説明

Fターム[4G077EE06]の内容

結晶、結晶のための後処理 (61,211) | 結晶成長共通−成長前の基板の処理、保護 (913) | 基板の表面処理 (858) | 被膜の形成(例;保護膜) (381)

Fターム[4G077EE06]の下位に属するFターム

Fターム[4G077EE06]に分類される特許

61 - 80 / 173


本発明は、半導体材料からなる型上に半導体材料の物品を製造する方法および、光電池の製造に有用であろう半導体材料の物品などの、それにより形成された半導体材料物品に関する。
(もっと読む)


【課題】手間を要さずにIII族窒化物半導体基板を得ることができるIII族窒化物半導体基板の製造方法を提供する。
【解決手段】下地基板10上に、炭化アルミニウム、炭化チタン、炭化ジルコニウム、炭化ハフニウム、炭化バナジウムまたは炭化タンタルから選択されるいずれかの炭化物層12を形成する工程、炭化物層12上に、第一膜として炭素膜13を形成する工程、炭化物層12を窒化する工程、窒化した炭化物層12の上部にIII族窒化物半導体層をエピタキシャル成長させる工程、III族窒化物半導体層から、下地基板10を除去して、III族窒化物半導体層を含むIII族窒化物半導体基板を得る工程を実施する。 (もっと読む)


【課題】核発生防止および高品質無極性面の成長の少なくとも一方を実現可能なGaN結晶の製造方法を提供する。
【解決手段】少なくともアルカリ金属とガリウムとを含む融液中において、GaN結晶を製造する方法であって、融液中の炭素の含有量を調整する調整工程と、ガリウムと窒素とが反応する反応工程とを包含する。アルカリ金属としては、Naを用いる。この製造方法により、核発生を防止し、無極性面を成長させることができる。 (もっと読む)


【課題】結晶欠陥をより抑制することが可能なSiC単結晶の製造方法を提供する。
【解決手段】CVD法によりエピタキシャル膜2を成長させると、成長させるエピタキシャル膜2の不純物濃度に応じて貫通転位3の成長方向を一定方向に規定できる。例えば、SiC基板1内に含まれていた貫通転位3は、エピタキシャル膜2内においてc軸に対する角度θが(11−22)面もしくは(11−22)面に対して±3°の範囲内、例えば[11−23]方向に平行もしくは[11−23]方向に対して±3°の範囲内の方向に向く。このため、この現象を利用し、エピタキシャル膜2の側面から貫通転位3を排出させることにより、エピタキシャル膜2の成長表面から貫通転位3をほぼ無くすことが可能となる。そして、このようなエピタキシャル膜2を種結晶として昇華法によりSiC単結晶4をバルク成長させれば、結晶欠陥をより抑制することが可能となる。 (もっと読む)


【課題】ダイヤモンド膜を母体の表面に比較的厚膜に、かつ、精度よく選択的に形成でき、ダイヤモンド膜のコンタミネーションを防止できるダイヤモンド膜の選択的形成方法及びCMPパッドコンディショナーを提供する。
【解決手段】母体1の表面1Aに、薬液により除去可能とされ、かつ、ダイヤモンド膜Dの生成を助長する性質の第1膜12と、第1膜12上に配されダイヤモンド膜Dの生成を阻止する性質の第2膜13とを選択的に形成して、表面1Aを、非マスキング領域を有しつつ第1、第2膜12、13によりマスキングする工程と、薬液を希釈して用い、非マスキング領域における表面1Aの部分の周縁部に立設する第1膜12の壁面12Cを溶解して凹部12Dを形成する工程と、CVD法により表面1Aの部分及び凹部12Dにダイヤモンド膜Dを生成させる工程と、薬液により第1膜12とともに第2膜13を表面1Aから取り除く工程と、を備える。 (もっと読む)


【課題】本発明の目的は、上述した問題を解決し、成長温度が1050℃以下のAlGaNやGaNやGaInNだけでなく、成長温度が高い高Al組成のAlxGa1-xNにおいても結晶性の良いIII族窒化物半導体エピタキシャル基板、III族窒化物半導体素子、III族窒化物半導体自立基板およびこれらを製造するためのIII族窒化物半導体成長用基板、ならびに、これらを効率よく製造する方法を提供する。
【解決手段】少なくとも表面部分がAlを含むIII族窒化物半導体からなる結晶成長基板と、前記表面部分上に形成されたZrまたはHfからなる単一金属層とを具えることを特徴とする。 (もっと読む)


【課題】エピタキシャル層と基板との界面における電気抵抗の低減がはかられた化合物半導体基板及びその製造方法を提供する。
【解決手段】化合物半導体基板10は、III族窒化物で構成され、化合物半導体基板10の表面の表面層12に、Cl換算で200×1010個/cm以上12000×1010個/cm以下の塩化物及びO換算で3.0at%以上15.0at%以下の酸化物が含まれるときに、化合物半導体基板10とその上に形成されるエピタキシャル層14との間の界面のSiが低減され、その結果界面における電気抵抗が低減される。 (もっと読む)


【課題】結晶性の高い単結晶ダイヤモンドをヘテロエピタキシャル成長させることができ、しかも繰り返し使用出来る単結晶ダイヤモンド成長用の基材を提供すること、及び安価に大面積高結晶性の単結晶ダイヤモンドを製造することのできる単結晶ダイヤモンドの製造方法を提供する。
【解決手段】少なくとも、単結晶からなる種基材と、該種基材上にヘテロエピタキシャル成長させた薄膜を有する単結晶ダイヤモンド成長用の基材であって、前記種基材は、単結晶ダイヤモンドであり、かつ前記薄膜は、イリジウム膜またはロジウム膜であることを特徴とする単結晶ダイヤモンド成長用の基材。 (もっと読む)


【課題】製造過程が容易であり、製造コストが低廉な多元系ナノワイヤーの製造方法を提供する。
【解決手段】本発明に係る多元系ナノワイヤーの製造方法は、(a)複数の気孔を有する陽極酸化アルミニウムナノテンプレートを準備するステップと、(b)前記陽極酸化アルミニウムナノテンプレートの一側面上に電極層を形成するステップと、(c)前記陽極酸化アルミニウムナノテンプレートを所定の多元系溶液に浸漬させ、前記陽極酸化アルミニウムナノテンプレートを陰極とする電気めっき法によって、前記陽極酸化アルミニウムナノテンプレートの前記気孔を通じて多元系ナノワイヤーを成長させるステップと、(d)前記陽極酸化アルミニウムナノテンプレートを除去するステップとを含むことを特徴とする。 (もっと読む)


【課題】空洞が生じることを抑制し、かつ手間およびコストを低減したスーパージャンクション構造を有するエピタキシャルウエハの製造方法および半導体装置の製造方法を提供する。
【解決手段】エピタキシャルウエハの製造方法は、スーパージャンクション構造12を有するエピタキシャルウエハ10の製造方法であって、以下の工程を備えている。基板11を準備する。基板11上に第1導電型の第1の層を形成する。第1の層にメサ構造を形成する。第1の層のメサ構造の凹部に、液相成長法により第2導電型の第2の層を形成する。半導体装置の製造方法は、以下の工程を備えている。エピタキシャルウエハ10を製造する。エピタキシャルウエハ10上に、半導体層を形成する。 (もっと読む)


【課題】多結晶のGaN結晶の成長を抑制できるGaN結晶の成長方法およびGaN結晶の製造方法を提供する。
【解決手段】本発明のGaN結晶の成長方法は、以下の工程が実施される。まず、下地基板が準備される(ステップS1)。そして、レジストを用いて、下地基板上に開口部を有するマスク層が形成される(ステップS2)。そして、下地基板およびマスク層を酸性溶液が洗浄される(ステップS3)。そして、酸性溶液で洗浄するステップS3後に、下地基板およびマスク層を有機溶媒で洗浄される(ステップS4)。そして、下地基板およびマスク層上に、GaN結晶が成長される(ステップS5)。 (もっと読む)


【課題】昇華法によりSiC種基板上にSiC単結晶を形成させるに際して、SiC種基板の種結晶にあったマイクロパイプ(MP)や螺旋転位(TSD)の貫通欠陥の伝播を抑制して結晶成長を行うことにより、結晶欠陥の少ないSiCインゴットを形成させ、パワーデバイスの歩留まりを向上させることができるSiC単結晶の形成方法を提供する。
【解決手段】SiC(0001)面に対して0.01〜8°の傾角を有するSiC基板1上に、準安定溶媒エピタクシー法によりSiC単結晶をエピタキシャル成長させてSiC単結晶のエピタキシャル膜6を形成した後、前記SiC単結晶のエピタキシャル膜6の上に、昇華法によりSiC単結晶2を形成するSiC単結晶の形成方法。 (もっと読む)


【課題】改良レーリー法により炭化ケイ素単結晶を製造するときに、種結晶のマイクロパイプ欠陥及びボイド欠陥を共に抑制し、これにより品質の高い炭化ケイ素単結晶を製造することのできる炭化ケイ素単結晶の製造方法を提供する。
【解決手段】結晶成長させる種結晶100には、成長端面100aを有するものを用いる。この成長端面100aを有する種結晶100を炭化ケイ素単結晶製造装置の容器内に設置するに先立って、種結晶100の成長端面100aを真空チャック1で保持しつつ、種結晶100の裏面100bにスピンコートで保護膜2を形成する。 (もっと読む)


【課題】本発明によれば、結晶性が向上したIII族窒化物半導体積層構造体を生産性良く得ることができる。
【解決手段】サファイア基板表面に、シード層として、縦断面TEM(透過型電子顕微鏡)写真の200nm観察視野において結晶粒界が観察されないAlN結晶膜を形成させ、ついでIII族窒化物半導体からなる、下地層、n型半導体層、発光層およびp型半導体層を積層してなるIII族窒化物半導体積層構造体を反応炉を用いて製造するに際し、少なくとも下地層を成膜したIII族窒化物半導体積層構造体ウエハーを反応炉から取り出し、ついで次の成膜を別の反応炉で行なう。 (もっと読む)


【課題】単結晶ナノ構造を基板の上に成長させる方法を提供する。
【解決手段】基板1の主表面上にパターン2を最初に形成する工程であって、パターン2は基板1の表面まで延びた開口部を有する工程と、パターン2の開口部中の、露出した主表面の上に、金属3を供給する工程と、開口部をアモルファス材料4で、少なくとも部分的に埋める工程と、アモルファス材料4と金属化合物3とを、300℃と1000℃の間の温度でアニールし、金属媒介結晶化により、アモルファス材料4を単結晶材料5に変える工程と、を含む。 (もっと読む)


【課題】 分子デバイスを含む、有機材料の機能を利用する有機材料含有デバイスの構築に適した取り扱いが容易な基板を提供する。
【解決手段】 水素原子およびアミノ基が化学吸着した半導体表面を有する基板とする。このアミノ基は、例えばSi−N結合により固定されている。アミノ基は多くの官能基と化学反応しうる基であり、生体分子との親和性にも優れている。この表面は、大気中での取り扱いも容易である。アミノ基と有機分子とを反応させれば、有機分子と半導体表面とが化学的に一体に結合する。アミノ基は、例えば水素原子で終端された半導体表面にアンモニア等の窒素含有反応種を接触させ、この反応種に由来する窒素原子を含むアミノ基を半導体表面に化学吸着させて導入すればよい。 (もっと読む)


【課題】大量のナノロッド及び基体表面に整列されたナノロッドのいずれをも製造することが可能な方法を提供すること。
【解決手段】金属酸化物ナノロッドの製造方法は、炉6内において金属蒸気を発生させる工程と、炉内の成長領域内において、ナノロッド成長用基体22の表面上に金属酸化物ナノロッドが形成されるのに十分な時間だけナノロッド成長用基体22を金属蒸気に曝す工程と、ナノロッド成長用基体22を成長領域から除去する工程と、このように形成された金属酸化物ナノロッドであって、その直径が1nmから200nmの金属酸化物ナノロッドを収集する工程とからなる。 (もっと読む)


【課題】ターンオン電界の低減、電流密度の向上、電子放出の均一化を達成できるナノワイヤ構造体およびその製造方法を提供する。
【解決手段】酸化ガリウム単結晶基板上に、NiまたはPtからなる触媒層を形成し、前記触媒層上でトリメチルガリウムおよびアンモニアをCVD法により850〜1000℃の温度範囲で反応させ、径が5nm〜200nm、長さが5μm〜50μmのワイヤ状の形態をした窒化ガリウムナノワイヤを形成する。 (もっと読む)


【課題】精度のよいオリフラおよびインフラを有するIII族窒化物半導体基板を簡単に、かつ短時間で製造できるIII族窒化物半導体基板の製造方法を提供する。
【解決手段】サファイア基板2上に第一の層3、金属膜4を順次形成した後、第一の層3中に空隙6を発生させて下地基板7とし、その下地基板7上に第二の層8を形成し、第二の層8を、III族窒化物半導体基板11とすべく下地基板7から剥離して形成するIII族窒化物半導体基板11の製造方法において、第一の層3中に空隙6を発生させる際に、空隙割合が過多となる部分Cを形成し、その後、第二の層8を形成して、その第二の層8に空隙割合が過多となる部分と対応する部分にピット列12を形成し、その剥離後のIII族窒化物半導体基板11にピット列12を境界にしてオリフラ9およびインフラ10を形成するものである。 (もっと読む)


【課題】均一かつ広い面積の低電位密度領域を有する窒化物単結晶の成長方法を提供する。
【解決手段】基板上に第1窒化物単結晶層101を成長させる段階と、第1窒化物単結晶層101上に第1窒化物単結晶層101上面中一部を露出させたオープン領域を備える誘電体パターン102を形成する段階と、オープン領域を通して第1窒化物単結晶層101上に第2窒化物単結晶層103を誘電体パターン102の高さより低いか同じ高さに成長させる段階とを含み、第2窒化物単結晶層103の成長過程において、第2窒化物単結晶層103内部の電位Dが側方向に進行して誘電体パターン102の側壁にぶつかって消滅するよう誘電体パターン102の高さはオープン領域の幅より大きい値を有する。 (もっと読む)


61 - 80 / 173