説明

Fターム[4G075DA01]の内容

物理的、化学的プロセス及び装置 (50,066) | プラント (4,942) | フローシート、プラント系統図あり (3,588)

Fターム[4G075DA01]の下位に属するFターム

Fターム[4G075DA01]に分類される特許

101 - 120 / 404


【課題】計算負荷が小さくかつ正確なフルケミストリ解析を可能とする。
【解決手段】素反応機構と空間零次元で時間一次元化された方程式とを用いて混合ガスの温度変化を算出し、当該温度変化からシミュレーションによってシミュレーション温度分布を算出し、シミュレーション温度分布が実験にて得られた空間一次元の温度分布に合うように素反応機構に含まれるパラメータを調整する。 (もっと読む)


本発明の対象は、熱電併給もしくはコジェネレーションまたは電気的なエネルギを形成するための熱的な火力発電所によって、炭素化合物、たとえばカーボンブラック、グラファイトの工業的な製造または糖熱分解からの廃熱または残留ガスを、特に溶融炉の運転のための利用し、かつ/または吸熱プロセスにおける廃熱を利用するためのエネルギ効率の良い設備を提供すること、ならびに廃熱の相応する使用である。 (もっと読む)


【課題】テラヘルツ波様の共鳴電磁波を発生する加熱圧縮空気による熱風で、曝気することにより生成され、長時間保存可能な活性機能水とその生成方法を提供する。
【解決手段】規定の圧力と温度に調整されることによりテラヘルツ波様の共鳴電磁波を発生する加熱圧縮空気の熱風で、一定時間水を曝気することにより水分子の水素結合の固有振動数と共振するテラヘルツ波様の共鳴電磁波で、空気中や水分中の窒素(N2)や水蒸気(H2O)の水素結合を切り離し、分離した水素から放出される電子が窒素の外殻に取り込まれ活性窒素となり、アミノ基(NH2)を結成し、水に溶解し水酸基(OH-)を生成し、クラスターの微細な、弱アルカリ性の、還元電位の高い活性機能水を低コストで容易に生成し、提供する。 (もっと読む)


【課題】粒径の均等性を向上させることが可能な造粒装置の提供を目的とする。
【解決手段】本発明の造粒装置100によれば、造粒容器61の中心部、天井部、側部、底部そして中心部へと循環する循環ガス流に乗って粉体が造粒容器61内を循環する。この過程で粉体がプラズマフレームF2によって加熱されて粉体同士が付着し、粒径が徐々に大きくなる。そして、所定の粒径以上に成長した大径粒体は、自重によって循環ガス流から離脱する。ここで、循環ガス流から離脱した大径粒体は、造粒容器61の底部に貫通形成された環状孔82を通って直ちに造粒容器61の外部、即ち、回収容器10へと排出されるから、所定の粒径以上に成長した大径粒体に、循環中の粉体又は粒体がさらに付着することが防がれる。これにより、大径粒体の過剰な大型化を抑えて、粒径の均等性を向上させることが可能となる。 (もっと読む)


【解決手段】 ノンフロースルーデバイス内の化合物の合成を促進する方法及び装置が提示される。放射性標識化合物の合成へのノンフロースルー法及びマイクロ流体デバイスの適用が述べられる。これらの方法及び装置は、一つ以上の液体が同じ又は異なる流入ポートを通って反応室に供給されながらノンフロースルーデバイスの渦流反応器の中に接線スリットを通って加圧ガスを導入することを可能にする。加圧ガスの導入は反応器内の混合物のサイクロン運動を作り出す。そのような機構はより低い温度での反応器内の種々の液体の蒸発を促進して高温の使用に伴う望まない副生成物の生成を低減するために使用されてもよい。さらに、種々の液体の完全な混合は、化学反応を渦流反応器内で効率的に起こさせながら急速に遂行されてもよい。
(もっと読む)


【課題】無駄な損失が少ないコンパクトなイオン吸着装置及びそれを用いた熱発生装置、脱塩装置、イオン移動装置及び蓄電装置を提供すること。
【解決手段】たとえば、DLC13、14が個別に収容されるセル1、2のイオン吸着動作とイオン放出動作とを交互に行うことにより、セル1、2が熱発生と冷熱発生とを行う。冷却流体及び被冷却流体をセル1、2に交互に流すことにより、熱及び冷熱を連続的に取り出す。DLC13,14は相補的に充電と放電とを行う。 (もっと読む)


【課題】液体を気化させる気化装置において、液体の加熱に係る熱効率の低減を抑制しつつヒータの熱を吸液部に伝導することができる気化装置を提供する。
【解決手段】内部空間50aを画定する内壁55、56、57を有する本体50と、前記本体50の内壁55、56、57に密接し且つ圧縮された状態で前記内部空間50aに収容されて、液体を吸収する弾性吸液部51と、前記本体50の内壁55、56、57を加熱するヒータ5b、68bと、を備える (もっと読む)


【課題】流通式で、超臨界水熱合成によりナノ粒子を合成する方法、及びその装置を提供する。
【解決手段】原料として、反応場で、合成後に酸を生じる金属塩水溶液を用いて、超臨界水熱合成を行う際に、反応場に、アルカリ水溶液を供給して、反応場のpHを制御して、合成微粒子の粒子径を制御すること、また、反応場に、アルカリ水溶液を供給する際に、常温で、アルカリ水溶液と金属塩水溶液を混合せず、高温高圧水とアルカリ水溶液を直接混合し、その後、アルカリを含む高温高圧水と上記金属塩水溶液を混合する2段の混合部により混合すること、あるいは、高温高圧水、アルカリ、金属塩水溶液を同時に1段で混合する1段の混合部により混合すること、からなる超臨界水熱合成方法、及び上記2段の混合部、又は1段の混合部、を具備した超臨界水熱合成装置。 (もっと読む)


【課題】成膜効率を向上させることができる薄膜形成方法を提供する。
【解決手段】ターゲット29a,29bをスパッタして回転ドラム13に保持され回転する基板Sに、目標膜厚よりも薄い膜厚の第1薄膜を形成した後、前記目標膜厚に対して不足する不足分膜厚の第2薄膜を前記第1薄膜に形成する薄膜形成方法であって、第1薄膜の膜厚を測定する光学測定工程と、前記膜厚に基づいて前記第1薄膜を形成した実際の成膜レートを算出する成膜レート算出工程と、前記実際の成膜レートに基づいて前記第2薄膜を形成するのに必要な残成膜時間を算出して成膜時間を調整する成膜時間調整工程とを、有する薄膜形成方法。 (もっと読む)


【課題】ハロゲン含有ガスの処理装置において、高効率な処理とユーザニーズに沿った装置構造の実現を可能とするハロゲン含有ガスの処理装置を提供するものである。
【解決手段】ハロゲン系ガスを含有するハロゲン含有ガスを供給するハロゲン含有ガス供給手段から供給されるガス流に対して順次直列に接続された、ハロゲン含有ガスを分解したときに生成される副生成物を除去するための洗浄手段31、ハロゲン含有ガスからハロゲン系ガス以外のガスを分離し、上記ハロゲン系ガスを濃縮するためのガス分離設備321、上記ハロゲン系ガスが濃縮されたガスを分解するガス分解器36、およびガス分解器36で処理され、排出された処理ガスを洗浄手段31に戻す排気ガス循環手段352を備えたものである。 (もっと読む)


【課題】ドライアイスのような冷媒を用いても装置を大型化することなく被照射物を効率良く冷却することができ電子線照射装置を提供する。
【解決手段】 被照射物(W)を巻回する第一のローラ(1)及び第二のローラ(2)と、第一のローラ(1)を収容する第一の冷却室(10)及び第二のローラ(2)を収容する第二の冷却室(20)と、第一の冷却室(10)と第二の冷却室(20)の間に形成され、被照射物に電子線を照射する電子線照射室(30)と、前記第一の冷却室(10)、前記第二の冷却室(20)及び前記電子線照射室(30)を冷却する冷却手段(4)とを有し、第一の冷却室(10)で冷却した被照射物を第一のローラ(1)から巻き出して電子線照射室(30)に導入し、この電子線照射室(30)で冷却しつつ電子線を照射し、さらに、第二の冷却室(20)で冷却しながら第二のローラ(2)で巻き取るように構成した。 (もっと読む)


【課題】熱的・化学的に非常に安定な不純物であるPFCを効率よく除去してクリプトン及びキセノンを低コストで精製することができるクリプトン及びキセノンの精製方法を提供する。
【解決手段】空気液化分離装置から導出した液体酸素中に含まれるクリプトン及びキセノンを濃縮して精製する方法において、前記液体酸素中に不純物として含まれるCF,C,SFなどのパーフルオロコンパウンド(PFC)やフロン、ハイドロクロロフルオロカーボン(HCFC)を、酸素を主成分とする900℃以上のガス雰囲気中における触媒反応、又は、酸素を主成分とするガス雰囲気中における放電プラズマにより酸化し、COF,FO,SOなどに変換することによって除去する。 (もっと読む)


【課題】省エネルギー効果の高い加熱モジュール及び冷却モジュールを提供する。
【解決手段】加熱モジュール10は、入力流体が入力される入力端Iと、入力流体が入力される単位操作部Xから出力される出力流体を出力する出力端Eと、単位操作部Xと入力端I及び出力端Eとの間に配置され、単位操作部Xに入力される入力流体と、単位操作部Xから出力される出力流体との間で熱交換を行う第1熱交換器H1と、単位操作部Xと第1熱交換器H1との間に配置され、気体の入力流体を圧縮させることによって昇温させる第1圧縮機C1と、第1熱交換器H1と入力端Iとの間に配置され、気体の入力流体を膨張させることによって降温させる膨張機E1とを備える。 (もっと読む)


【課題】煩雑な表面電位制御を要することもなく所望の超微粒子薄膜を形成することができ、かつ、下層側の超微粒子薄膜の脱落が生じることもなく緻密で欠陥のない積層膜を形成することが可能な超微粒子薄膜の製造方法を実現する。
【解決手段】基板とシランカップリング化合物とを接触させて第1の有機分子膜3を基板1の表面に形成し、第1の表面電位を付与する。また、第1の表面電位とは逆極性のゼータ電位を有する無機物の超微粒子4を分散させた第1の分散溶液5を作製する。前記第1の表面電位の付与面3aが第1の分散溶液5の溶液面5aに対し垂直状となるように、基板1を第1の分散溶液5に浸漬し、次いで垂直状又は略垂直状を保持しながら基板1を第1の分散溶液5から引き上げ、第1の有機分子膜3の表面に超微粒子薄膜7を形成する。 (もっと読む)


【課題】地球温暖化、オゾン層破壊が問題になっている。
【解決手段】潮水を電気分解することで水を水素,酸素に分解し、熱を吸収する。
結果、酸素はオゾン層修復に、マイナスの反応熱で空気を冷却する。
水素は新エネルギーに一部利用し、残りは貯蔵する。
更に海水に溶け込んだ二酸化炭素と、潮水の電気分解で発生した水素からメタンガスを生成し、マイナスの反応熱で地球冷却化に対処し、発生した酸素はオゾン層修復に活用する。 (もっと読む)


【課題】高濃度で沸点の高い油類等の分解処理を行なうとともに、そのときの放電発生条件を最適化した効率的な処理を可能とするコンパクトで低コストの液体処理装置を得る。
【解決手段】液体処理装置は、被処理液体2よりも沸点の低い第2液体10を被処理液体と混合することにより、第2液体10の性質を利用して混合液体中にキャビテーション気泡を発生させて放電プラズマによる処理を行なう。また、監視装置13で放電プラズマの状態を監視して、調整弁12の開閉作動を行なう構成である。 (もっと読む)


【課題】 従来の高周波加熱装置や高周波化学反応装置では、試料に高周波電力を照射すると試料が発熱するとともにキャビティーも熱せられる結果、キャビティーを含む負荷の共振周波数が変化して大きな反射が立ち、試料に高周波電力が十分吸収されなかった。これを解決するために従来は導波管変換器内部短絡板など機械的な部品を駆動させて整合をとる必要があり、機構が複雑で信頼性に劣りコストが高いなどの欠点があった。
【解決手段】 本発明によれば、信号源として例えば周波数可変型高周波信号発生器を設け、負荷共振周波数の変動で反射検出端に出力が生じた場合はその信号を信号処理回路に送り、これを信号処理して常に反射最小の周波数に該信号発生器を自動調整するため整合用機械稼動部分が無く、電気信号だけの処理による装置が構成できるので機構が簡単で小型で信頼性が高く、コストの安い高周波電力応用装置が実現できる。 (もっと読む)


【課題】煩雑な工程を要せずに、アスペクト比の高い所望の形状のパターンを形成することのできるパターン形成方法、このパターン形成方法を用いた電子装置または光学装置の製造方法、並びに、このパターン形成方法を用いた電子装置または光学装置の製造装置を提供する。
【解決手段】誘電率及び/又は磁化率が異なる2以上の物質からなるネガパターンに電場及び/又は磁場を印加して電気力線及び/又は磁力線の疎密差を前記ネガパターンの近傍に発生させ、前記電気力線及び/又は磁力線の疎密差に沿って少なくとも1以上の流動性のある物質を移動させて所望のポジパターンを形成する方法であって、前記ネガパターンの内部に前記流動性のある物質の少なくとも一部が進入することでポジパターンを形成し、その後少なくとも1以上の流動性のある物質の少なくとも一部を固化形成する。 (もっと読む)


【課題】 地球温暖化問題の原因である、排出及び滞留二酸化炭素を激減するに、森林や海洋等の自然生態系にのみ依存するには、もはや、限界である。よって、人為的に炭素を固定化し、それをもとにバイオマス等燃料を生成して自然生態系を補完する革新技術が必要である。
【解決手段】 本発明は、課題を解決するための手段として、植物内の有機物のかかえる欠点を無機物である本装置により補完をして改善する電気化学的燃料電池ベースの二酸化炭素激減装置である。燃焼時に発生する排出二酸化炭素は改質して、滞留二酸化炭素は濃縮して、当該電気化学的装置に導入することで、地球温暖化問題の原因である滞留二酸化炭素を380ppmから280ppmへの激減の実現を提供すると同時に炭素化合物の固定化し、さらには、バイオマス等燃料の原料の生成をすることにより、地球温暖化問題の根本的解決を実現する。 (もっと読む)


マイクロチャネル内で流体流れを制御するためのシステムおよび方法は、すべてがマイクロチャネルと連通する、流体出口ウェルと1つまたは複数の流体入口ウェルとを備える流体回路を含む。負圧の差が出口ウェルに加えられ、入口ウェルからマイクロチャネルへの流体流れは、入口ウェルを大気圧に開放するまたは閉じることによって制御される。入口ウェルからの流体流れを停止するために、負圧の差を入口ウェルに加えて入口ウェルと出口ウェルの圧力を等しくすることができる。異なる入口ウェルを順次大気に開放して閉じることによって、制御された量の異なる試薬を連続的にマイクロチャネルに導入することができる。
(もっと読む)


101 - 120 / 404