説明

Fターム[4K029DB20]の内容

物理蒸着 (93,067) | 蒸着装置 (6,894) | 蒸発材加熱装置 (2,409) | レーザー (329)

Fターム[4K029DB20]に分類される特許

61 - 80 / 329


【課題】本発明は、結晶配向性に優れ、超電導特性に優れた酸化物超電導層を形成するための基となるIBAD−MgOなどの中間層の下地として望ましい層を備え、IBAD−MgOなどの中間層の結晶配向度を更に高めることができる構造を備えた酸化物超電導導体用基材の提供を目的とする。
【解決手段】本発明は、金属基材21上に、XO−Y混合酸化物(但し、Xは、TiまたはHfを示す。)のベッド層22とイオンビームアシスト法により成膜された中間層23とが備えられ、酸化物超電導層が積層されて酸化物超電導導体の基材として利用されることを特徴とする。 (もっと読む)


【課題】小型で、消費電力が低く、寿命が長く、しかも簡易な構造で大面積の殺菌が可能な用光源を提供でき、一般家庭や医療分野において好適に使用することができるだけでなく、小型で高出力の携帯用殺菌用光源として飛躍的に応用分野が広がることが期待できる。
【解決手段】石英、石英ガラス、フッ化ガラス、フッ化カルシウムなどの透明基板と該透明基板上に形成された、フッ化カルシウム、フッ化バリウム、又はプラセオジウム(Pr)をドープしたCaFなどの金属フッ化物薄膜層とからなる発光基板、並びに熱電子銃やフィールドエミッター等の電子線源を備え、該発光基板の金属フッ化物層に電子線を照射することにより、殺菌光として有用な200乃至320nmの波長の深紫外光を含む光を発生させることを特徴とする殺菌用光源。 (もっと読む)


【課題】低コストで低抵抗化を実現可能な透明導電体の製造方法を提供する。
【解決手段】基板11上に設けられた透明導電体の製造方法であって、透明導電体は、アナターゼ型TiOの酸素をフッ素に置換して得られるアナターゼ型結晶構造を有するF:TiOであり、パルスレーザ堆積法を用い、制御された酸素分圧の雰囲気下において、TiとFとからなる化合物にパルスレーザを照射し、300℃以上650℃以下加熱された基板11上に反応生成物をエピタキシャル成長させることにより行うことを特徴とする。 (もっと読む)


【課題】 Fe及びR,O(Rは、Ho,Er,Tm,Yb,Lu,Yのうち少なくとも1つ以上である)を含む薄膜原料供給源と基板との間に、プラズマを発生させ、基板上にRFe24薄膜を形成する気相成膜方法であって、前記プラズマが、5435cpsより少ないO活性種の発光強度を有し、Fe活性種の発光強度に対するO活性種の発光強度が、O活性種の発光強度/Fe活性種の発光強度<2
である気相成膜方法を提供する。
【解決手段】本発明によれば,RFe24薄膜製造方法が提供される。 (もっと読む)


【課題】本発明は、安定したプルームを長時間均一に発生させ、長尺の基材に対し均一な膜質の酸化物超電導層を生成することを可能とする方法の提供を目的とする。
【解決手段】本発明は、レーザー光をターゲットに集光照射し、プルームを生成させ、該プルームからの粒子をテープ状の長尺基材上に堆積させて酸化物超電導層を形成する方法であって、減圧チャンバー内部の転向部材間に長尺基材が複数の隣接するレーンを構成するように巻き掛け、長尺基材のレーンに近接させてターゲットを配置し、ターゲットに対してレーザー光を集光照射する集光手段を設けたレーザー蒸着装置を用い、集光手段の焦点距離を1.0〜2.0mの範囲に、レーザー光のエネルギー密度を1.0〜4.0J/cmの範囲に設定し、ターゲットに対し斜め方向からレーザー光を集光照射しターゲット上で走査し、レーザー光の照射位置毎にプルームを発生させて成膜する方法である。 (もっと読む)


【課題】耐熱性を有する粘土性フレキシブルシート基材上に、ディスプレイ作製の基礎となる赤色の発色が可能なペロブスカイト型酸化物蛍光薄膜を形成する。
【解決手段】耐熱性を有する粘土性フレキシブルシート基材2と、基材2上に形成された金薄膜3と、金薄膜3上に吸着されたナノシート4と、ナノシート4上に気相成長法によって、500℃以上700℃以下の温度でペロブスカイト型酸化物蛍光薄膜5を成膜したことを特徴とするペロブスカイト型酸化物蛍光薄膜体1であり、ペロブスカイト型酸化物蛍光薄膜5は、例えば、(SrxCa1-x1-yPryTiO3:0≦x≦0.8、0.001≦y≦0.01であり、ナノシート4は、例えば、[Ca2Nb3O10(CNO) ナノシートと[N(C18H37)2(CH3)2(DOA)ナノシート からなる複合LB膜であり、基材2は、例えば、クレーストである。 (もっと読む)


【課題】
本発明は、真空被覆設備内で気化すべき材料によって基板1を被覆するための方法に関する。当該気化材料が、中間キャリア3を使用する二重気化によって前記基板1上に蒸着される。前記中間キャリア3が連続して移動される。
【解決手段】
当該課題は、連続被覆設備内での使用を保証する中間キャリアを提供することにある。この課題は、本発明により、シリンダ状の中間キャリア3によって解決される。
(もっと読む)


低抵抗率および高移動度を持つ安定したp型ZnO薄膜を成長させるための方法が、提供される。本方法は、n型Li−Ni共ドープZnOターゲットをチャンバー中に提供することと、基板をチャンバー中に提供することと、ターゲットをアブレーションして薄膜を基板に形成することとを含む。
(もっと読む)


【課題】圧電性能に優れたペロブスカイト型酸化物を提供する。
【解決手段】
本発明のペロブスカイト型酸化物は、下記の第1成分、第2成分、及び第3成分を含むことを特徴とするものである。
第1成分:BiFeO、第2成分:Aサイトの平均イオン価数が2価であり、かつ結晶系が正方晶系である少なくとも1種のペロブスカイト型酸化物、第3成分:結晶系が、単斜晶系、三斜晶系、及び斜方晶系のうちいずれかである少なくとも1種のペロブスカイト型酸化物(ここで、各成分のペロブスカイト型酸化物においては、Aサイト元素とBサイト元素と酸素のモル比は1:1:3が標準であるが、これらのモル比はペロブスカイト構造を取り得る範囲内で基準モル比からずれてもよい。)。 (もっと読む)


【課題】高品質のリチウム金属薄膜および無機固体電解質薄膜を製造することのできる方法を提供する。
【解決手段】リチウム金属薄膜または無機固体電解質薄膜積を製造する方法が提供され、該方法は、薄膜製造工程においてアルカリ金属または無機固体電解質もしくはその原料と接触する雰囲気の露点を−40℃以下とすることを特徴とする。露点が−40℃以下の環境において、薄膜作製のための原料や基材あるいは製造した薄膜を取り扱えば、リチウム金属や硫化物系の無機固体電解質の劣化を効果的に防止できる。 (もっと読む)


【課題】真空チャンバー内においてレーザー光をターゲットに照射し、固体酸化物燃料電池の燃料極、電解質膜、空気極又は集電電極を基板上に蒸着し製膜する場合において、レーザー光学系の反射ミラーを移動させる方法よりも簡便な方法により、基板から視たときのターゲット材料を昇華させる位置を移動させることができ、基板面内で均質な膜を製膜することができる製膜装置を提供する。
【解決手段】真空チャンバー1と、真空チャンバー1内に設けられ、ターゲット16を載置するターゲット載置台12と、真空チャンバー1内に設けられ、基板18を保持する基板保持部材13とを有する。真空チャンバー1は、真空チャンバー1の側壁に設けられ、レーザー光を真空チャンバー1内に導入するレーザー光導入窓111を有し、真空チャンバー1がターゲット16、基板18と一体的に移動に加え往復運動可能に設けられている。 (もっと読む)


【課題】圧電素子において、発信能および受信能が共に優れ、圧電アクチュエータ、センサ、更に、超音波センサ、発電素子として好適なものとする。
【解決手段】圧電素子1は、圧電性を有する圧電体13と、圧電体13に対して所定方向に電界を印加する1対の電極12、14とを備え、圧電体13の圧電歪定数d33(pm/V)と比誘電率ε33とが下記式(1)及び(2)を満足するものである。
100<ε33<1500 ・・・(1)、
33(pm/V)>12√ε33 ・・・(2) (もっと読む)


【課題】検知感度の高い赤外線検出素子に適した強誘電体薄膜を形成可能な薄膜形成装置およびそれを用いた薄膜形成方法を提供することである。
【解決手段】薄膜形成装置1000は、真空槽10と、真空槽内を移動可能なように保持されるターゲット保持台12と、成膜材料を含むターゲット20と、このターゲット20の表面に、高エネルギー放射線を放射するためのArFエキシマレーザ30と、エキシマレーザからの放射線をターゲット20の表面に集光させるための光学系と、基板40を保持する基板保持台50と、基板40に堆積する物質を酸化させるための酸化性ガスを真空槽10内に導入するための酸化性ガス導入部60と、基板保持台50の内部に設けられ基板を真空槽10内において加熱するためのヒータ70と、基板保持台50に保持された基板40に光線を照射するためのライト80とを備える。 (もっと読む)


【課題】超電導層の安定化と交流損失の低減が可能で、且つ簡便に製造できる超電導線材の提供。
【解決手段】金属基材11の表面11c側に金属酸化物からなる中間層12、超電導層13及び第一の金属安定化層14がこの順に積層され、中間層12に達して第一の金属安定化層14及び超電導層13を幅方向に分割する第一の溝18及び第二の溝19が、第一の金属安定化層14及び超電導層13に、長手方向に沿って一体に形成され、金属基材11の裏面11d側に第二の金属安定化層16が積層され、第二の金属安定化層16が、超電導層13と電気的に接続されていることを特徴とする超電導線材1。 (もっと読む)


【課題】良好な結晶配向性を維持しつつも中間層を薄膜化することで、膜の内部応力に起因する基板の反り返りを防止し、生産性にも優れた配向多結晶基材とそれを備えた酸化物超電導導体を提供する。
【解決手段】金属基材11上に、イオンビームアシスト法(IBAD法)により面内に3回対称に配向するように成膜された岩塩構造の第一層13と、この第一層13上に3回対称に配向するように成膜された配向調整層12と、この配向調整層12上にIBAD法により面内に4回対称に配向するように成膜された蛍石構造あるいはそれに準じた希土類C型あるいはパイロクロア構造の第二層14とを具備する中間層15を形成する。 (もっと読む)


【課題】透明な薄膜を堆積し、パターン構造を直接堆積する方法を提供する。
【解決手段】透明な薄膜を堆積し、パターン構造を直接堆積する方法であって、パルスレーザ源を提供し、前記パルスレーザ源が出射するレーザ1を透明な基板3を介してターゲット5上に集光させて、前記レーザのエネルギーを使用して前記ターゲットの部分を融除又は蒸発させ、前記基板を前記ターゲットに対して並進運動させる、前記融除又は蒸発された前記ターゲットの材料が前記基板上に堆積し、前記基板上にパターン構造を形成できるようにする。 (もっと読む)


【課題】本発明は、レーザー蒸着する場合のターゲットの無駄を少なくして成膜コストの低減を図るとともに、成膜領域の熱分布を均等にして安定した膜質の薄膜を成膜することができるレーザー蒸着装置の提供を目的とする。
【解決手段】本発明は、レーザー光をターゲットの表面に照射し、該ターゲットから叩き出され若しくは蒸発した蒸着粒子をヒーターボックス内において巻回部材に支持された長尺基材表面に堆積させるレーザー蒸着装置であって、巻回部材間に複数列に分けて支持される長尺基材の幅方向の設置範囲に対応する幅のターゲットが設置され、該ターゲットの裏面側に該ターゲットよりも幅広のバッキングプレートが設置され、該ターゲットの幅方向両側に耐熱金属製のダミープレートが設置され、ダミープレートのバッキングプレート側に酸化物膜が形成されてなることを特徴とする。 (もっと読む)


本発明は、少なくとも1つのターゲットと、上記少なくとも1つのターゲットの向い側に配置された基板と、レーザビームを生成するレーザとを備え、レーザビームを上記ターゲット上に向けて照射して、ターゲット材料のプラズマプルームを生成し上記基板上に堆積するようにしたレーザ堆積装置であって、ベースフレームと、上記ベースフレーム内に配置され少なくとも2つのターゲットホルダーを有する回転可能なターゲットフレームと、上記ベースフレームに取り付けられた少なくとも1つの冷却装置とをさらに備え、上記冷却装置を、上記ターゲットフレームと熱交換接触をさせるように上記ターゲットフレームに対して移動可能としたことを特徴とするレーザ堆積装置に関する。
(もっと読む)


【課題】
本発明は、高い層厚の均一性及び原料歩留まりにおいて非常に高い堆積速度を持つ真空コーティング方法、並びに斯かるコーティングを実現する装置に関するものである。
【解決手段】
古典的な真空蒸着を縮退させる、一方における層厚の均一性と他方における原料歩留まり及びコーティング速度との間の既存の矛盾を克服するために、基板は、蒸発源により供給される実質的に閉じられたコーティングチェンバの境界を形成する。このコーティングチェンバの壁及びコーティングされるべきでない全ての表面は、蒸気が凝縮することができずに上記コーティングチェンバに散乱して戻されるように、或る温度に維持されるか又は非粘着性コーティングを備える。これにより、上記コーティングチェンバ内には非常に高い蒸気圧が生成され、その結果、基板上での非常に高い凝縮速度及び層厚の均一性が得られる。該基板は、蒸気が凝縮し得る唯一の表面となるので、失われる材料の量は非常に少なく、歩留まりは極めて高くなる。蒸発源のパルス的動作の使用により、短いサイクルのコーティングを実現することができる。
(もっと読む)


【課題】高移動度でしきい電位安定性を有し、且つコスト面や資源的制約、プロセス的制約の少ないZTO(亜鉛錫複合酸化物)系酸化物半導体材料の適正なZn/(Zn+Sn)組成の酸化物半導体ターゲット及びそれを用いた酸化物半導体装置を提供する。
【解決手段】Zn/(Zn+Sn)組成が0.6〜0.8である亜鉛錫複合酸化物焼結体をターゲットとする。また、ターゲット自体の抵抗率を1Ωcm以上の高抵抗とする。更に、不純物の合計濃度を100ppm以下に制御する。 (もっと読む)


61 - 80 / 329