説明

Fターム[4G075DA01]の内容

物理的、化学的プロセス及び装置 (50,066) | プラント (4,942) | フローシート、プラント系統図あり (3,588)

Fターム[4G075DA01]の下位に属するFターム

Fターム[4G075DA01]に分類される特許

141 - 160 / 404


【課題】有機物の熱分解処理を初期状態から長期的に安定化し、熱分解処理に燃料、電気を使わず、ダイオキシン類の発生を抑え、かつ排出ガス処理、水処理を使わない、セラミック消臭消煙装置で安価で維持費を少なくし、COを減量させる有機物熱分解処理装置を提供する。
【解決手段】有機物の熱分解処理に燃料、電気を使わず、ダイオキシン類の発生を抑えかつ排出ガス処理に燃焼処理、水処理を使わない、セラミック消臭消煙装置で安価で維持費を少なくし、COを減量させかつ、ごみの減量化をはかる有機物熱分解処理装置。すなわち有機物を燃焼させずに熱分解し灰化させ、熱分解排出ガスをセラミック処理により酸化、触媒、分解する消臭消煙のための方法および装置。 (もっと読む)


蒸気-メタン改質等の吸熱反応を行うための触媒反応モジュール(10)は、分離反応器ブロック(12)を含み、各反応器ブロックは、該ブロック内で交互に配列された多数の第一および第二流動チャンネル(15、16)を画成して、該第一および第二流動チャンネル間の熱的な接触を確実なものとしている。該反応器ブロック(12a、12b)は、該第一流動チャンネル(15)内の燃焼ガス混合物が連続的に流動するように、また該第二流動チャンネル(16)内で該吸熱反応を行うためのガス混合物が連続的に流動するように、配列しかつ接続することができる。これは、該燃焼工程を段階的に行い、場合によっては段階間で該燃焼ガスを冷却し、また追加の燃料および追加の空気の導入を可能とする。
(もっと読む)


【課題】小型化を図れるとともに、反応ガスの流量変動を安定化させて良好な改質反応を起こすことができ、また、反応流路内の触媒の剥離を防止することができる反応器、反応器の製造方法及び発電システムを提供する。
【解決手段】反応器10は、流路基板1の上下面1a,1bに形成された流路溝18と、流路溝18を覆うことによって流路基板1との間に反応流路12を形成する第一及び第二の蓋基板2,3と、を備える。そして、反応流路12内に多孔質部11a,11bが設けられている。 (もっと読む)


【課題】ミクロ流体構造体を使用して、タンパク質の結晶化のハイスループットスクリーニングを可能にすることを課題とする。
【解決手段】本発明は、上記課題を、1つの実施形態において、一体化された組み合わせ混合チップによって解決した。この混合チップにおいて、可能な結晶形成がチップ上で観察される、多数の潜在的な結晶化条件を迅速に作製するための、試薬の正確な計量供給を可能にする。代替の実施形態において、ミクロ流体構造体は、特定のタンパク質結晶化剤の組み合わせの位相空間条件を調査するために利用され得、これによって、確実な条件を同定し、そして引き続いて、結晶成長を得る集中した試みを可能にする。 (もっと読む)


【課題】 燃料から沸点及びオクタン価(着火性)の異なる成分を分離する。
【解決手段】 燃料配管2内に円筒状に形成した分離膜6を設けて、その内側を絞り通路4とすると共に、分離膜6の内周面をスーパーキャビテーション(S/C)発生部5とする。また分離膜6の外周側(透過側;低オクタン価燃料を分離)から外部へ延びる燃料取出通路7には、吸引ポンプ9が設けられている。更に吸引ポンプ9の上流側の燃料取出通路7からは分岐通路11が分岐している。制御手段(ECU)は、流量調節装置3により燃料配管2内の燃料流量を調節することでS/Cの発生を制御し、S/C発生時には吸引ポンプ9を作動させて燃料取出通路7により低沸点燃料を回収し、S/C非発生時には吸引ポンプ9を停止して分岐通路11により高沸点燃料を回収する。 (もっと読む)


流体相互接続バックボーン(10)及び複数の流体微細構造体(20、30、40)を備えたマイクロリアクター組立体(100)が提供される。流体微細構造体(20、30、40)が流体相互接続バックボーン(10)のそれぞれの部分によって支持される。マイクロリアクター組立体(100)が、相互接続入出力ポート(12、14)に関係する複数の非ポリマー相互接続封止体(50)を備えている。流体相互接続バックボーン(10)の相互接続入力ポート(12)が、前記非ポリマー相互接続封止体(50)の1つにおいて、第1流体微細構造体(20)のマイクロチャンネル出力ポート(24)に連結される流体相互接続バックボーン(10)の相互接続出力ポート(14)が、別の非ポリマー相互接続封止体(50)において、第2流体微細構造体(30)のマイクロチャンネル入力ポート(32)に連結される。相互接続マイクロチャンネル(15)が流体相互接続バックボーン(10)によって完全に規定され、別の封止接合体が介在することなく、第1流体微細構造体(20)のマイクロチャンネル出力ポート(24)の非ポリマー相互接続封止体(50)から第2流体微細構造体(30)のマイクロチャンネル入力ポート(32)の非ポリマー相互接続封止体(50)に延びるよう構成されている。
(もっと読む)


【課題】 界面活性剤分子集合体が三次元的に規則配列した構造を有する新規構造体を提供する。
【解決手段】 新規構造体は、両親媒性分子の球状の集合体と前記集合体の周囲に形成された無機物を含む化合物とを備える構造体であって、前記両親媒性分子の集合体が前記構造体全域に規則的に配置され、前記両親媒性分子の集合体の配置が、6回対称軸を有すること構造体である。 (もっと読む)


フィッシャー・トロプシュ合成のための反応器モジュールが、全体として長方形の反応器ブロック(10)から成り、この反応器ブロックは、ブロック内に交互に配置された冷却剤のための流れチャネル(15)及び合成反応のための流れチャネル(17,117)を構成するプレート(12)のスタック(積み重ね体)を有する。合成用流れチャネル(17,117)は、反応器ブロック(10)の上面と下面との間で全体として鉛直方向に延びると共にバー(18)か(シート(119)かのいずれかと組み合わせ状態でプレート(12)によって構成されていて、各チャネルが200mm以下の幅のものであるようになっている。冷却剤用流れチャネル(15)は、同一方向に差し向けられると共にディストリビュータチャンバ(26)を介して反応器ブロックの側面のところに設けられた入口ポート及び出口ポートと連通している。プラントは、並行稼働する多数のかかる反応器モジュールを装備するのが良く、これらモジュールは、交換可能且つ置換可能である。温度制御は、冷却剤の流れが合成ガス流に平行であるようにすることによって促進される。
(もっと読む)


【課題】 冷却水の量を少なくすることのできる加熱冷却装置を提供する。
【解決手段】 反応釜1のジャケット部2に、冷却流体供給管5と蒸気供給管8を接続する。ジャケット部2の下部に、エゼクタ10を介在して、組み合わせ真空ポンプ4を接続する。組み合わせ真空ポンプ4を、三方切換弁29と、循環ポンプ14と冷水タンク13とヒートポンプ3、並びに、循環ポンプ24と温水タンク25とヒートポンプ3とで構成する。
反応釜1を冷却する場合は、冷却流体供給管5からジャケット部2内へ冷却流体を供給することによって、冷却流体が蒸発気化して反応釜1の熱を奪うことによって、反応釜1を気化冷却することができ。 (もっと読む)


【課題】イオン発生効率が高いイオン発生装置を提供する。
【解決手段】このイオン発生装置は、誘電体部21の表面に設けられた放電電極17とそれに対向して誘電体部21の内部に設けられた誘導電極14とを含むイオン発生素子9と、互いに逆極性に電磁結合された1次巻線8aおよび2次巻線8bを有する昇圧トランス8とを備える。2次巻線8bの高電圧側端子は放電電極17に接続され、その基準電圧側端子は誘電電極14に接続されている。したがって、放電電極17の電圧を容易に高めることができる。 (もっと読む)


予め定義したサイズの粒子を生成する方法、及び/または生産構造での物質の形態に関し、次のステップを含む:i)スプレーノズル内およびフロー状態下での混合であり、物質が流体の流れに溶かされている液状の溶液の流れを条件とし、そしてii)ノズルのスプレー出口を通してスプレーの形で混合物を通し、粒子収集容器へ入れ、そしてiii)容器内に粒子を分離し収集する。本発明の特徴は、溶解力のあるものが液体であるということで、流体は亜臨界の状態の水のような液体である。好ましいノズルは2本の共軸の内部輸送導管を持つ。1つの形態は本発明の方法で使用できる生産構造の形態である。その特徴は、a)プロセス中で使用される流体を再利用する機能であり、b)流体の流れにメーキャップ剤を含んでおり、および/または粒子形成と平行して生産を増加させる。 (もっと読む)


【課題】逐次反応における正確な混合段数および選択率を求める。
【解決手段】選択率算出装置1は、反応器の内部を流れる反応液の空塔速度と同じ空塔速度で、任意の流通器の内部に流体を流しながら、流通器の供給口にトレーサーを供給開始したのちの、流通器の排出口におけるトレーサーの濃度を経時的に測定した測定結果71を取得する入力制御部3と、測定結果71と、空塔速度と、流通器の供給口から排出口までの長さとを用いて、トレーサーの濃度の経時的変化を近似する滞留時間分布関数を規定する軸方向混合係数を算出する軸方向混合係数算出部4と、軸方向混合係数算出部4が算出した軸方向混合係数と、空塔速度と、流通器の塔径とを用いて、反応器の混合段数を算出する混合段数算出部5とを備えている。 (もっと読む)


エネルギを蓄積及び/又は運搬する装置は、蓄熱ステーションと、放熱ステーションと、反応器部分1とを含む。反応器部分は、ケミカル・ヒート・ポンプの一部であるように構成され、活性物質を含む。反応器部分は、蓄熱するため、すなわち活性物質を蓄熱状態へ変化させるために蓄熱ステーションに連結し、放熱するため、すなわち活性物質を放熱状態へ変化させるために放熱ステーションに連結することができる。一実施例において、固体状態及び液体状態の両方の活性物質が母材によって保持又は担持又は結合されるように、反応器部分には活性物質のための母材が備えられる。母材は、酸化アルミニウムなどの非活性材料であり、細孔を有することが有利である。また、この装置は、浄化された形態の揮発性液体の生産に使用することができる。
(もっと読む)


アンモニアを製造するためのシステム及び方法。該システムは、2つ又はより多い別個の触媒床を内部に配設した第1シェル、第1シェルの周りに配設された第2シェル、第1シェルの外部に配設され第1シェルと流体連通している第1熱交換器、第2シェルの外部に配設され第2シェルと流体連通している第2熱交換器、及び第1シェル内に配設された流路とを備えることができる。供給ガスの第1部分は触媒の存在下で反応してアンモニア流出物を提供することができる。アンモニアからの反応熱は第1と第2熱交換器内で熱交換することができる。供給ガスの加熱された第2部分は第1シェルに導かれて触媒の存在下で反応することができる。
(もっと読む)


【課題】高圧状態下において、炭酸ガスを溶媒に効率的かつ高い処理能力で細泡化し混入するための高圧用炭酸ガス細泡化装置を提供する。
【解決手段】溶媒を所定の高流速で流した主流管路30を外嵌する前記炭酸ガスの供給管路31を配設し、前記溶媒と炭酸ガスとを仕切る管路壁面に細孔30aを形成し、前記主流管路30を流れる溶媒のせん断力によって前記炭酸ガスを細泡化しながら溶媒中に混入させる。この際、ウェーバー数(We)が10以上となるように、前記溶媒の流速、前記細孔の孔径を設定する。 (もっと読む)


【課題】従来の流路長よりも流路を延長することなく良好な混合が得られ、微小流路内でつまりが発生せず、また、圧力損失の少ないマイクロリアクターを用いた反応方法及びマイクロリアクターを提供すること。
【解決手段】微小流路内において、少なくとも2種が非相溶性であるn種の(nは3以上の整数である。)流体1、流体2、・・・、流体nに少なくとも2つの層流を形成させる工程と、少なくとも1種の前記流体を脈動させる脈動工程とを有することを特徴とするマイクロリアクターを用いた反応方法及びマイクロリアクター。前記脈動工程は、シリンジポンプによって供給する流体の流量を脈動させる工程、振動装置によって弾性チューブを脈動させる工程、又は流体微小流路壁と流体との界面張力差に基づき脈動させる工程が用いられることが好ましい。 (もっと読む)


【課題】木質バイオマスに新しい機能を持たせて、資源としての有効利用を促進させることを実現する、木質バイオマスへの金属担持方法を提供する。
【解決手段】木質バイオマスに対して、酸素プラズマを照射する第1のプラズマ照射工程と、金属元素を含有するプラズマを照射する第2のプラズマ照射工程とを行って、第2のプラズマ照射工程で照射したプラズマの金属元素を木質バイオマスに担持させる。 (もっと読む)


【課題】後段側の熱交換器からも温度の高い蒸気を発生させることができ、また蒸気回収割合を多くすることができる熱回収方法を提供する。
【解決手段】反応塔10からの塔頂流A(0)が第1熱交換器1、第2熱交換器2、予熱器20、第3熱交換器3、第2の予熱器30及び第4熱交換器4の1次側を順次に流通する。第1及び第3熱交換器の2次側には吸熱媒体として水が導入され、水蒸気Steam(1),(3)が発生する。第4熱交換器4では、2次側に水が導入され、温水HWが取り出される。第2の予熱器30の2次側に水が導入され、この第2の予熱器30から取り出された温水が第1の予熱器20の2次側に導入され、第1の予熱器20から取り出された温水が第2熱交換器2の2次側に導入され、第2熱交換器2から水蒸気Steam(2)が取り出される。 (もっと読む)


【課題】反応装置における省エネルギーを図りエクセルギー損失を低減する。
【解決手段】反応装置10は、原料としてのナフサ22と、ナフサ22と反応する水素24とが混合された混合流体30の供給を受け、ナフサ22と水素24とを反応させて反応済流体40を出力する反応器12と、反応器12からの反応済流体40と、混合流体30との間で熱交換を行う熱交換器14と、反応器12と熱交換器14との間に設けられ、混合流体30を昇圧する圧縮機を備える。 (もっと読む)


【課題】熱反応炉プロセスのように数学モデルによるシミュレーションでは現実的には予測不可能なプロセスの将来状態を予測するための新たな方法を提供すること。
【解決手段】操業データベース(プロセスの時系列データベース)からプロセスの将来状態を予測するプロセスの状態予測方法において、1ステップ前に求められたプロセス変数の予測値と事前に設定したプロセスの操作量の値とを新たな検索キーとして1ステップ先を前記状態予測方法で予測する処理を1回以上繰り返すことによって2ステップ以降のプロセス変数値を予測する。 (もっと読む)


141 - 160 / 404