説明

Fターム[4K029DB20]の内容

物理蒸着 (93,067) | 蒸着装置 (6,894) | 蒸発材加熱装置 (2,409) | レーザー (329)

Fターム[4K029DB20]に分類される特許

41 - 60 / 329


【課題】励起時の発光能を有するβ−鉄シリサイド薄膜、該薄膜の製造方法及び薄膜の製造装置の提供。
【解決手段】レーザを鉄シリサイドからなるターゲット12に照射して、ターゲット12から発生する飛散粒子をシリコン基板10に付着させるレーザアブレーション法を用いるに際し、ターゲット12及び基板10を略平行となるように配置し、これらの回転軸(C10及びC12(C12’))が重ならないように回転させ、ターゲット12へのレーザ照射部位を変化させると共に、薄膜形成時における薄膜形成部位の位置を変化させつつ、基板10上にβ−鉄シリサイド薄膜を形成する。 (もっと読む)


【課題】 優れた導電性と化学的耐久性と近赤外領域での高透過性とを兼ね備えた酸化亜鉛系透明導電膜の成膜を可能にする透明導電膜形成材料と、その製造方法およびそれを用いたターゲット、そのターゲットを用いる酸化亜鉛系透明導電膜の形成方法を提供する。
【解決手段】 実質的に亜鉛と、銅と、アルミニウムまたはガリウムと、酸素とからなり、銅と、アルミニウムまたはガリウムと、亜鉛がそれぞれ原子数比で以下の関係を有する酸化物混合体または酸化物焼結体から構成される酸化亜鉛系透明導電膜形成材料である。
(a)Cu/(Zn+Cu+M)=0.01〜0.10
(b)M/(Zn+Cu+M)=0.01〜0.10
(c)(Cu+M)/(Zn+Cu+M)=0.02〜0.10
(但し、MはAlまたはGaを表わす。) (もっと読む)


【課題】p型の導電膜及びp型の透明導電膜としての酸化物膜の高性能化を図る。
【解決手段】
本発明の1つの酸化物膜は、ニオブ(Nb)、及びタンタル(Ta)からなる群から選択される1種類の遷移元素と、銅(Cu)とを含む酸化物の膜(不可避不純物を含み得る)である。また、この酸化物膜は、図5の第1酸化物膜及び第2酸化物膜のXRD(X線回折)分析結果を示すチャートに示すように、XRD分析では明確な回折ピークを示さない微結晶の集合体、微結晶を含むアモルファス状、又はアモルファス状であるとともに、p型の導電性を有している。この酸化物膜によれば、従来と比してp型の高い導電性が得られる。また、この酸化物膜は、上述のとおり微結晶の集合体、微結晶を含むアモルファス状、又はアモルファス状であるため、大型基板上への膜の形成が容易になることから、工業生産にも適している。 (もっと読む)


【課題】印加される磁場の方向や膜の部位によらずに、量子化磁束の動きが効果的に抑制された酸化物超電導膜の製造方法の提供。
【解決手段】レーザー蒸着法で酸化物超電導膜を製造する方法であって、エネルギー密度が異なる複数種のレーザー光を、ターゲットに同時又は交互に照射することで、基材上に常電導体を含む酸化物超電導膜を形成する工程を有することを特徴とする酸化物超電導膜の製造方法。 (もっと読む)


【課題】酸化亜鉛薄膜の結晶性(品質)を維持したまま、キャリアを得るための不純物を添加せずにキャリヤ濃度を制御して、室温において飽和磁化と残留磁化が大きな値の強磁性を発現する酸化亜鉛薄膜からなる磁性半導体とその製造方法及び強磁性発現方法を提供する。
【解決手段】磁性半導体の製造方法は、遷移元素を添加した酸化亜鉛の原料ターゲット19から原料を飛散させて基板20上に薄膜を成膜する薄膜製造装置10を用い、原料ターゲット19と基板20との間にグリッド電極18を設置し、グリッド電極18に電圧を印加し、原料をグリッド電極18を通過させることで基板20上に薄膜を作製する。 (もっと読む)


【課題】多孔質基材上にイオン伝導膜を形成してなるイオン伝導性膜材を製造する方法であってイオン伝導性がより一層向上し得る優れたイオン伝導性膜材の製造方法を提供すること。
【解決手段】本発明により提供されるイオン伝導性膜材の製造方法は、少なくとも金属成分を含む無機多孔質基材と、該多孔質基材上に形成された所定の結晶配向性を有するイオン伝導膜とを備えるイオン伝導性膜材を製造する方法であり、上記金属成分の酸化物を含む緻密な基材を用意すること、上記緻密な基材上にイオン伝導膜を所定の方向に結晶配向させた状態で形成すること、および上記イオン伝導膜が形成された緻密な基材を還元処理して上記金属成分を酸化物状態から金属状態に還元することにより上記緻密な基材を多孔質化すること、を包含する。 (もっと読む)


【課題】p型の導電膜及びp型の透明導電膜としての酸化物膜の高性能化を図る。
【解決手段】
本発明の1つの酸化物膜は、チタン(Ti)とアンチモン(Sb)とからなる酸化物の膜(不可避不純物を含み得る)である。また、この酸化物膜は、前述のチタン(Ti)に対する前述のアンチモン(Sb)の原子数比が、そのチタン(Ti)の原子数を1とした場合にそのアンチモン(Sb)の原子数が0.08以上0.18以下である。さらに、この酸化物膜は、微結晶の集合体、微結晶を含むアモルファス状、又はアモルファス状であるとともにp型の導電性を有する。 (もっと読む)


【課題】印加される磁場の方向や膜の部位によらずに、量子化磁束の動きが効果的に抑制された酸化物超電導膜及びその製造方法を提供する。
【解決手段】レーザー蒸着法で酸化物超電導膜を製造する方法であって、エキシマレーザー光18a及びYAGレーザー光18bを同時にターゲット15に照射することで、基材12上に常電導部分となる不純物の比率を0.3〜6質量%含む酸化物超電導膜を形成する工程を有することを特徴とする酸化物超電導膜の製造方法。 (もっと読む)


【課題】2次電池に適用可能な高結晶性、高均一性、高純度の自己支持形金属硫化物系2次元ナノ構造体の負極活物質及びその製造方法を提供する。
【解決手段】本発明による自己支持形金属硫化物系2次元ナノ構造体の負極活物質は、金属硫化物系物質からなる凝集体が剥離され、金属基板上に金属硫化物系2次元ナノ構造体として直接成長することを特徴とし、自己支持形金属硫化物系2次元ナノ構造体の負極活物質の製造方法は、金属硫化物系物質からなる凝集体を製造するステップと、凝集体をパルスレーザー蒸着用電気炉内のチューブに挿入装着するステップと、チューブ内に金属基板を挿入し、凝集体から離れて位置させるステップと、チューブ内の圧力を0.01〜0.03Torrの真空状態に下げ、電気炉の温度を590〜610℃に上げるステップと、チューブ内にパルスレーザーを注入して凝集体を剥離するステップと、を含み、金属硫化物系物質を金属基板上に2次元ナノ構造体として直接成長させることを特徴とする。 (もっと読む)


【課題】水と反応すると危険な成膜原料で薄膜を形成する際、安全に成膜を実施できる成膜装置、および成膜方法を提供する。
【解決手段】成膜対象である基材9を内部に収納する真空チャンバー2と、真空チャンバー2内で基材9を保持するホルダー4と、ホルダー4に対向する位置に設けられる蒸発源3と、ホルダー4内に冷媒を循環させる循環機構40とを備える成膜装置1である。そして、この成膜装置1においてホルダー4内に循環される冷媒を非水系冷媒とする。このような構成とすることで、ホルダー4に保持される基材9を冷却しつつ、蒸発源3で蒸発させた成膜原料を基材9の表面に成膜することができ、その成膜の際に安全性を確保することができる。 (もっと読む)


【課題】耐食性および導電性に優れる耐食導電性皮膜を提供する。
【解決手段】本発明の耐食導電性皮膜は、PおよびTiからなるアモルファス相を少なくとも一部に有してなる。この耐食導電性皮膜が基材表面に形成された耐食導電材は、従来になく優れた耐食性または導電性を発現する。 (もっと読む)


【課題】350nm以上の粒径を有する大型金微粒子を多数生成できる金微粒子の製造方法を提供する。
【解決手段】金からなるターゲットをレーザアブレーション装置のチャンバ内に配置する。続いて、チャンバ内に0.7以上の換算密度を有する超臨界トリフルオロメタンを収納する。続いて、ターゲットにレーザ光を照射して、レーザアブレーションにより前記ターゲットから金微粒子を生成する。超臨界流体としてトリフルオロメタンを選択し、かつ、超臨界流体の換算密度を0.7以上とすることにより、大型金微粒子が多数生成される。 (もっと読む)


【課題】酸素または水素雰囲気中でのレーザーアブレーションにより金属などの異種基板に対して良好なダイヤモンド膜を形成できる方法を提供する。
【解決手段】酸素または水素雰囲気中で、グラファイト、アモルファスカーボン、グラッシーカーボン、またはダイヤモンドからなる炭素ターゲットに、50ns以下のパルス幅でレーザー光を照射し、レーザーアブレーションによって前記ターゲットから炭素粒子を飛散させて基板上に堆積させ、パルス毎に堆積粒子の過飽和状態を形成して前記基板上にダイヤモンド膜を形成する方法において、前記基板に負バイアスを印加した状態で前記レーザー光を照射する。 (もっと読む)


【課題】発電要素を構成する構成層が剥離したり、構成層にクラックが生じたりすることを抑制できる非水電解質電池用発電要素及びその製造方法、それを用いた非水電解質電池を提供する。
【解決手段】非水電解質電池用発電要素10は、基材Sの上に、正極層1と負極層2、及びこれら両層の間に介在される固体電解質層3を有する。そして、基材Sの両面にそれぞれ、基材S側から正極層1、固体電解質層3及び負極層2が順に積層され一体化された構造である。これら各層は気相法により形成され、基材Sは正極層1の集電体としての機能を有する材料(例えばステンレス)で構成されている。 (もっと読む)


【課題】 本発明は、金属硅素化合物薄膜を、チャネル領域とした薄膜トランジスタを提供することを課題とする。
【解決手段】 遷移金属原子Mの周りをz個のシリコン原子Siが取り囲む遷移金属内包シリコンクラスター(MSiz)を単位構造とし、シリコンと遷移金属との組成比(=シリコン/遷移金属)をnとしたとき、シリコンと遷移金属との組成比(=シリコン/遷移金属)nが7以上16以下である遷移金属とシリコンの化合物であって、n/Zが0.778以上1.81以下である遷移金属珪素化合物薄膜をチャネル領域としたことを特徴とする薄膜トランジスタ。
ただしZは、遷移金属原子Mの周りを取り囲むシリコン原子の数zの平均値である。 (もっと読む)


【課題】ドロップレットの混入を十分に抑制しながら十分に効率よく成膜することが可能なレーザーアブレーションによる成膜方法を提供すること。
【解決手段】ターゲット1にレーザー光Lを照射して飛散粒子aを発生させ、基材5の表面に飛散粒子aを付着させて基材5の表面上に膜を形成させるレーザーアブレーションによる成膜方法であって、
ターゲット1が支持基板と該支持基板上に形成された無機材料の粒子からなる粒子層とを備えており、前記無機材料の粒子の平均粒子径が5nm〜50μmであり、且つ、前記粒子層の厚みが1〜200μmであることを特徴とするレーザーアブレーションによる成膜方法。 (もっと読む)


基板上にコーティングを作るために、基板をターゲットの近傍に配置する。連続する多数のパルスをターゲット上にフォーカスすることにより、ターゲットからコールド・アブレーションにより材料が除去され、こうして、多数の連続するプラズマ・フロントが作り出され、少なくともその一部が基板へ向かって移動する。連続する各レーザ・パルス間の時間差は、連続する多数のプラズマ・フロントに起因する成分が基板表面上に核を形成できる程度に短い。そこでは、成分の平均エネルギが、結晶構造の自発的成長を許容する。
(もっと読む)


【課題】支持基板上に形成した昇華温度が異なる2種以上の成膜材料を含む材料層を、加熱処理により被成膜基板上に成膜する方法において、昇華温度の異なる2種以上の成膜材料が濃度勾配を生じることなく成膜されることを課題の一つとする。
【解決手段】基板の一方の面上に形成される吸収層と、吸収層上に形成され、第1の成膜材料、第2の成膜材料及び下記数式(1)を満たす高分子化合物を含む材料層とを有する第1の基板の一方の面と、第2の基板の被成膜面とを対向させて配置し、第1の基板の他方の面側から加熱処理をすることで、第2の基板の被成膜面に第1の成膜材料と第2の成膜材料とを含む層を形成する成膜方法。


(式(1)中、Sは、高分子化合物のガラス転移温度(℃)を示し、Tは、第1の成膜材料又は第2の成膜材料の昇華温度(℃)のうち高い温度(℃)を示す) (もっと読む)


【課題】鉄ヒ素系超電導材料において、従来はフッ素置換型や酸素欠損型により超伝導転移温度Tcを向上させていたが、Tcがより高い50Kを超えるような超電導材料及び超電導薄膜を提供することが望まれている。
【解決手段】ZrCuSiAs型の結晶構造を有する鉄ヒ素系超電導材料において、水素を含有させることにより、化学式LnFeAsO1−y(ただし、LnはY及びランタノイド元素からなる群から選択される少なくとも1種の元素、yは0以上0.5以下、xは0.01以上0.5以下)で表される鉄ヒ素系超電導材料を提供する。 (もっと読む)


【課題】 本発明は、金属硅素化合物薄膜を、チャネル領域とした薄膜トランジスタを提供することを課題とする。
【解決手段】 遷移金属とシリコンの化合物であり、遷移金属原子の周りを、7個以上16個以下のシリコン原子が取り囲む遷移金属内包シリコンクラスターを単位構造とし、遷移金属原子の第1及び第2近接原子にシリコンが配置されている金属珪素化合物薄膜をチャネル領域としたことを特徴とする薄膜トランジスタ。 (もっと読む)


41 - 60 / 329