説明

Fターム[4D047DA01]の内容

深冷分離 (3,528) | 分離、精製、固化手段 (743) | 部分凝縮 (95)

Fターム[4D047DA01]に分類される特許

1 - 20 / 95


【課題】供給先から二酸化炭素(CO2)を回収して精製し、油分などの有機物や水分が取り除かれた高純度の二酸化炭素を再供給できる方法及びシステムを提供する。
【解決手段】二酸化炭素回収精製システムは、供給先である二酸化炭素使用装置50から回収した流体に含まれる不純物とCO2とを分離するための気液分離器16と、気液分離器16の出口からのCO2から不純物を吸着除去する相互に直列に接続された吸着塔A1,A2と吸着塔A2からのCO2を凝縮して液体CO2を生成する凝縮器18と、凝縮器18内において液体状態であるCO2を必要に応じてさらに精製した後、二酸化炭素使用装置50に供給する。さらに、吸着塔A1,A2間を流れるCO2をサンプリングして不純物を測定する分析部30を備え、分析部30での分析結果に応じて吸着塔A1,A2への通気を停止し、吸着塔A1内の吸着材に対する再生処理を実行する。 (もっと読む)


【課題】水素を液化する方法を提供すること。
【解決手段】加圧された液化天然ガス(「LNG」)との間接熱交換により水素フィードガスを予冷して、予冷された水素フィードガスと加圧された天然ガスを生成する工程と;該予冷された水素フィードガスの少なくとも一部を、少なくとも1つの冷媒との間接熱交換によりさらに冷却して、凝縮性水素ガスを生成する工程と;該凝縮性水素ガスの少なくとも一部を膨張させて少なくとも部分的に凝縮した水素を生成する工程とを含む方法によって水素が液化される。 (もっと読む)


【課題】 所定の濃度に濃縮した高濃度および低濃度の石炭層内メタンガスを効率よく極低温に冷却し液化するとともに分離された極低温空気を窒素ガスの再冷却に利用する省エネルギ化の実現およびCO2排出量の削減を行うのに好適なガス液化装置を提供する。
【解決手段】 極低温冷却メタンガス液化装置は、メタン用リブレット付矩形導管12および窒素用リブレット付矩形導管23をスパイラル状に接触させて配管したスパイラル式極低温冷却部11の窒素用リブレット付矩形導管23内に極低温度冷却用液化窒素13を流すことにより、当該リブレット付壁面を介して接触するメタン用リブレット付矩形導管12内を流れる石炭層内メタンガス2A,2Bを極低温に冷却し液化する。 (もっと読む)


【課題】 液化天然ガス(LNG)を生成する半閉ループシステムであって、閉ループシステムの特定の利点を開ループシステムの特定の利点と結合し、より効果的且つ効率的なハイブリッドシステムを提供する。半閉ループシステムでは、最終メタン冷却サイクルは、膨張式冷却とは対照的に、間接式熱変換を介し天然ガスストリームの大幅な冷却を提供する。
【解決手段】 本発明の天然ガスを液化する方法は、(a)主にメタン冷媒を有する間接熱交換を介し前記天然ガスを少なくとも40度Fで冷却し、それにより液化天然ガスを提供する段階、(b)前記液化天然ガスの少なくとも一部をフラッシュさせ、それにより主に蒸気部分及び主に液体部分を提供する段階、並びに(c)前記主に蒸気部分の少なくとも一部を、段階(a)で天然ガスを冷却するために用いられる前記主にメタン冷媒と結合する段階、を有する。 (もっと読む)


【課題】少ないエネルギーでLNGと個々の重質炭化水素液体生成物とを生産することができる天然ガス液化プロセスを提供する。
【解決手段】液化すべき天然ガスストリーム31を部分的に冷却し、中間圧力に膨張させて14,15、蒸留カラム19に供給する。この蒸留カラムからの底部生成物41は、液化天然ガス50の純度を下げるかもしれないメタンよりも重質の全ての炭化水素の大部分を含むのが好ましい。蒸留カラム19からの残存ガスストリーム37を圧縮して高い中間圧力とし16、加圧下で冷却して凝縮させ60、膨張させて低圧として、液化天然ガスストリームを形成させる。 (もっと読む)


【課題】保守に手間がかからず、かつ製品損失を招かないプラントを提供する。
【解決手段】装入ガス流Eを極低温技術により液化するためのプラント100の液化運転中に極低温の温度に保持された少なくとも1つの範囲10と、当該プラント100の液化運転中に、より高い温度に保持された少なくとも1つの範囲とが設けられており、両範囲が、流体連通されたプラントコンポーネントを有しており、当該プラント100の液化運転中に極低温の温度に保持された範囲10と、当該プラント100の液化運転中に、より高い温度に保持された範囲との間の流体連通を遮断するために調整されている遮断手段40が設けられている。 (もっと読む)


【課題】 本発明は、液体復元及び生成の汎用性を拡張する統合NGLを有するLNG設備を提供する。
【解決手段】 例えば高位発熱量(HHV)及び/又はプロパン含有量のような種々の特性を有する液化天然ガス(LNG)及び/又は液体天然ガス(NGL)生成物を生成する重質除去/液体天然ガス復元を統合された天然ガス液化システムの効率的動作のための処理。結果として生じたLNG及び/又はNGLは2以上の市場の有意に異なる規格に適合可能である。 (もっと読む)


【課題】熱負荷を小さくして小型で高効率な冷凍サイクル部とし、かつ、機器の配置を工夫し、たとえ既存のLNG船でも設置し得るボイルオフガス再液化装置を提供する。
【解決手段】BOG供給配管35、燃料用圧縮機33およびBOG搬送配管39を有する液化処理部5と、冷媒圧縮機9からの冷媒をエキスパンダ13によって一層低温とし、BOG搬送配管39を通るBOGを冷却する凝縮部17を有する冷凍サイクル部3と、を有するボイルオフガス再液化装置1であって、液化処理部5には、凝縮部17の上流側に、BOG搬送配管39を通るBOGとBOG供給配管35を通るBOGとの間で熱交換を行うBOGプレクーラ57が備えられ、冷凍サイクル部3には、凝縮部17の下流側に、エキスパンダ13によって駆動されるブースタコンプレッサ19と、ブースタコンプレッサ19からの冷媒を冷却する第二アフタクーラ29とを備える。 (もっと読む)


【課題】燃焼プロセスから生じるガス混合気などのガス混合器からCO2及び/又は他のガス種を分離するためのシステム及び方法を提供すること。
【解決手段】本開示は、ガス混合気(16)からのCO2(12)の分離に関する。CO2(12)は、固体又は液体としてCO2(12)を除去することができるように、ガス混合気(16)を冷却することにより除去することができる。種々の実施形態において、CO2(12)が除去されるガス混合気(16)は、発電プロセスで利用できるような燃焼プロセスの一部として生成される排気ガスを含むことができるが、ガス混合気(16)は、CO2(12)を含むあらゆるガス混合気(16)であってもよい。 (もっと読む)


【課題】燃焼プロセスから生じるガス混合気などのガス混合器からCO2及び/又は他のガス種を分離するためのシステム及び方法を提供すること。
【解決手段】本開示は、ガス混合気(16)からのCO2(12)の分離に関する。CO2(12)は、固体又は液体としてCO2(12)を除去することができるように、ガス混合気(16)を冷却することにより除去することができる。種々の実施形態において、CO2(12)が除去されるガス混合気(16)は、発電プロセスで利用できるような燃焼プロセスの一部として生成される排気ガスを含むことができるが、ガス混合気(16)は、CO2(12)を含むあらゆるガス混合気(16)であってもよい。 (もっと読む)




エネルギー消費が少なく安定した運転するように設計された、煙道ガスから液体COを生成する方法及びプラント。
(もっと読む)


酸性ガスは、かなりの量のCO2およびH2Sを含有する高圧供給ガスから除去される。特に好ましい構成および方法では、供給ガスは、吸収体内部において、希薄および超希薄溶媒と接触させる。当該希薄および超希薄溶媒は、それぞれ、濃厚な溶媒を急速気化して当該希薄溶媒の一部を除去することによって形成される。最も好ましくは、急速気化蒸気および除去オーバーヘッド蒸気は、供給ガス/吸収体にリサイクルされ、処理済みの供給ガスは、2モル%未満のCO2濃度と、10ppmv未満、より典型的には4ppmv未満のH2S濃度とを有する。
(もっと読む)


本発明は、炭化水素ガスストリームから、エタン、エチレン及びより重質の炭化水素成分を回収する方法と装置を開示する。ストリームを冷却し、低圧に膨張させ、第1分留塔に塔中間部の供給位置から供給する。蒸留液ストリームは、膨張ストリームの供給位置の下方で第1分留塔から取り出され、加熱され、第2分留塔に送られ、そこで頂部蒸気ストリームと底部液体ストリームが生成される。頂部蒸気ストリームは冷却されて凝縮し、凝縮ストリームの一部は第2分留塔に最上部フィードとして送られ、残りは第1分留塔に塔下部の供給位置から送られる。第2分留塔からの底部液ストリームは、冷却され、第1分留塔に最上部フィードとして送られる。
(もっと読む)


水含有COリッチ流体を圧縮するにあたりCOリッチ流体をコンプレッサ(5)で圧縮する方法において、圧縮工程よりも上流の位置で、不凍液を水含有COリッチ流体に注入して、水の凝固温度を下げる。不凍液含有COリッチ流体を凍らせ、凍った流体から水を抽出し、凍った流体をコンプレッサで圧縮する。 (もっと読む)


本件開示の態様は、塩素ガスの製造プロセスを含む。種々の態様について、このプロセスは、蒸発した液体塩素(104)と塩素含有供給ガス(102)との混合物を圧縮して、圧縮ガスを形成することを含む。圧縮ガス中の塩素は、液体塩素(120)に凝縮される。この液体塩素の第一の部分は蒸発されて、圧縮ガスからの塩素を液体塩素に凝縮させるための凝縮熱を与える。液体塩素の第二の部分(126)は蒸発されて、ガス混合物のための蒸発した液体塩素及びプロセスからのテールガス(122)を冷却するための凝縮熱を与える。また、液体塩素の蒸発した第一の部分から塩素ガス製品(114)が製造される。
(もっと読む)


【課題】固形の窒素酸化物などの不純物がオゾンを濃縮するオゾン分離部へ流入するのを効果的に防止できるオゾン濃縮装置を提供することを目的とする。
【解決手段】予備冷却部44において、オゾンの凝固点よりも高温で、且つオゾン含有ガス中に含まれる窒素酸化物の凝固点よりも低温とするので、窒素酸化物は、予備冷却部44で捕捉される。また、予備冷却部44で捕捉できなかったり、一旦捕捉されたものが剥離飛散して予備冷却部44から窒素酸化物の氷片(微粒子)として漏出した場合には、フィルタ部45で捕捉されて除去されるので、オゾン分離部43への窒素酸化物の侵入を効果的に防止できる。 (もっと読む)


空気分離ユニットは、中圧カラム(39)、低圧カラム(41)、容器(141)、熱交換器(13)、低圧カラムのボトムコンデンサー(25)および容器内に配置されたコンデンサー(15)、圧縮されて精製されて冷却された空気を熱交換器から中圧カラムへ送るためのライン、熱発生ガスを容器内に配置されたコンデンサーへ送るためのライン、窒素リッチにされたガスを中圧カラムから低圧カラムのコンデンサーへ送るためのライン、酸素リッチにされた流れを中圧カラムの底から低圧カラムへ送るためのライン、酸素リッチ液を低圧カラムの底から容器へ送るためのライン、容器へ送るものより酸素リッチな流体を容器から回収するためのライン、ガスを容器から低圧カラムへ送るためのライン、およびオーバーヘッドガスを低圧カラムから回収するためのラインを有する。当該ユニットは、酸素リッチ液を低圧カラムの底の下流側および容器の上流側で拡張するための拡張手段(51)、および容器からのガスを圧縮するためのコンプレッサー(21)を有し、上記コンプレッサーは、容器の下流側および低圧カラムの上流側にあることを特徴とする。
(もっと読む)


【課題】選択量の軽質炭化水素ガスを液化するための軽質炭化水素ガス液化プロセスを効率的且つ経済的に設計する方法、構築する方法又は運転する方法を提供する。
【解決手段】本方法は、初期量の軽質炭化水素ガス59を液化するための軽質炭化水素ガス液化開始列15及びプロセスに対する軽質炭化水素ガスの最大量まで選択された追加量の軽質炭化水素ガス159,259を液化するための該軽質炭化水素ガス液化開始列に対する1段以上の任意の後続モジュール式拡張段115,215を含む。開始列は、軽質炭化水素供給ガス前処理設備、冷媒圧縮設備、極低温熱交換設備、アクセス設備、他の液化設備、液化製品貯蔵及び搬送設備などの設備を含む。これらの設備の少なくとも一部は、共用設備として用いられ、このような共用設備の使用は、後続の拡張段又はモジュールをプラント全体の容量を増加させるように構築させ得る。 (もっと読む)


1 - 20 / 95