説明

Fターム[4M104DD04]の内容

半導体の電極 (138,591) | 製造方法(特徴のあるもの) (30,582) | 製造工程全般 (1,971) | セルフアライン法(サリサイド法を含む) (1,918) | 側壁堆積膜の利用 (769)

Fターム[4M104DD04]に分類される特許

81 - 100 / 769


【課題】吸湿性の高い絶縁膜を使用してもコンタクト又は配線の劣化を抑制することができる半導体装置及びその製造方法を提供する。
【解決手段】半導体装置の製造方法は、基板10上に第1の絶縁膜15を形成する工程(a)と、第1の絶縁膜15にホール24を形成する工程(b)と、ホール24の側壁上に、第1の絶縁膜15よりも水分を通しにくい第2の絶縁膜17を形成する工程(c)と、工程(c)の後、ホール24に導電体30を埋め込むことにより、プラグ19を形成する工程(d)とを備えている。 (もっと読む)


【課題】デュアルゲート構造を有する半導体装置の製造技術において、MISFETのしきい値電圧の上昇を抑制することができる製造技術を提供する。
【解決手段】ポリシリコン膜PF1上にレジスト膜FR2を形成する。そして、レジスト膜FR2に対して露光・現像処理を施すことにより、レジスト膜FR2をパターニングする。その後、パターニングしたレジスト膜FR2をマスクにしたイオン注入法により、露出しているnチャネル型MISFET形成領域NTRのポリシリコン膜PF1にアルゴン(Ar)を導入する。このアルゴン注入工程により、nチャネル型MISFET形成領域NTRのポリシリコン膜PF1はアモルファス化する。 (もっと読む)


【課題】サリサイドプロセスにより金属シリサイド層を形成した半導体装置の性能を向上させる。
【解決手段】全反応方式のサリサイドプロセスを用いず、部分反応方式のサリサイドプロセスによりゲート電極8a,8b、n型半導体領域9bおよびp型半導体領域10bの表面に金属シリサイド層41を形成する。金属シリサイド層41を形成する際の熱処理では、ランプまたはレーザを用いたアニール装置ではなく、カーボンヒータを用いた熱伝導型アニール装置を用いて半導体ウエハを熱処理することにより、少ないサーマルバジェットで精度良く薄い金属シリサイド層41を形成し、最初の熱処理によって金属シリサイド層41内にNiSiの微結晶を形成する。 (もっと読む)


【課題】ゲート電極が金属窒化膜により構成されるMOSFETにおいて、電流駆動能力の向上を図る。
【解決手段】基板10に、素子形成領域20を分離する素子分離領域50を設ける。次に素子形成領域20上にゲート絶縁膜100を形成する。その後ゲート絶縁膜100上に金属窒化膜により構成される下部ゲート電極膜200を形成する。さらに下部ゲート電極膜200を熱処理する。そして下部ゲート電極膜200上に上部ゲート電極膜220を形成する。 (もっと読む)


【課題】側壁転写技術により倒れにくいマスクパターンを形成するNANDフラッシュメモリ等の製造方法を提供する。
【解決手段】非晶質シリコン膜21上に第1膜のシリコン酸化膜22を形成し(a)、所定のラインアンドスペースのパターンに加工して中間パターン23を形成する(b)。中間パターン23は、パターン部23aを有するとともに、パターン部23aの間に残存部23bを残してた状態で形成される。中間パターン23をスリミング処理し、非晶質シリコン膜21上に芯材パターン24を形成する(c)。残存部23bは除去される。芯材パターン24上に第2膜のシリコン窒化膜を形成し、エッチバック処理で側壁パターンを形成し、芯材パターン24を除去してマスクパターンを得る。マスクパターンは、段差のない非晶質シリコン膜21上に形成されるので応力差に起因した倒れの発生を抑制できる。 (もっと読む)


【課題】接合リーク電流が低減されるとともに、セル容量への書き込み・読み出しに十分な電流駆動能力を確保することが可能な半導体装置及びその製造方法を提供する。
【解決手段】半導体基板1に形成された複数の埋め込みゲート型MOSトランジスタ2を有し、半導体基板1には素子分離領域と活性領域とが形成されており、ゲートトレンチの内部に形成され、少なくとも一部がワード線として設けられるとともに、その他の残部が、活性領域を複数の素子領域に分離する素子分離として設けられる埋め込みゲート電極31A、31Bと、ソース・ドレイン拡散層15、45とが備えられ、埋め込みゲート電極31A、31Bは、上部電極31aと下部電極31bとの積層構造とされ、且つ、半導体基板1の上面側のソース・ドレイン拡散層15、45側に配置される上部電極31aが、下部電極31bに比べて、仕事関数の低いゲート材料からなる。 (もっと読む)


【課題】高い電流駆動力と高いカットオフ特性を備えたトランジスタおよびその製造方法を提供する。
【解決手段】本発明の一態様に係るトランジスタ100は、導体領域10aと表面に原子が結合した半導体領域10bとを有し、チャネルとして機能するグラフェン膜10と、グラフェン膜10上にゲート絶縁膜11を介して形成されたゲート電極12と、を有し、導体領域10aと半導体領域10bが形成するショットキー接合のトンネル電流をスイッチング動作に用いる。 (もっと読む)


【課題】シェアードコンタクトを備えた半導体装置において、コンタクトホールの開口不良やコンタクト抵抗の増大を防止しつつ、接合リーク電流の発生に起因する歩留まりの低下を防止する。
【解決手段】半導体基板100におけるゲート電極103の両側にソース/ドレイン領域106が形成されている。シェアードコンタクトは、ソース/ドレイン領域106とは接続し且つゲート電極103とは接続しない下層コンタクト113と、下層コンタクト113及びゲート電極103の双方に接続する上層コンタクト118とを有する。 (もっと読む)



【課題】トンネルFETの閾値ばらつきの抑制をはかる。
【解決手段】Si1-x Gex (0<x≦1)の第1の半導体層13上にゲート絶縁膜21を介して形成されたゲート電極22と、Geを主成分とする第2の半導体と金属との化合物で形成されたソース電極24と、第1の半導体と金属との化合物で形成されたドレイン電極25と、ソース電極24と第1の半導体層13との間に形成されたSi薄膜26とを具備した半導体装置であって、ゲート電極22に対しソース電極24のゲート側端部とドレイン電極25のゲート側端部とは非対称の位置関係にあり、ドレイン電極25のゲート側の端部の方がソース電極24のゲート側の端部よりも、ゲート電極22の端部からゲート外側方向に遠く離れている。 (もっと読む)


【課題】良好な特性を維持しつつ、微細化を達成した、酸化物半導体を用いた半導体装置を提供することを目的の一とする。
【解決手段】酸化物半導体層と、酸化物半導体層と接するソース電極及びドレイン電極と、酸化物半導体層と重なるゲート電極と、酸化物半導体層とゲート電極との間に設けられたゲート絶縁層と、を有し、ソース電極またはドレイン電極は、第1の導電層と、第1の導電層の端面よりチャネル長方向に伸長した領域を有する第2の導電層と、を含み、第2の導電層の伸長した領域の上に、前記伸長した領域のチャネル長方向の長さより小さいチャネル長方向の長さの底面を有するサイドウォール絶縁層を有する半導体装置である。 (もっと読む)


【課題】シリサイドプロセス前にイオン注入を行う半導体装置であって、より確実にMISFETにおけるリーク電流の抑制が図れるものを実現する。
【解決手段】マスク層RMによりPチャネル型MISFETを覆いつつ、Nチャネル型MISFETのN型ソース領域およびN型ドレイン領域に、イオン(F,Si,C,Ge,Ne,Ar,Krのうち少なくとも一種類を含む)を注入する。その後、Nチャネル型MISFETおよびPチャネル型MISFETの各ゲート電極、ソース領域およびドレイン領域にシリサイド化(Ni,Ti,Co,Pd,Pt,Erのうち少なくとも一種類を含む)を行う。これにより、Pチャネル型MISFETにおいてドレイン−ボディ間オフリーク電流を劣化させること無く、Nチャネル型MISFETにおいてドレイン−ボディ間オフリーク電流(基板リーク電流)の抑制が図れる。 (もっと読む)


【課題】Siチヤネルを有するNMOSとSiGeチャネルを有するPMOSで、NMOSには引張り歪みを与える、PMOSには、表面のダングリングボンドを減少させることができる半導体装置を提供する。
【解決手段】単結晶シリコン基板50の一部領域にシリコンゲルマニウムチャネル膜54aを形成し、PMOSトランジスタを、シリコン膜60aを形成し、NMOSトランジスタを形成する。単結晶シリコン基板、シリコンゲルマニウムチャネル膜、PMOSトランジスタ、NMOSトランジスタの表面上に、反応ガス、雰囲気ガス及び水素ガスを含む蒸着ガスを用いて、シリコン窒化膜82を形成し、PMOSトランジスタは、シリコンゲルマニウムチャネル膜表面のダングリングボンドの除去により、ホールスキャタリングが抑制され、NMOSトランジスタには引張り歪みを与えることにより動作特性の改善ができる。 (もっと読む)


【課題】バリアメタルの膜厚を抑制しながらメタルゲートの拡散性材料が高誘電率誘電体に拡散することを防ぐ。
【解決手段】半導体装置がゲート積層体構造を含む。ゲート積層体構造は、半導体基板5の上に形成された界面層4と、界面層4の上に形成された高誘電率誘電体3と、拡散性材料と不純物金属を含み、高誘電率誘電体の上方に形成されたシリサイドゲート1と、拡散性材料に対するバリア効果を持ち、高誘電率誘電体3とシリサイドゲート1の間に形成されたバリアメタル2とを備えている。不純物金属は、シリサイドゲート1の拡散性材料が高誘電率誘電体に導入されることを防ぐことができるような、拡散性材料に対するバリア効果を有している。 (もっと読む)


【課題】従来の電界効果型トランジスタでは、ソース領域およびドレイン領域に形成する高濃度不純物のイオン注入工程により半導体基板表面がアモルファス化されるため、低濃度不純物拡散領域と高濃度不純物拡散領域との境界部において、活性化熱処理により結晶欠陥を誘発し、電界効果型トランジスタの信頼性を低下させる問題があった。
【解決手段】本発明の電界効果型トランジスタは、ソース領域およびドレイン領域を構成する部分の上部に高濃度不純物を含有する導電性膜を設ける。高濃度不純物のイオン注入を行う必要がないことから、この領域の半導体基板表面がアモルファス化することがない。これにより、低濃度不純物拡散領域と高濃度不純物拡散領域との境界部において、再結晶化による結晶欠陥の発生を防ぐことができる。 (もっと読む)


【課題】 チャネル部に対して効果的に応力を印加することが可能で、これによりキャリア移動度の向上を図ることが可能で高機能化が達成された半導体装置を提供する。
【解決手段】 半導体基板3の表面を掘り下げた凹部3a内にゲート絶縁膜5を介して設けられたゲート電極7と、ゲート電極7の両脇における半導体基板3の表面側に設けられたソース/ドレイン拡散層11と、ソース/ドレイン拡散層11の表面を覆う状態で半導体基板3の表面よりも深く設けられたシリサイド膜(応力印加層)13とを備えた半導体装置1-1である。半導体基板3の表面に対するチャネル部chの深さ位置d2は、シリサイド膜(応力印加層)13の深さd1位置よりも浅い。 (もっと読む)


【課題】側壁転写技術を使用したパターニングの加工性の向上を図る。
【解決手段】ゲート電極MGを形成するための被加工膜8上にCVD法でカーボン膜9aを形成し、続いてSOG膜を形成する。カーボン膜9aをリソグラフィ技術によるレジストパターンでハーフエッチするとともに、幅寸法をWaから半分のWbにスリミングして芯材パターン部9bを形成する。全面にアモルファスシリコン膜14を形成し、エッチバック処理でスペーサパターン14aを形成し、これをマスクとして芯材パターン部9bと共にカーボン膜9aをエッチングしてマスクパターン9を形成する。レジストを芯材パターンとして用いないので高温で加工ができ、加工性が向上する。 (もっと読む)


【課題】ソース領域およびドレイン領域とゲート電極との位置制御性を向上させ、製造バラツキを低減する。
【解決手段】窒化物半導体を用いた半導体装置10は、窒化物半導体層2に所定間隔を隔てて形成されたソース領域3およびドレイン領域4の間のチャネル領域上に形成され、少なくとも一部がシリサイド合金から形成されたゲート電極6を備え、ソース領域3上にあるゲート電極6の端からゲート電極6と上下に重なるソース領域3の端までの距離L1と、ドレイン領域4上にあるゲート電極6の端からゲート電極6と上下に重なるドレイン領域4の端までの距離L2と、が等しい。 (もっと読む)


【課題】第1のMISトランジスタの閾値電圧が高くなることを防止する。
【解決手段】半導体装置は、第1,第2のMISトランジスタTr1,Tr2を備えている。第1,第2のMISトランジスタは、第1,第2の活性領域10a,10b上に形成され、第1,第2の高誘電率膜13a,13bを有する第1,第2のゲート絶縁膜13A,14Bと、第1,第2のゲート絶縁膜上に形成された第1,第2のゲート電極18A,18Bとを備えている。第1のゲート絶縁膜13Aと第2のゲート絶縁膜14Bとは、第1の素子分離領域11L上において分離されている。第1の素子分離領域11Lを挟んで対向する第1の活性領域10aの一端と第2の活性領域10bの一端との距離をsとし、第1の活性領域10aの一端から第1の素子分離領域11L上に位置する第1のゲート絶縁膜13Aの一端までの突き出し量をd1としたとき、d1<0.5sの関係式が成り立っている。 (もっと読む)


【課題】MISトランジスタにおけるシリコン混晶層からなるソースドレイン領域を、不純物の拡散による不具合を防止しながらチャネル領域に近づけることができるようにする。
【解決手段】半導体装置は、半導体基板10からなるn型の活性領域の上に、ゲート絶縁膜12を介在させて形成されたゲート電極13と、活性領域におけるゲート電極13の両側方の領域に形成されたp型ソースドレイン領域20と、活性領域における各p型ソースドレイン領域20の側面からそれぞれゲート電極13の下側に向かって形成されたn型ポケット領域18とを有している。p型ソースドレイン領域20は、シリコンとIV族元素との混晶層からなり、混晶層は、ゲート長方向におけるゲート電極側の側面がゲート電極側に突き出す凸部20aを有している。凸部20aの先端は、ポケット領域18によって覆われている。 (もっと読む)


81 - 100 / 769