説明

Fターム[5F033HH17]の内容

Fターム[5F033HH17]の下位に属するFターム

Ti (2,592)
 (1,927)
Mo (732)
Ta (2,035)
高融点金属の合金 (485)

Fターム[5F033HH17]に分類される特許

121 - 140 / 962


トランジスタは、基板と、基板上の一対のスペーサと、基板上且つスペーサ対間のゲート誘電体層と、ゲート誘電体層上且つスペーサ対間のゲート電極層と、ゲート電極層上且つスペーサ対間の絶縁キャップ層と、スペーサ対に隣接する一対の拡散領域とを有する。絶縁キャップ層は、ゲートにセルフアラインされるエッチング停止構造を形成し、コンタクトエッチングがゲート電極を露出させることを防止し、それにより、ゲートとコンタクトとの間の短絡を防止する。絶縁キャップ層は、セルフアラインコンタクトを実現し、パターニング限界に対して一層ロバストな、より幅広なコンタクトを最初にパターニングすることを可能にする。
(もっと読む)


【課題】、ダマシンインターコネクトのエレクトロマイグレーション特性を向上させるべく銅線内に保護キャップを形成する方法を提供する。
【解決手段】a)酸化物を含まない銅または銅合金107の露呈領域と誘電体の露呈領域とを含む基板100を、アルミニウムを含む化合物に、少なくとも約摂氏350度の基板温度で曝して、前記誘電体および前記銅または銅合金の層の両方の上にアルミニウムを含む第1の層を形成する工程と、(b)前記第1の層の少なくとも一部を化学的に修正して、アルミニウムを含むパッシベーション層109を形成する工程と、(c)前記パッシベーション層の上に誘電体層111.を堆積させる工程とを備える方法。 (もっと読む)


【課題】 半導体装置の銅配線の信頼性をTDDB寿命とEM寿命との双方に関して向上させる。
【解決手段】 半導体装置の配線層30は、配線溝が形成された絶縁膜32、35と、配線溝の内面に形成されたバリアメタル層41と、バリアメタル層41を介して配線溝内に形成された銅配線膜43とを有する。バリアメタル層41は、配線溝の内壁面側から順に形成された第1乃至第3のバリアメタル膜41−1、2、3を有する。第2のバリアメタル膜41−2は、第3のバリアメタル膜41−3側の表面部分において、クラスタイオン照射によって形成された、その他の部分より高い密度の緻密層41−2aを有する。第3のバリアメタル膜41−3は、例えばルテニウム等、銅配線膜43との密着性に優れた材料を有する。 (もっと読む)


【課題】ボンディングワイヤを用いずに、機能ブロックの回路面を実装基板に対して立てて配線できる機能ブロック、該機能ブロックを実装した機能デバイス、及び、該機能ブロックの製造方法の提供。
【解決手段】基板1の一面1aに、機能素子F及び該機能素子Fに電気的に接続された第一の回路2が配された機能ブロック10であって、一面1aに配された導体6からなる凸部3が設けられ、且つ凸部3は第一の開口部11及び第二の開口部12を有する樹脂層4により覆われており、導体6と第一の回路11とが第一の開口部11を通して電気的に接続されていることを特徴とする機能ブロック10。 (もっと読む)


【課題】簡便な製造プロセスにより、被転写体である水晶基板の特性に影響を与えることなく、電極となる導電性膜を水晶基板へ形成することが可能な転写体を提供する。
【解決手段】転写体10は、基材11と、基材11の表面に形成され所定の形状にパターニング加工されて電極4となるべき導電性膜である金属膜14と、少なくとも金属膜14となる導電性膜の部分を覆うように形成されエネルギーを付与されると接着性を発現することが可能な接合膜3と、を備えている。このような構成の転写体10は、導電性膜14および接合膜3の形成された側が被転写体へ押し付けられると、接合膜3の膜面が被転写体へ接合する。そして、基材11を被転写体から離反する方向へ引き離すと、接合膜3が被転写体と強固に接合しているため、導電性膜14は、基材11から剥離し、接合膜3を介して被転写体へ転写される。 (もっと読む)


【目的】Cu配線寿命の劣化と絶縁膜の絶縁性劣化を共に低減する半導体装置の製造方法を提供することを目的とする。
【構成】本発明の一態様の半導体装置の製造方法は、チャンバ内面にシリコン(Si)膜を表面層とする多層膜を形成する工程(S102)と、前記多層膜が内面に形成されたチャンバ内に、表面に銅(Cu)配線と絶縁膜とが形成された基板を配置して、希ガスプラズマ処理を行なう工程(S106)と、を備えたことを特徴とする。 (もっと読む)


【課題】溝や穴の開口部と深さとの比(開口部/深さ)が1/5〜1/7のような条件を要求されても、又、厚さが10nm以下であっても成膜が可能で、かつ、銅の拡散防止(バリア性)に優れ、更には電気抵抗が小さく、銅膜との密着性にも優れた導電性バリア膜形成材料を提供する。
【解決手段】ケミカルベーパーデポジションにより銅膜の下地膜として導電性Ta−Zr系バリア膜を形成する為の材料であって、Taを持つ金属有機化合物と、Zrを持つ金属有機化合物とを含むことを特徴とする導電性バリア膜形成材料、および、前記Ta有機化合物、前記Zr有機化合物の一方または双方を溶解する溶媒とを含むことを特徴とする導電性バリア膜形成材料。 (もっと読む)


【課題】放熱性が向上した半導体装置およびその製造方法の提供。
【解決手段】第1の辺を有する第1の面を有する半導体基板10と、前記半導体基板上に設けられた電極14と、前記電極の上に位置する第1の開口部24を有する第1の絶縁層16と、前記第1の絶縁層の上であって、前記電極の少なくとも一部を避けて設けられた樹脂層20と、前記樹脂層の上に設けられた第1の部分31と、前記第1の部分と前記電極とを電気的に接続する第2の部分32と、前記第1の部分または前記第2の部分と電気的に接続する第3の部分33と、を有する導電層と、前記導電層の前記第2の部分を覆うように設けられ、前記導電層の前記第1の部分の少なくとも一部の上に位置する第2の開口部41を有し、かつ、前記導電層の前記第3の部分を避けて設けられた第2の絶縁層40と、前記導電層の前記第3の部分は、前記第1の面の前記第1の辺と、前記第2の絶縁層との間に位置する。 (もっと読む)


【課題】従来の半導体装置では、パッケージ端部の樹脂層の一部が剥離し、耐湿性が悪化するという問題があった。
【解決手段】本発明の半導体装置では、シリコン基板2の一主面側に再配線層5、5Aと剥離防止層6が配置され、それらを被覆するように樹脂層3が形成される。剥離防止層6は、再配線層5、5Aの無配置領域であり、半導体装置1の外周端部近傍に配置されることで、樹脂層3の樹脂量が低減される。この構造により、樹脂層3の熱収縮力に起因する樹脂の反り上がりが防止し、樹脂層3が、シリコン基板2上から剥離することが防止され、半導体装置1の耐湿性が向上される。 (もっと読む)


【課題】長期間貯蔵された古い金属ナノ粒子を含有する組成物を用いた場合であっても、高い導電性を有する電子デバイスの導電性フィーチャを提供することである。
【解決手段】電子デバイスの導電性フィーチャは、有機系安定剤が表面上に存在する金属ナノ粒子を含有する組成物を、基材上に成膜して成膜組成物を形成し、前記成膜組成物を加熱し、前記成膜組成物をアルカリ組成物に接触させて導電性フィーチャを形成する、ことを含む方法により形成される。前記アルカリ組成物としては、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム、アンモニア、炭酸ナトリウム、酢酸ナトリウム、有機アミン、イミダゾール、ピリジン、又はその混合物を含むことが好ましく、有機安定剤としては、チオール、アミン、カルボン酸、カルボン酸塩、ポリエチレングリコール、又はピリジンであることが好ましい。 (もっと読む)


【課題】他の物体によって損傷、剥離、または亀裂を生じることなく、より粗野な処理、運送、および使用を可能にするよりよい緩衝を、半導体デバイスの金属化層に配置された低k誘電体層、ELK誘電体層、および/またはULK誘電体層の半導体ダイのコンタクトを形成するシステム、方法を提供する。
【解決手段】複数の誘電体層および導電層を含む基板101、複数の導電層の最上層115の1つと電気的に接続し、約15,000Åより大きい厚さを有する金属コンタクト105、および金属コンタクトと電気的に接続したコネクタを含む半導体デバイス。 (もっと読む)


【課題】酸化物半導体層を用いた、表示装置に代表される半導体装置において、画面サイズの大型化や高精細化に対応し、表示品質が良く、安定して動作する信頼性のよい半導体装置を提供することを課題の一つとする。
【解決手段】引き回し距離の長い配線にCuを含む導電層を用いることで、配線抵抗の増大を抑える。また、Cuを含む導電層を、TFTのチャネル領域が形成される酸化物半導体層と重ならないようにし、窒化珪素を含む絶縁層で包むことで、Cuの拡散を防ぐことができ、信頼性の良い半導体装置を作製することができる。特に、半導体装置の一態様である表示装置を大型化または高精細化しても、表示品質が良く、安定して動作させることができる。 (もっと読む)


【課題】MRAMを含む半導体装置において、MRAMの特性を向上することができる技術を提供する。
【解決手段】配線L3およびデジット配線DLを形成した層間絶縁膜IL3の表面に対してプラズマ処理を実施する。まず、半導体基板1Sをチャンバ内に搬入し、窒素を含有する分子(アンモニアガス)と窒素を含有しない不活性分子(水素ガス、ヘリウム、アルゴン)とからなる混合ガスをチャンバ内に導入する。このとき、窒素を含有する分子の流量よりも窒素を含有しない不活性分子の流量が多い条件で、混合ガスを導入し、混合ガスをプラズマ化してプラズマ処理を実施する。 (もっと読む)


【課題】配線からのCuの拡散を防止する。
【解決手段】例えば、UDC拡散バリア膜22、ポーラスシリカ膜23、UDCミドルストッパ膜24、ポーラスシリカ膜25およびUDC拡散バリア膜26の積層構造にビア溝27aと配線溝27bを形成したときに、内部に露出するUDC拡散バリア膜22、UDCミドルストッパ膜24、UDC拡散バリア膜26の表面に対し、水素プラズマを照射する。これにより、各SiC膜の露出表面をSiリッチにする。そして、プラズマ照射後のビア溝27aと配線溝27bにTa膜28を形成し、Cuで埋め込む。Ta膜28と接触することとなるSiC膜の表面をあらかじめSiリッチな状態にしておくことにより、Ta膜28をCuの突き抜けが抑えられるような結晶構造に制御することが可能になる。これにより、配線からのCuの拡散を防止することが可能になる。 (もっと読む)


【課題】表示装置に代表される半導体装置において、画面サイズの大型化や高精細化に対応し、表示品質が良く、安定して動作する信頼性のよい半導体装置を提供することを課題の一つとする。
【解決手段】引き回し距離の長い配線にCuを含む導電層を用いることで、配線抵抗の増大を抑える。また、Cuを含む導電層を、TFTのチャネル領域が形成される半導体層と重ならないようにし、窒化珪素を含む絶縁層で包むことで、Cuの拡散を防ぐことができ、信頼性の良い半導体装置を作製することができる。特に、半導体装置の一態様である表示装置を大型化または高精細化しても、表示品質が良く、安定して動作させることができる。 (もっと読む)


【課題】CMPの処理時間を短縮する。
【解決手段】基板製造方法は、基板上に絶縁層を形成する工程と、絶縁層上に第1のマスクを形成する工程と、第1のマスクを介して絶縁層をエッチングすることにより絶縁層に溝を形成する工程と、第1のマスクを除去する工程と、絶縁層上及び溝の表面に第1の金属層を形成する工程と、溝の内部及び上方に第2のマスクを形成する工程と、第1の金属層上及び第2のマスクの表面に第2の金属層を形成する工程と、第2のマスク及び第2のマスクの表面に形成された第2の金属層を除去する工程と、溝の上方が開口された第3のマスクを第2の金属層上に形成する工程と、溝の内部及び上方に第3の金属層を電界めっきにより形成する工程と、第3のマスクを除去する工程と、第3の金属層を化学機械研磨により平坦化する工程と、を備える。 (もっと読む)


【課題】製造工程の複雑化と製造コストの高価格化を招くことなく、多層電極間の接続を容易に行うことが可能な電極基板の製造方法、電極基板、及び薄膜トランジスタを提供する。
【解決手段】下地層の上に、下層電極、層間絶縁膜、上層電極がこの順番で積層され、下層電極と上層電極とが層間絶縁膜に形成された開口部を介して電気的に接続された電極基板の製造方法であって、下地層の上に、電極材料を含有する溶液を塗布した後、乾燥させて下層電極を形成する工程と、下層電極が形成された下地層の上に、開口部を有する層間絶縁膜を形成する工程と、開口部に溶液の溶媒を滴下し、開口部に位置する下層電極を溶解した後、乾燥させることにより、電極材料を開口部の内壁に沿ってコーヒーステイン形状に形成する工程と、電極材料が開口部の内壁に沿ってコーヒーステイン形状に形成された層間絶縁膜の上に上層電極を形成する工程と、を有する。 (もっと読む)


【課題】オフ電流および漏れ電流が抑制された薄膜トランジスタ、および前記薄膜トランジスタを歩留り良く製造することのできる薄膜トランジスタの製造方法を提供する。
【解決手段】ゲート電極12上にゲート絶縁膜12を介して順次形成されるSi(i)膜13およびSi(n)膜14上に金属膜を形成し、フォトレジストパターン22をマスクとしてエッチングし、ソース電極15およびドレイン電極16を形成する。酸素を含むプラズマで処理して、フォトレジストパターン22の側面を後退させるとともに、ソース電極15およびドレイン電極16の側面および露出した上面にAl酸化皮膜17を形成する。残存するフォトレジストパターン22およびAl酸化皮膜17をマスクとして、チャネル部18のSi(n)膜14およびSi(i)膜13の表面の一部をエッチングする。 (もっと読む)


【課題】TEG上のパッド部の浸食を防止し、また、実デバイスのパッド部の半田のぬれ性や半田形成後のシェア強度の向上を図る。
【解決手段】半導体ウエハのチップ領域CAの第3層配線M3およびスクライブ領域SAの第3層配線M3を、それぞれ、TiN膜M3a、Al合金膜M3bおよびTiN膜M3cで構成し、チップ領域CAの再配線49上の第2パッド部PAD2を洗浄し、もしくはその上部に無電界メッキ法でAu膜53aを形成する。さらに、Au膜53a形成後、リテンション検査を行い、その後、さらに、Au膜53bを形成した後、半田バンプ電極55を形成する。その結果、TiN膜M3cによってTEGであるスクライブ領域SAの第3層配線M3の第1パッド部PAD1のメッキ液等による浸食を防止でき、また、Au膜53a、53bによって第2パッド部PAD2の半田のぬれ性や半田形成後のシェア強度の向上を図ることができる。 (もっと読む)


【課題】不均一な結晶相の形成を抑制してオーミック接触を実現する電極コンタクト構造を提供する。
【解決手段】電極コンタクト構造は、エピタキシャル層100と、エピタキシャル層100上に形成されたコンタクトメタル電極120と、コンタクトホールを有する層間絶縁膜140と、コンタクトメタル電極120上に形成され、コンタクトメタル電極の結晶配向性と整合する結晶配向性を有する拡散障壁層200と、拡散障壁層200上に形成されたAl配線160を有する。電極コンタクト構造は、自己走査型発光素子アレイのカソード電極やゲート電極の構造として用いられる。 (もっと読む)


121 - 140 / 962