説明

Fターム[5F033QQ76]の内容

Fターム[5F033QQ76]の下位に属するFターム

選択酸化 (17)

Fターム[5F033QQ76]に分類される特許

101 - 120 / 536


【課題】本発明は、コンタクト電極の形状を改善し、コンタクト抵抗を低くすることがで
きる。
【解決手段】 半導体基板10と、半導体基板上10に形成されたゲート絶縁膜11と、
半導体基板10上にワード線方向に沿って配置され、ゲート絶縁膜11を介して形成され
た浮遊ゲート電極12と、浮遊ゲート電極12上に第1ゲート間絶縁膜13を介して形成
された制御ゲート14を有する複数のメモリセルトランジスタMCと、ゲート絶縁膜11
上に形成されたボトム電極32と、ゲート絶縁膜11及びボトム電極32に形成された開
口EIIを通じて半導体基板10に接するトップ電極33と、開口EIIの下に形成され
、半導体基板10と逆の不純物濃度の型である接続拡散層31とを有するビット線コンタ
クトBCとを備えたことを特徴とする。 (もっと読む)


【課題】スイッチング速度を向上でき、動作不良品を低減できる、横型の電界効果トランジスタを提供する。
【解決手段】ゲート配線43は、基部44と、基部44から突出する複数の指状部45と、隣接する指状部45の先端部46を接続する接続部47と、を有する。ゲート配線43の指状部45は、ソース配線23の指状部25とドレイン配線33の指状部35と、の間に配置されている。ゲート配線43の基部44は、ソース配線23の基部24とドレイン配線33の指状部35との間に配置され、かつ、ソース配線23の指状部25との間に絶縁膜を介在させて指状部25と交差している。 (もっと読む)


【課題】半導体チップを評価する技術を提供する。
【解決手段】
シリコン基板の一方の面に、複数領域からなる抵抗測温体としての金属配線膜101、及び、1つ又は複数領域からなるヒータとしての金属配線膜102の少なくとも何れかと、金属配線膜101及び金属配線膜102を実装基板と接続するための電極103と、が積層された半導体チップを実装基板に実装して、金属配線膜101を電流計及び電圧計と、金属配線膜102を電源と、電気的に接続することで、半導体チップの上記各領域における測温及び加熱、及び、その温度プロファイルが評価可能な評価システムを提供する。 (もっと読む)



【課題】短時間で製造することができ、十分な気密性を有するとともに、基板の反りを低減させることができる貫通電極、微小構造体及びそれらの製造方法を提供する。
【解決手段】導電性を有する基板10の所定領域を貫通トレンチ21で囲み、貫通トレンチ21内に絶縁膜50を形成して周囲から絶縁分離した貫通電極60において、絶縁膜50は、貫通トレンチ21の側面から化学気相成長させたシリコン膜40を熱酸化したシリコン熱酸化膜50である。 (もっと読む)


【課題】、ダマシンインターコネクトのエレクトロマイグレーション特性を向上させるべく銅線内に保護キャップを形成する方法を提供する。
【解決手段】a)酸化物を含まない銅または銅合金107の露呈領域と誘電体の露呈領域とを含む基板100を、アルミニウムを含む化合物に、少なくとも約摂氏350度の基板温度で曝して、前記誘電体および前記銅または銅合金の層の両方の上にアルミニウムを含む第1の層を形成する工程と、(b)前記第1の層の少なくとも一部を化学的に修正して、アルミニウムを含むパッシベーション層109を形成する工程と、(c)前記パッシベーション層の上に誘電体層111.を堆積させる工程とを備える方法。 (もっと読む)


【課題】複数の基板を貼り合わせる積層半導体装置を効率よく製造できる方法を提供する。
【解決手段】複数の基板を貼り合わせて積層半導体装置を製造する半導体装置製造方法であって、回路が形成された複数の基板のうちの一の基板に凹部を形成する凹部形成ステップと、一の基板を複数の基板のうちの他の基板に重ね合わせる重ね合わせステップと、重ね合わせステップの後に、一の基板の凹部に導電性材料を導入することにより、一の基板の回路と他の基板の回路との間の電気的な導通路を形成する導通形成ステップとを備える半導体装置製造方法が提供される。 (もっと読む)


【課題】銅配線を有する半導体装置において、銅配線の配線抵抗やコンタクトと抵抗を増加することなく信頼性を向上しうる半導体装置の製造方法を提供する。
【解決手段】絶縁膜に形成された開口部内に、銅に対して拡散防止作用を有する第1金属材料を含む第1の膜と、酸素を含有する銅膜を含む第2の膜と、銅と、酸素と結合することにより銅に対して拡散防止作用を有する第2金属材料とを含む第3の膜と、銅を主材料とする第4の膜とを含む配線層を形成した後、熱処理により、絶縁膜と第4の膜との間に、第1金属材料、第2金属材料及び酸素を含むバリア層を形成する。 (もっと読む)


【課題】基板の表裏を導通する導通部における電気特性を向上した貫通電極基板及びそれを用いた半導体装置を提供すること。
【解決手段】本発明の貫通電極基板は、表裏を貫通する貫通孔を有する基板と、前記貫通孔内に充填され、金属材料を含む導通部と、を備え、前記導通部は、結晶粒径が29μm以上の金属材料を少なくとも含み、前記導通部の一端は、前記導通部の他端より面積重み付けした平均結晶粒径が大きい金属材料を少なくとも含む。また、導通部は、面積重み付けした平均結晶粒径が13μm以上の金属材料を含む。 (もっと読む)


【課題】容易に抵抗を調節することができ、高集積化が可能な導電構造物を含む半導体装置及びその製造方法を提供する。
【解決手段】半導体装置は、基板上に配置され、基板の導電領域を露出させる開口部を含む絶縁膜と、開口部内に配置されるバリア膜パターンと、バリア膜パターン上に配置され、開口部の外部に延長される酸化された部分及び開口部内に位置する酸化されなかった部分を含む導電パターンと、を具備し、導電パターンの幅がバリア膜パターンの厚さによって決定される。 (もっと読む)


【課題】縦型MOSトランジスタを備えた半導体装置を形成する際のゲート電極とコンタクトプラグとの短絡を防止することが可能な半導体装置及びその製造方法を提供する。
【解決手段】本発明の半導体装置の製造方法は、前記半導体基板上にシリコン窒化膜(SiN膜)からなるマスク窒化膜のパターンを形成したのちに、溝および半導体ピラーを前記半導体基板に形成する第一工程と、前記マスク窒化膜を残存させたまま、前記溝を覆うゲート絶縁膜を形成したのちに前記半導体ピラーよりも低い高さのゲート電極を形成する第二工程と、前記溝を覆うように、シリコン酸窒化膜(SiON膜)からなるライナー膜を形成したのちに、前記ライナー膜上を覆い、かつ、前記溝内を充填するように層間膜(SOD膜)を形成する第三工程と、前記マスク窒化膜をエッチングにより選択的に除去する第四工程と、を採用する。 (もっと読む)


集積回路に使用する銅線のための集積回路用相互接続構造およびこれを作る方法が提供される。Mn、Cr、またはV含有層が、線からの銅の拡散に対しバリアを形成し、それにより、絶縁体の早期絶縁破壊を防ぎ、銅によるトランジスタの劣化を保護する。また、Mn、Cr、またはV含有層は、銅と絶縁体の間の強い接着を促進し、その結果、製造と使用中のデバイスの機械的健全性を保ち、さらに、デバイスの使用中の銅のエレクトロマイグレーションによる故障を防ぎ、また、環境からの酸素または水による銅の腐食を防ぐ。このような集積回路の形成に関しては、本発明の特定の実施形態により、Mn、Cr、V、またはCoを銅表面上に選択的に堆積させ、一方で、絶縁体表面上のMn、Cr、V、またはCoの堆積を減らす、または防ぎさえもする方法が提供される。また、Mn、Cr、またはV含有前駆物質およびヨウ素または臭素含有前駆物質を使った銅の触媒堆積も提供される。 (もっと読む)


【課題】欠陥を内在する炭化珪素半導体を用いても、大面積半導体装置の高歩留りを安定して実現可能な半導体装置の製造方法を提供する。
【解決手段】炭化珪素半導体基板上に炭化珪素半導体層をエピタキシャル成長する工程と、炭化珪素半導体層表面を研磨する工程と、研磨する工程の後に、炭化珪素半導体層に不純物をイオン注入する工程と、不純物を活性化するための熱処理をする工程と、熱処理をする工程の後に、炭化珪素半導体層表面に第1の熱酸化膜を形成する工程と、第1の熱酸化膜を化学的に除去する工程と、炭化珪素半導体層上に電極層を形成する工程と、を有することを特徴とする半導体装置の製造方法。 (もっと読む)


【課題】薄膜であっても銅(Cu)原子の金属シリサイド膜などへの拡散を充分に安定して抑止でき、尚且つ、小さな接触抵抗をもたらす比抵抗の小さな銅(Cu)からコンタクトプラグを形成できるようにする。
【解決手段】 本発明のコンタクトプラグ100は、半導体装置の絶縁膜104に設けられたコンタクトホール105に形成され、コンタクトホール105の底部に形成された金属シリサイド膜103と、コンタクトホール105内で金属シリサイド膜103上に形成された酸化マンガン膜106と、酸化マンガン膜106上に、コンタクトホール105を埋め込むように形成された銅プラグ層107と、を備え、酸化マンガン膜は非晶質からなる膜である、ことを特徴としている。 (もっと読む)


【課題】ソース/ドレイン領域のPN接合部とコンタクト間のリーク電流を抑制する。
【解決手段】半導体基板(1)と、半導体基板(1)に形成されたSTI(Shallow Trench Isolation)構造(2)と、半導体基板(1)に形成され、STI構造(2)に隣接する拡散領域(12)と、層間絶縁膜(15)を貫通して拡散領域(12)とSTI構造(2)とに到達する接続コンタクト(20)と、拡散領域(12)の側面と拡散領域(12)の下の半導体基板(1)の側面に形成され、接続コンタクト(20)と拡散領域(12)の側面とを電気的に絶縁し、かつ、接続コンタクト(20)と半導体基板(1)の側面とを電気的に絶縁する酸化膜(19)とを具備する半導体装置を構成する。その半導体装置では、STI素子分離とソース/ドレイン領域のPN接合部分の間のみに選択的に絶縁膜(酸化膜)を形成している。 (もっと読む)


【課題】半導体装置の製造過程において生じるウエハ外周部分からのパーティクルの発生を防止し、十分な歩留りを実現する。
【解決手段】ウエハにゲート電極となる導電膜4、5を形成する第一工程と、導電膜4、5の中の、ウエハの外周部分に形成された導電膜4、5の上に選択的に保護膜7を形成する第二工程と、導電膜4、5の上に第一レジストパターンを形成し、前記第一レジストパターンをマスクとして導電膜4、5をエッチングすることにより、ゲート電極を形成する第三工程と、前記ゲート電極を覆う層間絶縁膜を形成する第四工程と、前記層間絶縁膜の上に第二レジストパターンを形成し、前記第二レジストパターンをマスクとして前記層間絶縁膜をエッチングすることにより、コンタクトホールを形成する第五工程と、を有する半導体装置の製造方法を提供する。 (もっと読む)


【課題】主にアルミニウム系通常配線を有するLSIの製造工程BEOLプロセスでは、配線の信頼性に関して、EM耐性およびSM耐性の向上が特に重要である。アルミニウム系配線に関する不良の中でも、配線メタル膜の膨張や欠けの発生は、EM耐性およびSM耐性を大きく劣化させる要因となる。
【解決手段】本願発明は、層間絶縁膜を成膜するプラズマCVDチャンバのウエハ・ステージ上に於いて、アルミニウム系配線メタル膜のパターニングの後であって層間絶縁膜の成膜前に、ウエハのデバイス面に対して、不活性ガスを主要な成分の一つとして含む雰囲気下、アルミニウム系配線メタル膜および層間絶縁膜の成膜温度よりも高いウエハ温度において、プラズマ・アニール処理を実行することにより、配線メタル層の側壁部の付着物が完全に除去され、膨張不良の原因が取り除かれ、更に、不動態化の進行、ストレス開放等により、欠け不良を抑制するものである。 (もっと読む)


【課題】ヒューズ用開口部からガードリング外への水分等の伝達をより強固に防止する。
【解決手段】下地絶縁膜3上に第1シリコン膜パターンからなるシリコンヒューズとシリコン配線パターン7が形成されている。第1シリコン膜パターンとは別途形成された第2シリコン膜パターンからなり、上方から見てヒューズ5の周囲を取り囲み、一部分がシリコン配線パターン7上を跨いで下地絶縁膜上に環状に形成されたシリコンガードリング11が形成されている。シリコンガードリング11と交差している部分のシリコン配線パターン7表面にシリコン表面絶縁膜9が形成されている。シリコン配線パターン7とシリコンガードリング11はシリコン表面絶縁膜9により互いに絶縁されている。シリコンガードリング11上に金属材料からなる環状のガードリング17,19,25,27が上方から見てヒューズ5の周囲を取り囲んで形成されている。 (もっと読む)


【課題】半導体装置とその製造方法においてSRAMのセルサイズを縮小することを目的とする。
【解決手段】メモリセルCの活性領域31a、31bが画定されたシリコン基板31と、素子分離絶縁膜32上に形成され、第1の方向に延在するゲート電極35と、シリコン基板31とゲート電極35の上に形成された第1の絶縁膜42と、第1の絶縁膜42を貫通し、ゲート電極35と第1の活性領域31aに重なり、第1の方向に直交する第2の方向に延在する第1の銅プラグ45aと、第2の活性領域35b上の第1の絶縁膜42を貫通する第2の銅プラグ45bと、第1の絶縁膜42上に形成された第2の絶縁膜44と、第2の絶縁膜44に埋め込まれ、第1の銅プラグ45aの側面45xから第2の延在方向に後退して形成され、第1の銅プラグ45aの上面の一部のみを覆う銅配線48aとを有する半導体装置による。 (もっと読む)


【課題】銅を用いた多層配線を有する半導体装置を高性能化する。
【解決手段】シリコン基板上に第1配線層用絶縁膜Z1を形成し、第1配線層用絶縁膜Z1に第1配線用孔部H1を形成する。その後、第1配線用孔部H1の側壁および底面を覆うようにして、タンタルまたはチタンを含む下部バリア導体膜eb1と、ルテニウムを主体とする上部バリア導体膜et1とからなる第1配線用バリア導体膜EM1を形成する。続いて、上部バリア導体膜et1をシード層として、電気めっき法により、銅を主体とする第1配線用導体膜EC1を形成し、CMP法により第1配線用導体膜EC1を第1配線用孔部H1に埋め込む。特に、上部バリア導体膜et1として、1〜5%の濃度で炭素を含ませるようにして、ルテニウムを主体とする導体膜を形成する。 (もっと読む)


101 - 120 / 536