説明

Fターム[4K017EJ02]の内容

金属質粉又はその懸濁液の製造 (21,321) | 液体化合物還元 (1,153) | 有機化合物 (356)

Fターム[4K017EJ02]に分類される特許

21 - 40 / 356


【課題】磁場配向を適切に行わせることによって永久磁石の磁気特性を向上させた希土類永久磁石及び希土類永久磁石の製造方法を提供する。
【解決手段】磁石原料を磁石粉末に粉砕し、粉砕された磁石粉末とバインダーとを混合することにより混合物を生成する。そして、生成した混合物を長尺シート状に成形し、グリーンシート13を作製する。その後、成形したグリーンシート13が乾燥する前に、グリーンシート13の面内方向且つ長さ方向に対して磁場を印加することにより磁場配向を行い、グリーンシート13を焼結することにより永久磁石1を製造するように構成する。 (もっと読む)


【課題】 本発明は、低温焼成が可能な導電性ペースト等の原料として好適な、平均粒子径100nm以上の銀微粒子並びに該銀微粒子を含有する導電性ペースト、導電性膜及び電子デバイスに関する。
【解決手段】 銀塩錯体含有水溶液に還元剤含有水溶液を添加して銀微粒子を還元析出させる銀微粒子の製造方法、又は、還元液に硝酸銀水溶液を添加して銀微粒子を還元析出させる銀微粒子の製造方法において、反応から乾燥までの全ての工程を30℃以下の温度範囲で行なうことにより、平均粒子径(DSEM)が100nm以上であり、X線回折によるミラー指数(111)と(200)における結晶子径の比[結晶子径D(111)/結晶子径D(200)]が1.40以上の銀微粒子を得ることができる。 (もっと読む)


【課題】電子機器の電気伝導性要素を製作するのに適した、液体処理可能な、安定な銀含有ナノ粒子組成物を調製する低コストの製造方法を提供する。
【解決手段】銀塩、有機アミン、第1の溶媒および第2の溶媒を含む第1の混合物を入れることと;第1の混合物と還元剤溶液とを反応させ、有機アミンで安定化された銀ナノ粒子を作成することとを含む、銀ナノ粒子を製造するプロセス。第1の溶媒の極性指数は3.0未満であり、第2の溶媒の極性指数は3.0より大きい。このナノ粒子は、第1の溶媒への分散性または可溶性が高い。 (もっと読む)


【課題】電磁波照射による加熱によって、粒子径分布の狭い金属ナノ粒子を、短時間で、高収率で、迅速に、連続的に合成することを可能とする金属微粒子の製造方法を提供する。
【解決手段】金属微粒子の前駆物質および誘電正接が0.1以上、緩和時間が200ピコ秒以上の溶媒を含有する反応溶液を、流通管内に流通させ、その流通管の長さ方向に均一かつ集中的な電磁波を流通管内に向けて照射し、流通管内の前記溶液を流通方向に均一に加熱し、前記金属微粒子の前駆物質を流通下に還元して金属微粒子を生成させる、金属微粒子の製造方法。 (もっと読む)


【課題】ニッケルナノ粒子を大量に合成できる実用性に優れた連続製造装置及び連続製造方法を提供する。
【解決手段】連続製造装置100では、原料導入部1Bを介して原料である錯化反応液と金属塩をそれぞれ別々に、あるいは混合状態で反応容器1内に連続的又は間欠的に供給する。そして、マイクロ波発生部10で発生したマイクロ波を、マイクロ波導入部1Aから反応容器1内に導入し、酢酸ニッケルと金属塩を含む反応混合液に照射する。これにより、金属塩が加熱還元されてAgなどの微粒子が生成するとともに、酢酸ニッケルが還元され、この微粒子を核として金属ニッケルが成長することによりニッケルナノ粒子が生成する。 (もっと読む)


【課題】金属ナノ粒子を大量に合成できる実用性に優れた連続製造装置及び連続製造方法を提供する。
【解決手段】連続製造装置100では、原料導入部1Bを介して原料である錯化反応液と貴金属塩をそれぞれ別々に、あるいは混合状態で反応容器1内に連続的又は間欠的に供給する。そして、マイクロ波発生部10で発生したマイクロ波を、マイクロ波導入部1Aから反応容器1内に導入し、卑金属のギ酸塩と貴金属塩を含む反応混合液に照射する。これにより、貴金属塩が加熱還元されてAgなどの微粒子が生成するとともに、卑金属のカルボン酸塩が還元され、この微粒子を核として卑金属原子の層が成長することにより金属ナノ粒子が生成する。 (もっと読む)


【課題】 分散媒への分散安定性が優れ、比較的低温で焼成することによって高い導電性を示す銀ナノ粒子を製造する方法を提供することにある。
【解決手段】 実施形態の銀ナノ粒子の製造方法は、炭素数4〜12の炭化水素基を有する一級アミンと脂肪酸銀との混合物を、不活性ガス雰囲気中、前記一級アミンの沸点を超える温度Tに供して前記混合物を溶融させ、溶融物中に銀ナノ粒子を生成させる工程を具備する。前記温度Tは、以下の条件を満たす。
L≦T≦TH
(TLおよびTHは、それぞれろ過収率が10%以上の銀ナノ粒子が得られる下限温度および上限温度であり、前記ろ過収率は、得られた銀ナノ粒子を5質量%のトルエン分散液として5μmのフィルターを通過させたろ液のろ過前後の固形分濃度の比であって、前記固形分濃度は熱重量分析により150℃まで加熱した際の減少重量から算出される。) (もっと読む)


【課題】 電解再生液を用いた製造方法で、初回の還元剤含有液(バージン反応液)を用いた場合と遜色ない程度の金属微粒子を得ることができる製造方法を提供する。
【解決手段】 使用済み還元剤含有液を電解処理することにより、使用済み還元剤を還元再生した電解再生液を用いて、金属微粒子を繰り返し製造する方法であって、電解再生液に、金属イオン及び分散剤を補充する工程;並びに前記金属イオン及び分散剤が添加された電解再生液のpHを、前記還元剤の電極電位が前記金属イオンが原子となる電極電位よりも低くなるように調節して、還元反応を開始させる工程を含む。前記還元剤は、チタン塩であることが好ましい。 (もっと読む)


【課題】例えば電子デバイスまたは電子デバイスなどの種々の対象物にパラジウム層を形成するための組成物およびプロセスを提供する。
【解決手段】パラジウム層を形成するための組成物は、パラジウム塩およびオルガノアミンを含有する。基板上にパラジウム層を形成するためのプロセスは、パラジウム塩、オルガノアミン、および水不混和性の有機溶媒を含むパラジウム前駆体組成物を受容する工程と、前記基板を前記パラジウム前駆体組成物で溶液コーティングする工程と、前記パラジウム前駆体組成物を加熱し、パラジウム層を形成する工程と、を含む。 (もっと読む)


【課題】複合ナノ粒子、ナノ粒子およびその生成方法の提供。
【解決手段】種々の局面において、架橋・収縮した高分子物質内のナノ粒子を生成するための方法が提供され、この方法は、a)高分子物質を含む高分子溶液を提供する工程、b)一つまたは複数の前駆体部分の周りで少なくとも高分子物質の一部分を収縮させる工程、c)この高分子物質を架橋する工程、d)前駆体部分の一部分を改変して、一つまたは複数のナノ粒子を形成し、それによって複合ナノ粒子を形成する工程を包含する。種々の実施形態において、閉じ込められたナノ粒子の完全な熱分解によって、閉じ込められていないナノ粒子が生成され得、閉じ込められたナノ粒子の不完全な熱分解によって、炭素被覆されたナノ粒子が生成され得る。 (もっと読む)


【課題】従来の金属ナノ粒子合成手法における、水中の還元雰囲気下での合成では金属ナノ粉子が短時間で酸化され易く、表面を種々の方法で被覆しても、不安定で、水中では、特にその被覆物が離脱して、次第に表面から酸化されてしまうなどの問題を解決する。
【解決手段】高温高圧状態の、亜臨界ないし超臨界水中での水熱還元プロセスを適切な還元剤存在下に行い、生成ナノ粒子の表面が金属状である金属又は合金ナノ粒子を得る。これにより、触媒、記憶材料、発光材料、オプトエレクトロニクスなどの広範な分野での利用が期待されている、例えば、性状の優れたコバルトナノ粒子を、簡単な手法で、低コストに且つ安定的に製造できる。 (もっと読む)


【課題】金属ナノ粒子の分散安定性が良好で、且つ、基板等の下地との密着性に優れた金属配線等の金属塗膜を形成することができる金属ナノ粒子分散液を提供する。
【解決手段】脂肪族アミン、脂肪酸及びシランカップリング剤が表面に吸着している金属ナノ粒子と疎水性溶媒とを含有する分散液であって、前記脂肪族アミン及び前記脂肪酸の少なくとも一方が分子量200未満である金属ナノ粒子分散液とする。 (もっと読む)


【課題】高純度かつ安価な金属微粒子を提供する。
【解決手段】金属濃度=金属の質量(g)×100(%)/反応溶液の質量(g)(mass%)で定義したとき、金属濃度の値が1mass%以上90mass%以下の範囲となるよう金属化合物とアミン保護剤とを混合し、この溶液を加熱・攪拌することで金属化合物を還元し、アミン保護剤によって被覆された金属微粒子を析出させる金属微粒子の製造方法である。 (もっと読む)


【課題】平均粒径で50nm以上となることを抑制することのできる金属粒子の製造方法を提供する。
【解決手段】金属イオンと、還元剤としての三塩化チタンと、錯化剤と、分散剤と、を含む酸性の反応溶液をアルカリ性に調整し、この反応溶液を撹拌して金属粒子を析出させる。上記錯化剤としては、リンゴ酸およびリンゴ酸塩およびグルコン酸およびグルコン酸塩の少なくとも一種を用いる。 (もっと読む)


【課題】粒径が小さく、粒径分布が均一で、かつ、凝集の少ない金属ナノ粒子を、高価な装置や複雑な操作を必要とすることなく製造し得る方法を提供すること。
【解決手段】本発明の金属ナノ粒子の製造方法は流通方式によるものである。この製造方法は、金属源化合物と親水性有機溶媒と該金属源化合物に対して配位可能な有機化合物とを含む第1原料液と、親水性有機溶媒を含む第2原料液とを混合し、最終原料液を調製すること;および、最終原料液を加熱および加圧して親水性有機溶媒を超臨界状態として、ソルボサーマル法に供すること;を含む。 (もっと読む)


【課題】ペーストに使用して焼成することにより膨れや欠けのない導体を形成することができる銀粉およびその製造方法を提供する。
【解決手段】銀イオンを含有する水性反応系に還元剤を添加して銀粒子を還元析出させた後、乾燥することにより得られた銀粉を100℃より高く且つ400℃より低い温度で熱処理することにより、50℃から800℃における最大熱膨張率が1.5%以下であり、50℃から800℃まで加熱した際に発熱ピークがなく、800℃で恒量になるまで強熱したときの強熱減量が1.0%以下、タップ密度が2g/cm以上、BET比表面積が5m/g以下である銀粉を製造する。 (もっと読む)


【課題】安定性に優れ、200℃以下の低温焼成によって優れた導電性(低い抵抗値)が発現する銀ナノ粒子、及びその製造方法を提供する。前記銀ナノ粒子を含む銀インクを提供する。
【解決手段】銀化合物と、有機アミン化合物、又は、有機アミン化合物及び有機カルボン酸化合物を含む安定剤とを混合し、混合物を得て、前記混合物に、還元剤として炭素数1〜5のアシルモノヒドラジド化合物を添加し、前記銀化合物を前記アシルモノヒドラジド化合物と反応させて、銀ナノ粒子を形成する、ことを含む銀ナノ粒子の製造方法。 (もっと読む)


【課題】銀化合物の還元反応をより温和な環境下で行い、凝集の起こらない銀ナノ粒子の製造方法を提供する。前記製造方法により得られる銀ナノ粒子、及び前記銀ナノ粒子を含む銀インクを提供する。
【解決手段】銀化合物と、有機アミン化合物、又は、有機アミン化合物及び有機カルボン酸化合物を含む有機安定剤と、有機溶剤とを混合し、混合物を得て、前記混合物に、還元剤としてアシルモノヒドラジド化合物を粉体状態で添加し、不均一系において、前記銀化合物を前記アシルモノヒドラジド化合物と反応させて、銀ナノ粒子を形成する、ことを含む銀ナノ粒子の製造方法。 (もっと読む)


【課題】単一の金属ナノワイヤーが容易に得られる製造方法を提供する。
【解決手段】金属塩、還元剤及び極性ポリマーを、下記式(1)で表される化合物の存在下で反応させることを含む、金属ナノワイヤーの製造方法。
【化1】


(式中、環Aは、環内に窒素カチオンを有する6員以上の環を表し、X-はアニオンを表し、R1は水素原子又は置換若しくは非置換の1価の炭化水素基を表す。) (もっと読む)


【課題】導電性インクを基材上にパターニングして、導電性の良好な導電パターン形成方法を提供する。
【解決手段】基板上への導電パターン形成方法であって、平均粒子径が1〜150nmの金属微粒子がアミド基を有する有機溶媒10〜80体積%、多価アルコールからなる有機溶媒5〜60体積%、アミン系有機溶媒0.1〜30体積%、及び常圧における沸点が60〜120℃である有機溶媒1〜60体積%を含む混合有機溶媒に分散されている導電性インクからなる液滴を、加熱された基板の表面に吐出してパターンを形成する工程(工程1)と、前記工程1で液滴によるパターンが形成された基板を、非酸化性ガス雰囲気中で加熱して金属微粒子(P)を焼結する工程(工程2)を含む、導電パターン形成方法。 (もっと読む)


21 - 40 / 356