説明

Fターム[4C082AG09]の内容

放射線治療装置 (15,937) | 出力照射線の制御 (1,370) | 放射線源 (489) | 放射線の検出によるもの (79)

Fターム[4C082AG09]に分類される特許

41 - 60 / 79


【課題】治療用放射線の線量をより高精度に制御すること。
【解決手段】高周波源5に対して移動可能に支持される支持体14、81と、支持体14、81に対して移動可能に支持される治療用放射線照射装置16と、高周波源5から治療用放射線照射装置16に高周波を伝送する導波管8とを備えている。治療用放射線照射装置16は、その高周波を用いて治療用放射線23を生成する。導波管8は、支持体14、81に固定される第1固定導波管73と、治療用放射線照射装置16に固定される第2固定導波管85と、第1固定導波管73と第2固定導波管85との間に介設されるフレキシブル導波管86、87とを備えている。フレキシブル導波管86、87は、ロータリージョイントに比較して、伝送損失と反射影響が十分に小さく、放射線治療システム1は、その高周波の伝送効率の変動を小さくし、治療用放射線23のエネルギーの変動を低減することができる。 (もっと読む)


【課題】放射線が照射される部分の位置をより高精度に制御し、かつ、その部分に照射される放射線の線量をより高精度に制御すること。
【解決手段】第1点から放射状に放射される第1放射線111−1を被検体43のうちの第1部分102−1に照射するステップと、その第1点に一致する第2点から放射状に放射される第2放射線111−2を被検体43のうちの第2部分102−2に照射するステップとを備えている。このような方法によれば、より小型の放射線照射装置16を用いて、被検体43の部分に照射される放射線23の線量をより高精度に制御することができる。その結果、その放射線照射装置16を支持する支持体14の撓みが低減され、その放射線照射装置16がより高精度に位置決めされ、放射線23が照射される部位101がより高精度に制御されることができる。 (もっと読む)


【課題】照射時間を短縮し、照射対象に対する時間の負荷を軽減させるだけでなく、照射精度を向上させることができるようにする。
【解決手段】荷電粒子ビーム2を出射する加速器12と、該加速器から出射された荷電粒子ビームを周期変動する照射対象6に複数回スキャニング照射する照射装置20と、を有する粒子線照射システム10において、前記照射対象をビーム軸方向に分割して層状に形成される各スキャン領域の大きさに対応する照射線量を、前記加速器からのビーム強度を変調(S2)させて供給させるビーム強度変調手段と、該ビーム強度変調手段によって変調された荷電粒子ビームにより供給される前記各照射線量を、前記照射対象の周期変動の変位量が所定位相内にあるゲート期間に、前記各スキャン領域に対してスキャニング照射(S3、S4、S5)させる手段と、を備える。 (もっと読む)


【課題】人体の呼吸により腫瘍等の治療対象部分の位置が周期的に変化するにもかかわらず、この周期的に往復移動を行う治療対象部分に対して治療用放射線ビームを精度良く照射させることができる放射線治療システムを提供する。
【解決手段】放射線治療システムは、人体内撮像装置13,17と治療用放射線ビーム照射装置7とを備えている。人体1内の腫瘍等の治療対象部分3の治療を行う際に、人体内撮像装置13,17によって人体1の内部の透視画像25を経時的に生成する。この経時的に生成される透視画像25の画像情報が、予め生成された特定の呼吸位相における基準透視画像の画像情報と略一致したときに、治療用放射線ビーム照射装置7によって人体1内の治療対象部分3に対して治療用放射線ビーム9を照射する。 (もっと読む)


【課題】ターゲットでの平坦で一様な線量分布を保障しつつ、照射時間を短縮し、照射対象の負担を軽減できるようにする。
【解決手段】加速器22から出射した荷電粒子ビーム2を照射装置30により照射対象6に照射する粒子線照射システム20の照射パラメータを決定する照射計画方法において、前記粒子線照射システムに起因する照射誤差を推定し、該推定した照射誤差も加味して照射パラメータを決定する。 (もっと読む)


【課題】4次元イメージングデータを用いた治療計画のための方法と装置を提供する。
【解決手段】4次元コンピュータ断層撮影(CT)データである4次元診断用イメージングデータを受け取り、その4次元診断用イメージングデータを用いて放射線治療計画を作成する。則ち、4次元CTスキャンデータは、3次元(空間)画像の集まりであり、3次元画像の各々は既知の時間的関係を伴い動きサイクル(例えば患者の呼吸サイクル、心周期、動脈拍動などの間)における異なる時点で撮られる。4次元CT画像に対し最適化ステップを実行する。 (もっと読む)


【課題】放射線医によるフィードバックの掛かった治療と診断をリアルタイムに同一フロアで実現することを可能にする粒子線治療装置を提供する。
【解決手段】人体患部に照射する陽子線や炭素イオン線等の粒子線をレーザを薄膜ターゲットテープに照射して発生・加速させる粒子線発生・加速器部3と、前記粒子線を人体患部に照射して人体患部の画像診断ならびに人体患部への粒子線照射で治療措置を行い、前記人体患部の治療措置状況を粒子線照射に伴い発生する人体患部の自己放射化現象を利用したPET装置を備えるPET診断支援部5とをコンパクトに構成して同一フロアに一体的に配置することにより、小型の粒子線治療装置を実現する。 (もっと読む)


ガントリー、放射線ビームを発生するように動作可能な放射線源、および測定デバイスを備える放射線治療システムおよびこのシステムの作動動作を行う方法。測定デバイスは、ガントリーに物理的接続され、多次元スキャニングアーム、および検出器を備える。この方法は、放射線源から放射線を発生するステップと、放射線を減衰ブロックに通すステップと、測定デバイスで放射線を受け取るステップとを含む。測定デバイスは、水と接触しないように位置決めされる。データは、受け取った放射線から生成され、システムの作動動作が、生成されたデータを使用して行われ、システム特性と事前定義標準とのマッチングが行われる。
(もっと読む)


【課題】ビーム照射中にSOBP幅が所望の幅であるかどうかをリアルタイムに確認することにより、治療の精度を向上する。
【解決手段】シンクロトロン4を有する荷電粒子ビーム発生装置1と、この荷電粒子ビーム発生装置1から出射されたイオンビームのブラッグピーク幅を形成するRMW装置28、及びこのRMW装置28のイオンビーム進行方向に設けられ、イオンビームの線量を検出する線量モニタ31を備えた照射装置16と、線量モニタ31の検出値に基づいて、RMW装置28により形成されたイオンビームのブラッグピーク幅を演算するSOBP幅演算装置73とを備える。 (もっと読む)


【課題】所定の時間内に照射される放射線の線量をより高精度に制御すること。
【解決手段】互いに重ならないように診断用X線出射期間と治療用放射線出射期間とを決定するタイミング制御部102と、診断用X線出射期間に放射された診断用放射線35、36により撮像される被検体43の撮像イメージャ画像に基づいて被検体43の性状を算出する患部性状収集部103と、治療用放射線出射期間に治療用放射線照射装置16を用いて治療用放射線23を放射させる放射線照射部109とを備えている。このとき、放射線照射部109は、治療用放射線出射期間のうちの1つの期間での治療用放射線23の単位時間当たりの線量を性状に基づいて変更する。放射線治療装置制御装置2は、単位時間当たりの線量を増減させることにより、診断用X線出射期間と治療用放射線出射期間とを含む所定の時間内に治療用放射線23を所定の線量だけ照射することができる。 (もっと読む)


【課題】照射線量制御システムのコストを低減し、かつ照射線量誤差を小さくすることができる荷電粒子ビーム加速器のビーム出射制御方法及びその加速器を用いた粒子ビーム照射システムを提供する。
【解決手段】荷電粒子ビーム加速器200を備え、この荷電粒子ビーム加速器から出射された荷電粒子ビームを被照射体16の設置位置まで輸送し、この輸送された荷電粒子ビームを前記被照射体の特定の照射部位に照射するようにした荷電粒子ビーム照射システムにおいて、少なくとも1の照射部位に対して予め設定された計画線量の照射に対応した1回の照射内で荷電粒子ビーム加速器から出射される荷電粒子ビームの出射ビーム強度を2段階以上に変化させるようにしたもの。 (もっと読む)


【課題】ビーム照射中にSOBP幅が所望の幅であるかどうかをリアルタイムに確認することにより、治療の安全性を向上する。
【解決手段】シンクロトロン4を有する荷電粒子ビーム発生装置1と、この荷電粒子ビーム発生装置1から出射されたイオンビームのブラッグピーク幅を形成するRMW装置28、及びこのRMW装置28のイオンビーム進行方向上流側及び下流側にそれぞれ設けられ、イオンビームの線量を検出する線量モニタ27及び線量モニタ31を備えた照射野形成装置16と、線量モニタ27及び線量モニタ31の検出値に基づいて、RMW装置28により形成されたイオンビームのブラッグピーク幅を演算するSOBP幅演算装置67とを備える。 (もっと読む)


【課題】本発明の目的は、患部に対して適正量の放射線を照射し、且つ患部周辺健全組織への放射線照射量の低減を図るために、患部性状に応じた放射線照射領域を設定した上で当該患部に放射線を照射することのできる放射線照射装置を提供することである。
【解決手段】本発明の放射線照射装置では、治療用X線発生源2が、互いに直交する2つの回転軸を備えた回転機構13を介して支持台12に固定される。治療用X線発生源2から出射されるX線は、回転機構13によって、その照射軸が照射対象患部の中心が位置されるアイソセンタに向くように指向制御される。また、治療用X線発生源2は、それとは独立に、位置決め機構11を介して支持台12に対して2軸方向に位置調整される。これら2つの機構による調整により、X線の照射軸と支持台に固定されているマルチリーフコリメータの中心軸とがアイソセンターに指向する。 (もっと読む)


【課題】出射されるイオンビームの強度制御を簡素な装置構成で実現できる荷電粒子ビーム出射方法及び粒子線照射システムを提供することを課題とする。
【解決手段】荷電粒子ビームを加速して出射するシンクロトロン3と、シンクロトロン3から導かれた荷電粒子ビームを出射する照射装置32と、シンクロトロンの運転サイクルにおける出射制御区間で、シンクロトロンから出射する荷電粒子ビームのビーム強度を制御する第1のビーム強度変調手段14と、運転サイクルにおける出射制御区間に含まれる複数の照射区間のそれぞれにおいてビーム強度を制御する第2のビーム強度変調手段15とを備えたことによって、上記課題を解決する。 (もっと読む)


【課題】治療計画情報の絞り開度に対応した照射野と実際の照射野とを一致させた放射線照射を確実に実施して安全性を向上すること。
【解決手段】医用ライナック本体4から照射され、絞り装置5を通過した放射線をFPD6により撮影し、この放射線の照射野を撮影した画像データに基づいて実際の放射線の照射野を求め、この照射野と治療計画情報に含む照射野とを照合し、この照合結果に基づいて医用ライナック本体4による放射線治療を実施又は中断する。 (もっと読む)


【課題】被検体の一部分をより確実に照射し、かつ、その被検体に照射される放射線の線量をより低減させる治療用放射線照射装置を提供する。
【解決手段】被検体の一部分に治療用放射線を照射する治療用放射線照射装置と、被検体を透過する放射線を用いないで被検体の運動を検出する運動検出装置と、被検体に対して治療用放射線照射装置を移動させる駆動装置とを備えている放射線治療装置を制御する放射線治療装置制御装置2は、運動集合を位置集合に対応付ける患部位置データベース51と、運動を運動検出装置4から収集する運動収集部61と、位置集合のうちの運動に対応する位置に治療用放射線が照射されるように治療用放射線照射装置を移動させる照射位置制御部62とを備えている。 (もっと読む)


【課題】荷電粒子ビームの進行方向において荷電粒子ビームの誤照射を防止できる荷電粒子ビーム照射システム及び荷電粒子ビーム出射方法を提供することにある。
【解決手段】RMWを回転方向において分割して形成される複数の角度領域のうち目標線量に達した角度領域へのイオンビームの供給を停止しその目標線量に到達していない他の角度領域にイオンビームを供給することにある。このため、患部内のイオンビーム進行方向における各位置に対する照射線量を容易に調節することができ、患部内のイオン進行方向における各位置において照射線量の過不足が生じる誤照射の確率を著しく低減することができる。 (もっと読む)


X線画像の信号対雑音比を測定し、X線被曝を画質及び患者の動きに応じて適応制御する方法、装置及びシステム。
(もっと読む)


【課題】放射線治療監視装置において放射線治療の監視精度の向上を図ることにある。
【解決手段】被治療部位への放射線の照射による治療状況を監視するための放射線治療監視装置は、被治療部位を透過した放射線を少なくとも2箇所で検出する検出部33と、2箇所における透過放射線の相対値を基準相対値に比較する比較部42と、相対値が基準相対値を超過したとき、放射線の照射を停止するための制御信号を発生する制御信号発生部43とを具備する。 (もっと読む)


【課題】粒子治療設備の粒子線のエネルギー拡大のための装置を、損傷に対して抵抗力があり、しかも場所をとらない構成とする。
【解決手段】粒子治療設備の粒子線のエネルギー拡大のための装置が可撓性材料からなる表面構造化された拡大要素13を備え、その拡大要素をその変形可能性によって粒子線の照射位置17と待機位置19との間で移動可能とする。 (もっと読む)


41 - 60 / 79