内に前記燃焼室の空気過剰率を維持するストイキ燃焼モードと、空気過剰率をリーン範囲内に維持するリーン燃焼モードとの間で燃焼モードを切り替える燃焼モード切替部と、ストイキ燃焼モードでの燃焼制御中に推定空気過剰率がストイキ範囲から外れたことをひとつの要因事象としてストイキ燃焼モードでの異常発生を決定する異常発生決定部、異常発生決定部が異常発生を決定した場合に、強制的にストイキ燃焼モードからリーン燃焼モードへの変更を行う強制燃焼モード変更部とが備えられている。 (もっと読む)


【課題】エンジンの低負荷域で適正に圧縮自己着火燃焼を行うことができるとともに、エンジンの高負荷域で異常燃焼の発生を効果的に防止できるようにする。
【解決手段】吸気ポート16に燃料を噴射するポート燃料噴射手段57と、燃焼室19の中心部に燃料を噴射する筒内燃料噴射手段62とを備えた火花点火式ガソリンエンジンであって、エンジンの低負荷域では、上記ポート燃料噴射手段57により吸気行程で吸気ポート16に燃料を噴射して理論空燃比よりもリーンで均質な混合気を形成し、この混合気を自着火させ、エンジンの高負荷域では、上記筒内燃料噴射手段62から30MPa以上の燃圧で圧縮行程から膨張行程初期までの間に燃料を燃焼室19内に噴射して上記低負荷域よりもリッチな混合気を形成し、この混合気に圧縮上死点近傍で点火して圧縮上死点よりも所定期間遅れたタイミングで急速燃焼させるように制御する制御手段10を備えた。 (もっと読む)


【課題】デュアルインジェクションシステムを搭載する多気筒内燃機関での気筒間の空燃比のばらつき異常をより早期に判定する。
【解決手段】ポート噴射用と筒内噴射用との2つの燃料系からなるデュアルインジェクションシステムを搭載する多気筒内燃機関において、ポート噴射と筒内噴射との噴き分けを行う期間に、気筒間の機関回転速度変動量や空燃比変化率の絶対値の積算を行って(S101)その積算値が閾値以上であるか否かにより、気筒間の空燃比のばらつき異常の有無を判定する(S102)。またこれと同時に、判定パラメーターの積算期間における両燃料系の燃料の噴き分け率に応じて、異常の生じた燃料系がいずれの燃料系であるかを推定する(S103)。 (もっと読む)


【課題】圧縮着火燃焼を実行する圧縮着火モードと、火花点火燃焼を実行する火花点火モードとの間でモードの切り替えを行う火花点火式ガソリンエンジン1において、火花点火モードにおける燃焼安定性を高めることによって、吸気充填量の低減が必要となる負荷領域を可及的に縮小する。
【解決手段】制御器(PCM10)は、低負荷域では圧縮着火モードとし、高負荷域では、燃料圧力を高めると共に、圧縮行程後期から膨張行程初期にかけてのリタード期間内で燃料噴射を行う火花点火モードとする。火花点火モードでは、外部EGR制御を実行する。制御器はさらに、火花点火モードにおける所定負荷以下の領域では、EGR率を所定負荷よりも高い領域でのEGR率よりも高く設定すると共に、吸気充填量を圧縮着火モード時よりも低下させる充填量制御を実行する。 (もっと読む)


【課題】幾何学的圧縮比が比較的高く設定された高圧縮比の火花点火式ガソリンエンジン1において、高負荷域における異常燃焼を回避する。
【解決手段】制御器(PCM10)は、エンジン本体の運転状態が低速域にあるときには、高負荷域では、低負荷域よりも燃料圧力が高くなるように、燃圧可変機構(高圧燃料供給システム62)を駆動し、高負荷域では、圧縮行程後期から膨張行程初期にかけてのリタード期間内のタイミングで行う燃料噴射を少なくとも含むように、筒内噴射弁(直噴インジェクタ67)を駆動する。制御器10はまた、高負荷域では、リタード期間内における、燃料の噴射後のタイミングで点火するように、点火プラグ25を駆動する。制御器10は、エンジン本体の運転状態が高負荷域内の中速域にあるときには、吸気行程中における燃料噴射をさらに実行する、又は、当該吸気行程中における燃料噴射による燃料噴射量を増量する。 (もっと読む)


【課題】新たにセンサ類や加熱手段等を設けることを必要とせずに、排気管路に溜まる凝縮水量を正確に推定し得て、凝縮水による排気センサの損傷を、大きなコストアップを招くことなく確実に防止することのできるエンジンの制御装置を提供する。
【解決手段】検知素子に加熱用ヒータ30が付設された排気センサ10が排気管路109に配備されているエンジンの制御装置であって、排気ガスの温度を検出する排気ガス温度検出手段122と、吸入空気量を検出する吸入空気量検出手段115と、吸気温を検出する吸気温検出手段121と、前記エンジンが始動したときにおける前記排気ガス温度、吸入空気量、及び吸気温に基づいて前記排気管路内の凝縮水量を推定する凝縮水量推定手段と、該凝縮水量推定手段により推定された凝縮水量に基づいて前記加熱用ヒータに対する通電制御を行うヒータ制御手段と、を備える。 (もっと読む)


【課題】火花点火式ガソリンエンジン1において、触媒活性を目的として燃焼の発生を大きく遅らせた場合であっても、その燃焼の安定化を図る。
【解決手段】制御器(PCM10)は、エンジン本体の運転状態が低速域内の低負荷域であって、触媒(直キャタリスト41、アンダーフットキャタリスト42)が未活性である触媒活性モードのときには、触媒が活性のときよりも燃料圧力が高くなるように、燃圧可変機構(高圧燃料供給システム62)を制御する。制御器はまた、膨張行程で行う燃料噴射を少なくとも含むように筒内噴射弁(直噴インジェクタ67)を駆動し、燃料の噴射後に点火するように、点火プラグ25を駆動する。 (もっと読む)


【課題】圧縮着火燃焼を実行する圧縮着火モードと、火花点火燃焼を実行する火花点火モードとの間で、モードの切り替えを行う火花点火式ガソリンエンジン1において、モードの遷移期間における制御遅れに起因する問題を回避する。
【解決手段】制御器(PCM10)は、所定の低負荷域では圧縮着火モードとし、それよりも負荷の高い高負荷域では、燃料圧力を相対的に高めると共に、圧縮行程後期から膨張行程初期にかけてのリタード期間内のタイミングで行う燃料噴射を少なくとも含むように、燃料噴射弁67を駆動すると共に、点火プラグ25を駆動する火花点火モードとする。制御器はまた、圧縮着火モードから火花点火モードへと移行する際のモードの遷移期間内では、火花点火モードにおける特定タイミングよりも遅角したタイミングで燃料を噴射すると共に、その噴射後に点火する。 (もっと読む)


【課題】幾何学的圧縮比が比較的高く設定された高圧縮比の火花点火式ガソリンエンジン1において、高負荷域における異常燃焼を回避する。
【解決手段】制御器(PCM10)は、エンジン本体の運転状態が低速域にあるときには、高負荷域では、低負荷域よりも燃料圧力が高くなるように、燃圧可変機構(高圧燃料供給システム62)を駆動し、高負荷域では、低負荷域での燃料の噴射タイミングよりも遅角側のタイミングであって、圧縮行程後期から膨張行程初期にかけてのリタード期間内のタイミングで行う燃料噴射を少なくとも含むように、燃料噴射弁(直噴インジェクタ67)を駆動する。制御器10はまた、高負荷域では、リタード期間内における、燃料の噴射後のタイミングで点火するように、点火プラグ25を駆動する。 (もっと読む)


【課題】簡素な構成により燃焼温度を過度に低下させることなく高負荷時のNO排出量を低減したディーゼルエンジンを提供する。
【解決手段】ストイキ近傍の所定の空燃比範囲において有効な三元触媒90が排気管路40に設けられたディーゼルエンジン10を、出力トルクが所定値以上となる高負荷領域において空燃比λが三元触媒90の有効範囲内となるように燃料噴射量及び吸入空気量を制御する高負荷制御を行なうエンジン制御装置100を備える構成とする。 (もっと読む)


【課題】目標空燃比を所定のリーン側空燃比で運転することができる船外機用内燃機関において、操船者がスロットル開度の上昇操作に応じた加速感を得ることができるようにする。
【解決手段】吸気圧を検出する吸気圧検出手段と、スロットル開度を検出するスロットル開度検出手段と、エンジン回転数を検出するエンジン回転数検出手段とを備えた船外機において、吸気圧、スロットル開度及びエンジン回転数に基づいて空燃比を制御する船外機用内燃機関の空燃比制御装置であって、エンジン回転数の上昇率が所定値よりも小さくなるスロットル開度を切り替え点として、目標空燃比を所定のリーン側空燃比からリッチ側に制御する制御手段を有することを特徴とする。 (もっと読む)


【課題】 内燃機関の排気ガスシステム内に配置されているセンサの過熱が避けられるように、センサの電気的加熱のための制御方法および装置を提供する。
【解決手段】 内燃機関の排気ガスシステム内に配置されているセンサの電気的加熱のための制御方法において、センサの全加熱出力(42)が制御され、且つセンサの温度の実際値(33)が特性パラメータ、例えば抵抗の測定によって決定される。定格加熱出力(41)が、特性マップ(20)を介して内燃機関の運転ポイント(30、31)に応じて決定される。制御加熱出力(40)が、制御器(10)において温度の実際値(33)と新しい目標値(34)とから決定される。全加熱出力(42)が、定格加熱出力(41)と制御加熱出力(40)との和として生成される。 (もっと読む)


【課題】ターボラグを抑制し、かつ低過給域から高過給域までのトータルの加速性能を向上させる。
【解決手段】排気エネルギにより駆動する過給機5と、バルブタイミングを変更し得る可変動弁機構14と、を備える内燃機関の制御装置において、可変動弁機構14を制御するバルブタイミング変更手段12と、点火時期変更手段12と、燃料噴射量変更手段12と、運転者の加速要求を検知する加速要求検知手段13と、過給機5による過給圧を検出する過給圧検出手段19と、加速要求を検知した場合に、過給圧が所定値より低い低過給領域では点火時期を遅角補正し、過給圧が所定値以上の高過給領域では、点火時期の遅角補正を終了してバルブオーバーラップを設け、排気通路内で掃気ガスと排気ガスの混合気が燃焼し易い空燃比になるよう燃料噴射量を変更する加速制御手段12と、を備える。 (もっと読む)


【課題】ナノ粒子の排出をより速やかに低減することのできる内燃機関の排気浄化装置を提供する。
【解決手段】捕集された粒子状物質を燃焼除去して排気浄化フィルター20を再生するための再生制御の実施直後に、ディーゼル機関から排出される粒子状物質を大径化する粒子大径化制御を実施する。そしてこれにより、排気浄化フィルター20へのスート等の大径粒子の堆積を促して、排気浄化フィルター20にナノ粒子の捕集能力を早期に獲得させるようにした。 (もっと読む)


【課題】燃焼音の低減と排気エミッションの改善との両立を、これらの評価手法の簡素化を図りながら実現可能とする内燃機関の制御装置を提供する。
【解決手段】パイロット噴射、メイン噴射、アフタ噴射それぞれにおける燃料の燃焼に伴う熱発生率波形の傾きの最大値の和を燃焼音の評価値とし、メイン噴射で噴射された燃料の燃焼に伴う熱発生率波形の傾きの最大値をNOx発生量の評価値とする。これら燃焼音及び排気エミッションの評価指標を共通化したことで、燃料噴射量及び燃料噴射タイミングの適合値を早期に取得することが可能となる。 (もっと読む)


【課題】DPF(ディーゼルパティキュレートフィルタ)の強制再生時にDPFが高温化して、DPFに溶損やクラック等が発生することを防止でき、また、強制再生に伴う燃費の悪化を抑制できる排気ガス浄化システム及びDPFの強制再生方法を提供する。
【解決手段】内燃機関10の排気通路11に、上流側から順に、酸化触媒12、ターボ式過給機13のタービン13a、DPF14、尿素供給装置15、選択還元触媒16を配置した内燃機関の排気ガス浄化システム1において、当該排気ガス浄化システム1の制御装置を、前記DPF14の強制再生時において、内燃機関10で発生する一酸化窒素を増加させて、この一酸化窒素を前記酸化触媒12で二酸化窒素に酸化し、該二酸化窒素で前記DPF14に蓄積されたSOOTを酸化し、このSOOTの酸化で発生した窒素酸化物を前記選択還元触媒16で窒素に還元する制御を行う。 (もっと読む)


【課題】 本発明は、コストの高騰を抑えて浄化性能を向上できる浄化装置を提供する。
【解決手段】 排気浄化装置50は、内燃機関10の排気通路30に設けられる前段三元触媒62と後段三元触媒72と、空燃比を制御する制御部40とインジェクタ15とを備える。後段三元触媒72は、少なくともロジウムを含む第1の後段触媒層74と、少なくとも、パラジウムと第1の後段触媒層74よりも多くのアルカリ金属とを含む第2の後段触媒層75とが、後段担体73に積層してなる。制御部40は、後段三元触媒72の温度が活性温度のとき、空燃比を、高性能範囲A内となるようにインジェクタ15から噴射される燃料の質量を制御する。 (もっと読む)


【課題】DPF(ディーゼルパティキュレートフィルタ)に堆積されたSOOTの堆積推定量を必要かつ十分な再生時間で確実に燃焼除去できる排気ガス浄化システム及びDPFの強制再生方法を提供する。
【解決手段】内燃機関10の排気通路11に、上流側から順に、酸化触媒12、ターボ式過給機13のタービン13a、DPF14、尿素供給装置15、選択還元触媒16を配置した内燃機関の排気ガス浄化システム1において、当該排気ガス浄化システム1の制御装置を、前記DPF14の強制再生時において、内燃機関10で発生する一酸化窒素を増加させて、前記DPF14に堆積されたSOOTを酸化すると共に、この強制再生時の一酸化窒素の増加時点からの二酸化窒素の発生量を累積し、該二酸化窒素の累積発生量が、重量比で、当該強制再生の開始直前の前記DPF14に堆積されたSOOTの堆積推定量の7.66以上になった場合に当該強制再生を終了する。 (もっと読む)


41 - 60 / 905