説明

Fターム[4K021DB31]の内容

非金属・化合物の電解製造、そのための装置 (13,231) | 隔膜槽 (2,871) | 陽イオン交換膜を備える (398)

Fターム[4K021DB31]の下位に属するFターム

Fターム[4K021DB31]に分類される特許

161 - 180 / 389


イオンを生成するために従来のアノードとカソードとの間に使用される典型的な3Vよりもはるかに少ない値を使用して水酸化物イオンおよび/または重炭酸イオンおよび/または炭酸イオンを生成する低電圧で低エネルギーの電気化学システムおよび方法;その結果、本発明のシステムおよび方法に起因する二酸化炭素の放出が大幅に減少する。一実施形態において、本発明のシステムは:カソードに接触する第1の電解質と;アノードに接触する第2の電解質と;第1のイオン交換膜によって第1の電解質から分離された第3の電解質と;第2のイオン交換膜によって第2の電解質から分離された第4の電解質と;第3および第4の電解質を分離する第3のイオン交換膜と含む。 (もっと読む)


【課題】メタン又はメタンを含む天然ガスを原料として、膜リアクタを配置した簡便な反応器により、低環境負荷プロセスによる温和な反応条件で、メタノールを製造する方法及びその装置を提供する。
【解決手段】プロトン導電体10の両面に電極11を備えた膜リアクタを配置した反応器1と、交流電源9と、ガス混合装置とを有するメタノール製造装置、及び該メタノール製造装置を使用し、前記膜リアクタに、メタンを含む天然ガスと、酸素と、プロトン源としての水蒸気又は/及び水素とを含む混合ガスを供給して、交流電圧を印加して、常圧、400℃以下の温和な反応条件で、メタンをメタノールに変換するメタノールの製造方法、及びその装置。
【効果】天然ガスを原料として、低環境負荷型プロセスにより、高生成量及び高選択性でメタノールを製造する方法及びその装置を提供することができる。 (もっと読む)


【課題】低電流密度により、常温の電解質溶液(例えば、水)の電気分解によって、高効率にてオゾンを生成することを可能となる電解用電極およびこれを用いた電解ユニットの提供。
【解決手段】基体22と、前記基体22の表面に構成された表面層25を備えて成るものであって、表面層25は、X線回折において単斜晶の酸化ジルコニウム(−111)面の回折ピークが検出されるとともに、斜方晶の酸化ジルコニウム(111)面の回折ピークが検出されないことを特徴とする電解用電極21により課題を解決できる。 (もっと読む)


【課題】貴金属の種類に応じて、適した塩素化合物(酸化剤)に変化させて効果的に溶解する。
【解決手段】貴金属溶解液製造装置は、攪拌機111、112付き密閉型溶解反応器110と、前記溶解反応器110で電気分解により生成した塩素Clを供給する密閉型塩素電解生成器120と、前記溶解反応器110内の液のpHを調節及び維持して、前記溶解反応器110に供給された塩素ガス(Cl)を塩素化合物に変化させるpH調節器130と、前記溶解反応器110内の液が供給されて、加熱/蒸発により無機物を抽出する無機物抽出装置140と、を含んで構成されており、前記pH調節器130により、前記溶解反応器110内の液のpHを調節することにより塩素化合物を生成し、前記塩素化合物により、前記溶解反応器110に投入された貴金属含有試料の貴金属を溶解し、前記無機物抽出装置140から蒸発した液を前記溶解反応器110に再投入する。 (もっと読む)


【課題】機械的強度に優れ、過酷な電解条件に耐えることが出来、電解液による腐食を防止し、耐久性のある硫酸電解槽の提供。
【解決手段】導電性ダイヤモンド陽極として導電性基板3aの表面に導電性ダイヤモンド皮膜3bを形成し、導電性基板3aの裏面を、導電性基板3aと同等若しくはこれより大きい剛体よりなる給電体19に、導電性ペースト20を用いて貼り付け、ダイヤモンド陽極の導電性ダイヤモンド皮膜3b側の外周にガスケット21を介して陽極室4を構成する陽極室枠22を当接し、陽極室枠22の前面に隔膜2を当接し、隔膜2の前面に陰極室12を形成する陰極室枠23、ガスケット24及び陰極11を順次当接し、陰極11の裏面を、陰極11と同等若しくはこれより大きい剛体よりなる給電体25に、導電性ペースト26を用いて貼り付け、一方の給電体より前記導電性ペーストを介して他方の給電体に給電することを特徴とする硫酸電解槽1。 (もっと読む)


【課題】低電流密度により、常温の電解質溶液(例えば、水)の電気分解によって、高効率にてオゾンを生成することを可能となる電解用電極およびこれを用いた電解ユニットの提供。
【解決手段】基体22と、前記基体22の表面に構成された表面層25を備えて成るものであって、表面層25は、蛍光X線法で測定した厚さが金属換算で5〜330nmで、X線回折法で測定した結晶構造がアモルファスである金属酸化物であることを特徴とする本発明の電解用電極21により課題を解決できる。 (もっと読む)


【課題】酸素を含むガスと水を用いて過酸化水素を効率良く生成できる過酸化水素製造装置並びにそれにより製造された過酸化水素を洗浄に利用した空調機、空気清浄機及び加湿器を提供することを目的としている。
【解決手段】水素イオン伝導性を有する電解質膜3と電解質膜3の第一の面に接して配設された陽極電極4と電解質膜3の第二の面に接して配設された陰極電極5とにより構成された電解セル2と、電解セル2の陽極電極4側に設けられた陽極水槽10と、電解セル2の陰極電極5側に設けられた陰極水槽11と、陰極電極5に周期的に水を供給する水供給手段と、陽極電極4と陰極電極5とに直流電圧を印加する直流電源18と、を備えたもので、効率良く過酸化水素を生成できる。 (もっと読む)


【課題】1段階のプロセスで芳香族化合物のベンゼン環の1位および4位に高効率かつ高選択的に二つの水酸基を導入し、対応する芳香族水酸化物を得る方法の提供。
【解決手段】一般式(1)


で示される芳香族化合物の存在下、金属酸化物からなる光電極に一定の電位を印加しながら光を照射することを特徴とする、一般式(2)


で示される芳香族水酸化物の製造方法。(式(1)および式(2)中、R、R、R、及び、Rは、それぞれ独立に水素原子または炭素原子数1〜20のアルキル基を示し、RとRおよび/またはRとRは、互いに結合して環を形成していても良い。) (もっと読む)


【課題】本発明において、遷移金属または貴金属が、不安定な高原子価の状態を保持できる安定した有機金属高分子を提供する。また、高い触媒効率で、ニッケルと同程度あるいは、それ以上の酸素発生能力を発揮する酸素発生電極触媒を提供する。
【解決手段】有機金属高分子を含む酸素発生電極触媒であって、前記有機金属高分子が、有機高分子と遷移金属または貴金属を含み、前記有機高分子は、窒素(N)、酸素(O)、硫黄(S)、およびセレン(Se)から選択される少なくとも一種を含む複素5員環、または複素6員環あるいは、これらの縮合環を含む導電性配位子を含み、前記遷移金属または貴金属は前記導電性配位子に配位していることを特徴とする酸素発生電極触媒を提供する。 (もっと読む)


アノード電極およびカソード電極(60,62,84,86,100,104,108,204,206)を含む電解セル(18,50,80,406,552,708,804)が提供される。アノード電極またはカソード電極のうちの少なくとも一つ(60,62,84,86,100,104,108,204,206)は、第1のサイズおよび/または形状を有している第1の複数のアパーチャ(102,106,110)と、第2の異なったサイズおよび/または形状を有している第2の複数のアパーチャ(102,106,110)とを含む。
(もっと読む)


特に、エネルギー変換、および/または、酸素、水素、および/または、酸素および/または水素含有種の産生の分野において、エネルギー貯蔵に使用することができる電気分解のための触媒、電極、デバイス、キット、およびシステム。電極および他のデバイスを形成するための組成物および方法も提供する。本発明の種々の側面の組み合わせは、有意に改善したエネルギー貯蔵、エネルギー使用、ならびに水素および/または酸素の選択的な商業産生において有用である。システムは、再生可能な方法で確実に動作し、低いまたは中程度の費用で作製することができる。本発明の主題は、場合によっては、相関製品、特定の問題の代替解決法、および/または、1つ以上のシステムおよび/または部品の複数の異なる使用法を伴う。
(もっと読む)


液体リザーバ(12,52,88,510)と、液体出口(14,74,89,508)と、電解セル(18,50,80,406,552,708,804)と、電源(32,402,542)と、直流・直流変換器(1004)とを含む手持ち式スプレーボトル(10,400,500,500’)が提供される。電解セル(18,50,80,406,552,708,804)は、スプレーボトル(10,400,500,500’)によって支えられ、リザーバ(12,52,88,510)と液体出口(14,74,89,508)との間に流体的に連結されている。電源(32,402,542)は、スプレーボトル(10,400,500,500’)によって支えられ、電圧出力を有する。直流・直流変換器(1004)は、電圧出力と電解セル(18,50,80,406,552,708,804)との間に連結され、そして電解セル(18,50,80,406,552,708,804)を活性化するため電源(32,402,542)の電圧出力より大きいステップアップ電圧を供給する。
(もっと読む)


入口(12、63、65)、出口(36、63、65)、および同軸円筒状の内側電極および外側電極(20、22)を含む電解セル(10)が提供される。内側電極と外側電極(20、22)との間に円筒状のイオン選択性膜(18)が置かれ、この膜(18)の対向する側に、第1および第2の電解反応室(14、16)が形成される。第1および第2の室(14、16)に沿った流体流路は、入口(12、63、65)を通過する結合入口流路(70)および出口(36、63、65)を通過する結合出口流路(72)として合流する。
(もっと読む)


イオン選択性膜(58,208)によって分離されたアノードおよびカソード(60,62,84,86,100,104,108,204,206)を有する電解セル(18,50,80,406,552,708,804)の中に水を通す方法および装置(10,400,500,500’,700,800,980)が提供される。カソードはアノードより大きい表面積を有している。この方法は、陽極液および陰極液(70,72,76)を生成するため、アノードおよびカソード(60,62,84,86,100,104,108,204,206)に第1の極性(300)で活性化電圧を印加するステップと、アノードまたはカソード(60,62,84,86,100,104,108,204,206)のうち少なくとも一つへの堆積物を減らすため、短期間(302)に亘って活性化電圧を第2の極性へ一時的に反転させ、その後、活性化電圧を第1の極性(300)へ戻すステップと、印加ステップおよび反転ステップの間に、単位時間当たりの陰極液の供給が陽極液の供給より多量である実質的に定量供給のアノード室(54)からの陽極液およびカソード室(56)からの陰極液を吐出するステップと、を含む。
(もっと読む)


本発明は、気状アルカンから液体炭化水素への変換に関し、より詳細には、1つまたは複数の実施形態では、アルカンの臭素化およびその後の臭素化アルカンから炭化水素への変換を含む方法およびシステムであって臭素の回収が電気分解を含む方法およびシステムに関する。一実施形態では、ハロゲン化アルカンを含む流れを供給するステップと、ハロゲン化アルカンの少なくとも一部を含む合成反応物から、炭化水素および臭化水素を含む合成生成物を形成するステップと、臭素の少なくとも一部を回収するステップであって、回収が電気分解を含むステップとを含む方法を含む、様々な方法およびシステムが、本明細書に開示される。
(もっと読む)


本発明は、過レニウム酸をアンモニアと反応させることによる純粋な過レニウム酸アンモニウムの製造方法並びに高純度の過レニウム酸アンモニウムに関する。 (もっと読む)


【課題】 純水を原料とした緊密固定する電解式オゾン発生器のアノード弾性加圧板を提供する。
【解決手段】 本発明の開示する緊密固定する電解式オゾン発生器のアノード弾性加圧板は、固体ポリマー電解質膜とアノード触媒層とアノード板とアノードフレーム及びその他補助部品とを備え、前記アノード板上にはアノード加圧板を設け、弧形の弾性加圧板の球面中心とアノード加圧板とを接触させ、固体ポリマー電解質膜とアノードフレーム及びその他補助部品とアノード板とアノード加圧板と弾性加圧板とは機械による緊密固定方式によって共に緊密固定される。本発明は電解式オゾン発生器の金属材質加圧板の変形とアノード触媒層が薄いために引き起こされるオゾン発生量の低下を改善し、長時間作動しても安定した緊密圧力と良好な接触を保持するため、電解式オゾン発生器のオゾン発生量を安定させ機能安定性を高める緊密固定する電解式オゾン発生器のアノード弾性加圧板である。
(もっと読む)


【課題】変質しやすく長期保存が利かずに国内備蓄のできない水酸化リチウムを必要時に迅速に製造する技術を提供する。
【解決手段】出発原料として炭酸リチウムを用い、炭酸リチウムを水に溶解ないし懸濁させて陽イオン交換膜を用いて電解し、陰極室に水酸化リチウム水溶液を精製させ、この水酸化リチウム水溶液を精製工程に付して不純物を低減ないし除去し、濃縮・析出・ろ過・分離乾燥をすることにより、リチウムイオン二次電池正極材用原料、SAWフィルター用の光学セラミックス材料用原料、高純度の電解質等のリチウム化合物用原料として有用な高純度水酸化リチウム・1水和物。 (もっと読む)


【課題】備蓄された炭酸リチウムや使用済みリチウムイオン二次電池から回収されるリチウム分などから、高純度のリチウム化合物用原料として有用な高純度水酸化リチウムを製造する方法を提供する。
【解決手段】炭酸リチウム、リチウム含有鉱石、使用済みリチウムイオン二次電池などを硫酸処理して硫酸リチウム水溶液とし、この硫酸リチウム水溶液を、陽極と陰極の間に陽イオン交換膜、バイポーラ膜および陰イオン交換膜を使用した電気透析し、精製工程を加えて不純物を低減した水酸化リチウム水溶液を生成させる。 (もっと読む)


【課題】長期保存が利かずに国内備蓄のできない水酸化リチウムを必要時に製造できる方法を提供する。
【解決手段】備蓄しておける炭酸リチウム、リチウム含有鉱石、使用済みリチウムイオン二次電池塩酸を用いて塩酸リチウム水溶液にして、またリチウムを含む潅水から無機吸着剤で吸着・分離した塩化リチウム粉末を水溶液にしてバイポーラ膜電気透析により塩酸と水酸化リチウム水溶液を同時に生成させる。塩酸は、繰り返し塩化リチウムに得るために備蓄したリチウム源と反応させる。一方、水酸化リチウム水溶液は、精製工程を付して不純物を低減ないし除去し、高純度水酸化リチウム・1水和物とする。 (もっと読む)


161 - 180 / 389