説明

Fターム[4G146AB04]の内容

炭素・炭素化合物 (72,636) | 炭素、炭素化合物−形状 (4,341) | 粒状・粉末状(破砕物を含む) (1,078) | 1μm以下のもの、超微粒子 (152)

Fターム[4G146AB04]に分類される特許

121 - 140 / 152


【課題】導電性の塗料、電波吸収材、遮光材料等に用いた際に、高い導電性、充填性や遮光性等が得られる結晶の厚さ(Lc)が10nm以下の箔片状結晶片を含有する炭素材料及びその製造方法を提供する。
【解決手段】炭素材料は、炭化水素化合物をプラズマ熱分解して得られる結晶性のものであって、その結晶の厚さ(Lc)が10nm以下である箔片状結晶片を含有する。この炭素材料は、不活性ガス、または不活性ガスと水素ガスあるいは炭酸ガスとの混合ガスをプラズマ発生室内で、標準状態(25℃で101325Pa)におけるガスの流速が0.602m/sec以上になるように供給し、プレート電力6kVA以上の高周波を印加した後、前記炭化水素化合物を5L/min以上導入して該炭化水素化合物の熱分解を行って製造する。 (もっと読む)


【課題】 カーボンナノチューブ電子電界エミッタ構造を含む改良された電界放出デバイスを実現する。
【解決手段】 接着性カーボンナノチューブ膜(単層あるいは多層ナノチューブを含む)が、比較的平坦な導電性基板上に形成される。本発明は、強く接着するカーボンナノチューブ膜を実現する。さらに、放出特性を向上させるために、膜中のナノチューブの一部(例えば、少なくとも50体積%)を、ほぼ同じ方向に整列させ、それらの長軸を、基板表面に垂直な向きにすることが可能である。一実施例では、単層カーボンナノチューブが、炭素溶解性元素(例えば、Ni、Fe、Co)あるいはカーバイド形成元素(例えば、Si、Mo、Ti、Ta、Cr)のような炭素と反応する材料を含む基板上に形成される。また、アルミニウムのような低融点材料を有する基板を使用することも可能である。 (もっと読む)


【課題】特定合成手段によって得られる前駆体ポリマーから出発することによって、優れた機能が特異的に発現される極めて微少単位の炭素粒子であって、チューブ状ないしはバルーン状中空構造を有する炭素粒子を提供する。
【解決手段】芳香族環に2個以上のヒドロキシル基が置換した構造を持つフェノール類の中から選択された少なくとも1種類のモノマーと、ホルムアルデヒド、フルフラールを含むアルデヒド類の中から選択された少なくとも1種類のモノマーを、カチオン界面活性剤によって形成されるミセルないしはベシクルを反応鋳型として、この反応鋳型により苛性ソーダを含む塩基性縮合剤の存在下で重合させて中空状ポリマー粒子を得、このポリマー粒子を不活性雰囲気の下で焼成することによって得る。 (もっと読む)


【課題】高温高圧法のように比較的平均粒径が大きいナノダイヤモンドにおいても、水に対する分散度が高いナノダイヤモンドを提供する。また、分散を経ることにより、より小さな粒径であり、かつ、表面の化学構造が制御されたナノダイヤモンドを提供する。
【解決手段】平均粒径が6〜200nmのナノダイヤモンドであって、ナノダイヤモンド120mgに対して超純水8ml加えて得た懸濁液を遠心分離し、上澄み液5ml中の20℃におけるナノダイヤモンドの分散度が0.35mg/ml以上であるナノダイヤモンドである。 (もっと読む)


高濃度でCeoのナノ粒子(これに限定されない)を含むナノ粒子を発生させるための方法及び装置。本発明は、気化チャンバと希釈チャンバとを有する炉管と連通している固体エーロゾル分散機を使用する。加熱部材は炉管を取り囲む。加熱部材からの熱は、バルク材料を気相に転換するのに十分な温度に、気相チャンバ中の気体流内に含まれるバルク材料を加熱する。気化バルク材料は続いて希釈チャンバに移動し、そこで不活性気体が希釈ガスポートを通して導入される。希釈ガスポートを通って希釈チャンバへ入る不活性気体流は、希釈チャンバの出力からバルク材料を排出するのに十分であり、これによってバルク材料を、ナノサイズ粒子の凝集を防ぐのに十分な容積で気体流中のナノサイズ粒子に凝縮する。 (もっと読む)


【課題】炭素を含む液体から常温・常圧の環境下で単分散ナノダイヤモンド粒子の製造方法を提供すること。
【解決手段】ガラスセルなどのレーザー光を透過する透明な容器に常温・常圧で液体状の炭素化合物を装入し、前記容器外からパルスレーザー光を照射し、該パルスレーザー光を前記炭素化合物の液中で高密度に集光することを特徴とする単分散ナノダイヤモンド粒子の製造方法。 (もっと読む)


本発明は炭素化学関連、ナノ・ダイヤモンドである。本材料の質量化は次:炭素‐90.2-98.0 重量パセント;水素‐0.1-5.0 重量パセント;窒素‐1.5-3.0 重量パセント;酸素‐0.1-4.5 重量パセント;そしてダイヤモンド立方形種類炭素含とХ線アモルファス位相での質量パセント割合は(82 - 95):(18 - 5)。本発明は否定酸素バランスの炭素系爆発物のデトネーション含、本爆発物は縮合位相囲炭素系物質爆発物起爆を含んで、還元剤含縮合位相カバー(縮合位相還元剤と使用炭素系物質の質量比は0.01:1)、また200-2800Cの温度と5-15MPaの圧力で, 2-4パセントの含水硝酸と圧搾空気窒素と併用デトネーション製品加工での化学洗浄。 (もっと読む)


【解決手段】 極めて微細な結晶粒径の焼結多結晶ダイヤモンド(polycrysta
lline diamond material:PCD)材料は、高圧/高温(hig
h pressure/high temperature:HP/HT)処理下で、事
前に混合する触媒金属とともにダイヤモンド粉末を焼結することにより作製する。前記P
CD材料は、焼結後の平均ダイヤモンド結晶粒構造寸法が1.0μm未満である。 (もっと読む)


本発明は、アシル基で変性されている新規のカーボンナノ粒子、特にカーボンナノチューブを含有するか又はこれらからなるカーボンナノ粒子、これらの変性されたカーボンナノ粒子、特にカーボンナノチューブを含有するか又はこれらからなるカーボンナノ粒子を得ることができる新規方法、及び変性されたカーボンナノ粒子、特にカーボンナノチューブを含有するか又はこれらからなるカーボンナノ粒子の使用に関する。 (もっと読む)


【課題】この発明は、比較的高圧で実施できるプラズマ発生装置およびプラズマ発生方法を提供すること、および、ダイヤモンドを生成できるような高エネルギーのプラズマを発生できるプラズマ発生方法を提供することを目的とする。
【解決手段】上記の課題を解決するために、本発明に係るプラズマ発生装置1は、反応容器2と、反応容器2にアルゴンガスを含む気体を供給する第1気体供給装置5と、炭化水素を含む気体を供給する第2気体供給装置6と、反応容器2へ1GHz以上の周波数のマイクロ波を導入するマイクロ波導入装置10を有するものである。 (もっと読む)


【課題】 粒子径1μm以下、特に粒子径1μm以下からnmオーダーの超微小粒子の製造方法を提供する。
【解決手段】 有機ポリマー原料及びグラファイトのいずれかから選ばれる原料を、超臨界水あるいは亜臨界水を用いて水熱反応し、粒子径1μm以下の超微小粒子を得る製造方法であり、前記ポリマー原料は原料ポリマー及び又は重合性の原料モノマーであり、前記ポリマー原料が、ポリスチレン、ポリエチレン、ポリプロピレン、ノルボルネン樹脂の群から選ばれる1種または2種以上の原料である。 (もっと読む)


【課題】リチウムイオン二次電池の出力特性を改善することのできる、従来よりも粒子径の小さい炭素粒子、電気二重層キャパシタの出力特性を改善することのできる活性炭粒子を提供すること。
【解決手段】粒子状の炭素であって、下記要件(A)を満足することを特徴とするリチウムイオン二次電池の負極材料として好適な炭素粒子および、粒子状の活性炭であって、下記要件(D)〜(E)を同時に満足することを特徴とする電気二重層キャパシタの活物質として好適な活性炭粒子。
(A)炭素粒子が100nm〜10μmの範囲の粒子径を有すること。
(D)活性炭粒子が100nm〜10μmの範囲の粒子径を有すること。
(E)活性炭表面に2〜5nmφの細孔を有し、該細孔の細孔容積が0.1cc/g〜2.0cc/gの範囲にあること。 (もっと読む)


ガス状のメタンおよび塩素を反応器のチャンバー(1)に通じるバーナー(2)の通路(3および4)の中に導入し、メタンと塩素の混合物を燃焼し拡散火炎を形成し、メタンの酸化カップリングの過程の生成物を沈殿させ、固体炭素粒子を含有する懸濁液を分離し、かつ所望された生成物を抽出する工程からなる超分散炭素の製造法。メタン流の大部分を、反応器チャンバー内部に設けられた分岐管(6)を通して炎の外部境界に送り込む。拡散火炎の燃焼帯域における反応器チャンバー(1)の内壁を水流によって洗浄する。所望された生成物を、固体粒子懸濁液の熱処理を通して粗生成物から抽出する。方法の利用によりメタンの酸化カップリングの過程における単分散炭素収率が本質的に増加する。
(もっと読む)


本発明は、炭素質キャリヤーとナノサイズ炭素構造体(例えば、CNT又はCNF)を含み、該ナノサイズ炭素構造体が該炭素質キャリヤー上に成長する炭素−炭素複合物質に関する。該キャリヤーは、活性炭におけるように多孔質であるか又はカーボンブラック粒子から成ることができる。本発明によると、多孔質キャリヤーの孔にナノ炭素を成長させることができる。該炭素−炭素複合物質の製造方法は、炭素質キャリヤー物質をナノサイズ炭素構造体を形成することができる金属を含有する触媒物質によって処理する工程、及び炭素含有ガスを含むガス雰囲気中で該処理済みキャリヤー上にCVD(化学的蒸着)法によってナノサイズ炭素構造体を成長させる工程、続いての任意の表面修飾工程を含む。この方法は、孔隙率、流体力学的性質及び表面化学を互いに独立して最適化させることを可能にし、水精製のための該複合体の使用に関して特に有利である。カーボンブラック系の複合体は、充填剤用途に特に有用である。 (もっと読む)


【課題】
フラーレン類の製造において収率を向上させる手法の提供
【解決手段】
カーボン電極を使用したアーク放電によりフラーレン類を製造する方法であって、フラーレン類の生成する反応室を冷却する冷却液温度を40〜60℃に制御することを特徴とするフラーレン類の製造方法、並びに、カーボン電極、該電極に通電する手段、反応室及び該反応室を冷却液により冷却する冷却手段を備えたアーク放電型フラーレン類の製造装置であって、冷却液温度を40〜60℃に制御する手段を備えたことを特徴とするフラーレン類の製造装置。 (もっと読む)


【課題】 DNA等を固定可能であって、良好な分散性を示す超分散ダイヤモンド及びその製造方法を提供する。
【解決手段】 (a) 一次粒径の平均が1〜50 nmのの超分散ダイヤモンドと強酸を反応させ、もって前記超分散ダイヤモンドを酸化させる工程と、(b) 酸化させた超分散ダイヤモンドに塩基性溶液を加えて中和する工程と、(c) 酸性溶液を加えて混合する工程とを有し、各工程の後で溶液から超分散ダイヤモンドを超遠心分離することを特徴とするカルボキシル基修飾超分散ダイヤモンドの製造方法。 (もっと読む)


本発明は、一般に、ナノ粉末の合成プロセスに関し、そしてより特定すると、粉末の凝集していないナノ粒子の形成を補助するための、前駆物質(例えば、前駆体気体)の制御された使用に関する。本発明はまた、このプロセスによって製造される炭素と金属とからなる新規ナノ材料、およびこの新規ナノ材料が可能にする基本プロセスに関する。本発明は、制御可能なプロセスで商業的な容積の乾燥した凝集していないコーティングされたナノ粉末を製造することによって、先行技術の問題および困難性を克服する。
(もっと読む)


【課題】 研磨性能がよく強固な凝集を生じにくい、D50値が50nm未満のダイヤモンド微粉を提供する。
【解決手段】1. D50値が50nm未満の単結晶質ダイヤモンド粒子の集合体であって、粒子の表面が一部、非ダイヤモンド構造炭素に転化され、かつ粒子間には、加熱操作時に生成した非ダイヤモンド構造炭素が介在する。2. 単結晶質原料ダイヤモンドを機械的な衝撃破砕手段によって粉砕し、さらに精密分級工程でD50値が50nm未満のダイヤモンド微粉とし、カーボン発生剤の溶液乃至分散液に浸して粒子表面にカーボン発生剤を付着せしめ、不活性雰囲気中800〜1400℃で加熱し、この際、予め生成した或はその場でカーボン発生剤から生成する非ダイヤモンド構造炭素をダイヤモンド粒子間の分離剤とすることで、粒子の凝集を効果的に回避する、上記のダイヤモンド微粉の製造法。 (もっと読む)


本発明は、粘度および安定性を増加させたカーボンナノチューブ含有組成物に関する。特に、本発明は、電気的特性が優れたカーボンナノチューブ膜及びカーボンナノチューブ層の製造方法に関する。

(もっと読む)


【課題】 1)無粉砕で球状及び鱗片状の超微粒子を得ることができ、2)篩別工程無しに、シャープな球形粒度分布を有する球状超微粒子を得ることができ、3)極めて真円に近似し、粒子径が目的用途により100nm〜50000nmの大きさの球状超微粒子を得ることができ、4)しかも低コストでの工業的生産を可能にする方法を提供する。
【解決手段】 無粉砕で、真円度が0.9〜1.0で粒径が0.01μm〜10μmの形態を有することを特徴とする球状超微粒子を提供する。該球状超微粒子は、特殊な貫通孔と貫通孔密度を有する基盤をノズルに用いることにより製造できる。この基盤ノズルには、貫通孔の穴径が0.05μm〜50μmで、貫通孔のアスペクト比(穴径と貫通孔の長さの比)が、5〜200で有し、貫通孔の密度が100〜7000個/cm2の貫通孔密度を有する基盤をノズルに用いる。 (もっと読む)


121 - 140 / 152