説明

導電構造物を含む半導体装置及びその製造方法

【課題】容易に抵抗を調節することができ、高集積化が可能な導電構造物を含む半導体装置及びその製造方法を提供する。
【解決手段】半導体装置は、基板上に配置され、基板の導電領域を露出させる開口部を含む絶縁膜と、開口部内に配置されるバリア膜パターンと、バリア膜パターン上に配置され、開口部の外部に延長される酸化された部分及び開口部内に位置する酸化されなかった部分を含む導電パターンと、を具備し、導電パターンの幅がバリア膜パターンの厚さによって決定される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、導電構造物を含む半導体装置及びその製造方法に関し、より詳細には、データ保存装置に接触する導電構造物を含む半導体装置及びその製造方法に関する。
【背景技術】
【0002】
抵抗メモリ装置の所定の部分に熱を加えることによって抵抗メモリ装置にデータを記録するか、又は抵抗メモリ装置からデータを読み取ることができる。抵抗メモリ装置の所定の部分に局部的に熱を放生させるために、抵抗メモリ装置は加熱電極として機能する導電構造物を含むことになる。これに伴い、抵抗メモリ装置を高い加熱効率で加熱できる導電構造物が要求される。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】韓国特許第0165813号明細書
【特許文献2】米国特許第6,117,720号明細書
【特許文献3】韓国特許出願公開第2001−0028589号明細書
【特許文献4】特開2004−214458号公報
【特許文献5】米国特許出願公開第2007−0155026号明細書
【特許文献6】米国特許出願公開第2002−0096775号明細書
【特許文献7】韓国特許第0869843号明細書
【発明の概要】
【発明が解決しようとする課題】
【0004】
本発明は、上記従来技術に鑑みてなされたものであって、本発明の目的は、容易に抵抗を調節することができ、高集積化が可能な導電構造物を含む半導体装置を提供することにある。
【0005】
本発明の他の目的は、容易に抵抗を調節することができ、高集積化が可能な導電構造物を含む半導体装置の製造方法を提供することにある。
【課題を解決するための手段】
【0006】
上記目的を達成するためになされた本発明の一特徴による半導体装置は、基板上に配置され、該基板の導電領域を露出させる開口部を含む絶縁膜と、前記開口部内に配置されるバリア膜パターンと、前記バリア膜パターン上に配置され、前記開口部の外部に延長される酸化された部分及び前記開口部内に位置する酸化されなかった部分を含む導電パターンと、を具備し、前記導電パターンの幅が前記バリア膜パターンの厚さによって決定される。
【0007】
前記導電パターンの幅は前記開口部の幅より小さくすることもできる。
【0008】
前記開口部の外部に延長される前記酸化された部分は前記開口部内の前記酸化されなかった部分より厚くすることもできる。
【0009】
前記酸化された部分の幅は前記酸化されなかった部分の幅と同一にすることもできる。
【0010】
前記酸化された部分の幅は前記酸化されなかった部分の幅より大きくすることもできる。
【0011】
前記半導体装置は、前記開口部内に配置される充填膜パターンを更に含むことができ、前記導電パターンは前記バリア膜パターンと前記充填膜パターンとの間に配置することができる。
【0012】
前記導電パターンはシリンダー形状を有することができる。
【0013】
前記導電パターンはタングステンを含むことができる。
【0014】
前記バリア膜パターンはチタン及びチタン窒化物のうちの少なくとも一つを含むことができる。
【0015】
前記バリア膜パターンは窒化物及び酸窒化物のうちの少なくとも一つを含むことができる。
【0016】
前記導電パターンの前記酸化された部分は相変化メモリ装置(PRAM)の相変化物質膜に接触することができる。
【0017】
前記バリア膜パターンは前記バリア膜パターンの下に配置されるP−Nダイオードに接触することができる。
【0018】
前記導電パターンの前記酸化された部分は磁気メモリ装置(MRAM)の自由膜パターンに接触することができる。
【0019】
前記バリア膜パターンは前記バリア膜パターンの下に配置されるMOSトランジスタに電気的に接触することができる。
【0020】
平面上で前記酸化された部分の断面面積の大きさは平面上で前記開口部の断面面積の大きさより小さくすることもできる。
【0021】
平面上で前記酸化された部分の断面面積の大きさは前記バリア膜パターンの断面面積の大きさによって決定することができる。
【0022】
上記他の目的を達成するためになされた本発明の一特徴による半導体装置の製造方法は、基板上に絶縁膜を形成する段階と、前記絶縁膜に前記基板を露出させる開口部を形成する段階と、前記開口部内にバリア膜パターンを形成する段階と、前記開口部内の前記バリア膜パターン上に導電パターンを形成する段階と、前記導電パターンの酸化によって前記導電パターンを成長させ、前記導電パターンの一部を前記開口部の外部に延長させる段階と、を有する。
【0023】
前記導電パターンを成長させる段階は、酸素の雰囲気下で400℃〜600℃の温度で1分〜10分の間に急速熱処理(RTA)する段階を含むことができる。
【0024】
前記導電パターンを成長させる段階は、酸素の雰囲気下で20W〜100Wのパワーを印加しながら1分〜10分の間にプラズマ処理する段階を含むことができる。
【0025】
前記導電パターンは等方性又は異方性に成長することができる。
【0026】
前記半導体装置の製造方法は、前記導電パターンの前記酸化された部分の周囲に窒素雰囲気を提供する段階を更に含むことができる。
【0027】
前記半導体装置の製造方法は、前記開口部内に充填膜パターンを形成する段階を更に含むことができ、前記導電パターンは前記充填膜パターンと前記バリア膜パターンとの間に配置することができる。
【0028】
上記目的を達成するためになされた本発明の他の特徴による半導体装置は、基板と、前記基板上に配置されて開口部を含む絶縁膜と、前記基板上に配置される金属パターンと、前記開口部内及び前記金属パターン上に配置される金属酸化物パターンと、を有し、前記金属酸化物パターンの断面面積が前記金属パターンの断面面積より小さい。
【0029】
前記金属パターンはタングステンを含むことができる。
【0030】
前記金属酸化物パターンに接触する前記金属パターンの一部がリセスされ、前記リセスされた部分に前記金属酸化物パターンの突出部が受容され得る。
【0031】
前記半導体装置は、前記金属酸化物パターンと前記絶縁膜との間に配置されるスペーサーを更に含むことができる。
【0032】
前記金属パターンはP−Nジャンクション上に配置することができる。
【0033】
前記金属パターンはMOSトランジスタに電気的に連結することができる。
【0034】
前記金属酸化物パターンは磁気メモリ装置の自由膜パターンに接触することができる。
【0035】
前記金属酸化物パターンは相変化メモリ装置の相変化物質膜に接触することができる。
【0036】
前記半導体装置は、前記相変化物質膜と前記絶縁膜との間に配置されるスペーサーを更に含むことができる。
【0037】
前記相変化物質膜の上部は前記相変化物質膜の下部の幅より広い幅を有することができる。
【0038】
上記他の目的を達成するためになされた本発明の他の特徴による半導体装置の製造方法は、基板上に金属パターンを形成する段階と、前記金属パターン上に絶縁膜を形成する段階と、前記絶縁膜を貫通して前記金属パターンの一部を露出させる開口部を形成する段階と、前記金属パターンの露出した部分を酸化させて前記開口部内に金属酸化物パターンを形成する段階と、を有する。
【0039】
前記金属酸化物パターンは磁気メモリ装置の自由膜パターンに接触することができる。
【0040】
前記金属パターンは磁気メモリ装置のMOSトランジスタに電気的に接触することができる。
【0041】
前記金属酸化物パターンは相変化メモリ装置の相変化物質膜に接触することができる。
【0042】
前記金属酸化物パターンは前記相変化メモリ装置のP−Nダイオードに接触することができる。
【0043】
前記金属酸化物パターンの幅は前記金属パターンの幅より大きくすることもできる。
【0044】
上記目的を達成するためになされた本発明の更に他の特徴による半導体装置は、基板上に配置される第1絶縁膜と、前記第1絶縁膜上に配置されて開口部を含む第2絶縁膜と、前記第2絶縁膜上に配置される第3絶縁膜と、前記第3絶縁膜上に配置される第4絶縁膜と、前記第4絶縁膜内に配置されるメモリ保存装置と、金属パターン及び金属酸化物パターンを含み、前記メモリ保存装置を加熱する導電パターンと、を具備し、前記金属パターンは前記第2絶縁膜の前記開口部内に配置され、前記金属酸化物パターンは前記第3絶縁膜内に配置され、前記導電パターンの幅が前記開口部の幅より小さい。
【0045】
前記半導体装置は、前記第1絶縁膜内に配置されるMOSトランジスタと、前記第4絶縁膜内に配置される磁気メモリ装置の自由膜パターンと、を更に含むことができる。
【0046】
前記半導体装置は、前記第1絶縁膜内に配置されるP−Nダイオードと、前記第4絶縁膜内に配置される相変化物質膜と、を更に含むことができる。
【0047】
前記金属酸化物パターンの上部表面は前記第3絶縁膜の上部表面と同じ平面上に配置することができる。
【0048】
前記半導体装置は金属パターンと前記第3絶縁膜との間に配置されるバリア金属膜パターンを更に含むことができる。
【0049】
前記バリア金属膜パターンの上部表面は前記第2絶縁膜の上部表面と同じ平面上に配置することができる。
【0050】
前記第3絶縁膜の上部表面は前記金属パターンの上部表面より高く配置することができる。
前記金属パターンの上部表面は前記バリア金属膜パターンの上部表面より低く配置することができる。
【発明の効果】
【0051】
本発明によれば、高い加熱効率を確保できる導電構造物を含む抵抗メモリ装置を、簡略化した工程を通じて容易に製造することができる。従って、本発明による抵抗メモリ装置は、高い集積度と高性能を要求するメモリ装置で使用することができる。
【図面の簡単な説明】
【0052】
【図1】本発明の第1実施形態による導電構造物の断面図である。
【図2】図1に示した導電構造物の斜視図である。
【図3】図1に示した導電構造物の形成方法を説明するための断面図である。
【図4】図1に示した導電構造物の形成方法を説明するための断面図である。
【図5】図1に示した導電構造物の形成方法を説明するための断面図である。
【図6】本発明の第1実施形態による磁気メモリ装置の断面図である。
【図7】図6に示した磁気メモリ装置の製造方法を説明するための断面図である。
【図8】図6に示した磁気メモリ装置の製造方法を説明するための断面図である。
【図9】図6に示した磁気メモリ装置の製造方法を説明するための断面図である。
【図10】図6に示した磁気メモリ装置の製造方法を説明するための断面図である。
【図11】本発明の第1実施形態による相変化メモリ装置の断面図である。
【図12】図11に示した相変化メモリ装置の製造方法を説明するための断面図である。
【図13】本発明の第2実施形態による相変化メモリ装置の断面図である。
【図14】図13に示した相変化メモリ装置の製造方法を説明するための断面図である。
【図15】本発明の第3実施形態による相変化メモリ装置の断面図である。
【図16】本発明の第2実施形態による導電構造物の断面図である。
【図17】図16に示した導電構造物の形成方法を説明するための断面図である。
【図18】本発明の第3実施形態による導電構造物の断面図である。
【図19】図18に示した導電構造物の斜視図である。
【図20】図18に示した導電構造物の平面図である。
【図21】図18に示した導電構造物の形成方法を説明するための断面図である。
【図22】図18に示した導電構造物の形成方法を説明するための断面図である。
【図23】本発明の第2実施形態による磁気メモリ装置の断面図である。
【図24】図23に示した磁気メモリ装置の製造方法を説明するための断面図である。
【図25】図23に示した磁気メモリ装置の製造方法を説明するための断面図である。
【図26】本発明の第4実施形態による相変化メモリ装置の断面図である。
【図27】本発明の第4実施形態による導電構造物の断面図である。
【図28】本発明の第5実施形態による相変化メモリ装置の断面図である。
【図29】図28に示した相変化メモリ装置の製造方法を説明するための断面図である。
【図30】図28に示した相変化メモリ装置の他の製造方法を説明するための断面図である。
【図31】本発明の第6実施形態による相変化メモリ装置の断面図である。
【図32】本発明の第5実施形態による導電構造物の断面図である。
【図33】図32に示した導電構造物の形成方法を説明するための断面図である。
【図34】本発明の第3実施形態による磁気メモリ装置の断面図である。
【図35】本発明の第4実施形態による磁気メモリ装置の断面図である。
【図36】本発明の第7実施形態による相変化メモリ装置の断面図である。
【図37】本発明の第6実施形態による導電構造物の断面図である。
【図38】本発明の第8実施形態による相変化メモリ装置の断面図である。
【図39】図38に示した相変化メモリ装置の製造方法を説明するための断面図である。
【図40】図38に示した相変化メモリ装置の製造方法を説明するための断面図である。
【図41】図38に示した相変化メモリ装置の製造方法を説明するための断面図である。
【図42】図38に示した相変化メモリ装置の製造方法を説明するための断面図である。
【図43】図38に示した相変化メモリ装置の製造方法を説明するための断面図である。
【図44】図38に示した相変化メモリ装置の製造方法を説明するための断面図である。
【図45】本発明の第9実施形態による相変化メモリ装置の断面図である。
【図46】図45に示した相変化メモリ装置の製造方法を説明するための断面図である。
【図47】本発明の第10実施形態による相変化メモリ装置の断面図である。
【図48】図47に示した相変化メモリ装置の製造方法を説明するための断面図である。
【図49】図47に示した相変化メモリ装置の製造方法を説明するための断面図である。
【図50】図47に示した相変化メモリ装置の製造方法を説明するための断面図である。
【図51】図47に示した相変化メモリ装置の製造方法を説明するための断面図である。
【図52】本発明の第11実施形態による相変化メモリ装置の斜視図である。
【図53】図52に示した相変化メモリ装置の製造方法を説明するための斜視図である。
【図54】図52に示した相変化メモリ装置の製造方法を説明するための斜視図である。
【図55】図52に示した相変化メモリ装置の製造方法を説明するための斜視図である。
【図56】図52に示した相変化メモリ装置の製造方法を説明するための斜視図である。
【図57】図52に示した相変化メモリ装置の製造方法を説明するための斜視図である。
【図58】図52に示した相変化メモリ装置の製造方法を説明するための斜視図である。
【図59】本発明の第12実施形態による相変化メモリ装置の断面図である。
【図60】図59に示した相変化メモリ装置の製造方法を説明するための断面図である。
【図61】図59に示した相変化メモリ装置の製造方法を説明するための断面図である。
【図62】図59に示した相変化メモリ装置の製造方法を説明するための断面図である。
【図63】本発明の一実施形態による広帯域移動通信が可能な携帯電話ネットワークを含む通信システムの概略図である。
【図64】サンプル1〜サンプル8によるコンタクト構造を示す断面図である。
【図65】比較サンプル11〜比較サンプル18によるコンタクト構造を示す断面図である。
【図66】比較サンプル21〜比較サンプル28によるコンタクト構造を示す断面図である。
【図67】サンプル及び比較サンプルによるコンタクト構造の抵抗を示すグラフである。
【図68】比較サンプル9による相変化メモリ装置を示す断面図である。
【発明を実施するための形態】
【0053】
以下、本発明の導電構造物を含む半導体装置及びその製造方法を実施するための形態の具体例を、図面を参照しながら詳細に説明する。本明細書の各図面において、構成要素及び/又は構造物のサイズは本発明の明確性を期するために実際より拡大して示した。
【0054】
本明細書において、第1、第2等の用語を多様な構成要素を説明するために使用するが、構成要素はこのような用語によって限定されるものではなく、用語は一つの構成要素を他の構成要素から区別する目的で使用する。
【0055】
本明細書で使用する用語は単に特定の実施形態を説明するために使用するものであって、本発明を限定しようとする意図ではない。単数の表現は文脈上明白に異なるように意味しない限り、複数の表現を含む。本明細書で、「含む」又は「有する」等の用語は明細書上に記載した特徴、数字、段階、動作、構成要素、部品、又はこれを組み合わせたものが存在するということを指定しようとするものであって、一つ又はそれ以上の他の特徴や数字、段階、動作、構成要素、部品、又はこれを組み合わせたものの存在、或いは付加の可能性を、予め排除しない。
【0056】
本明細書において、各階(膜)、領域、電極、パターン、又は構造物が、対象物、基板、各階(膜)、領域、電極、又はパターンの「上に」、「上部に」又は「下部」に形成されると言及する場合には、各階(膜)、領域、電極、パターン、又は構造物が、直接、基板、各階(膜)、領域、又はパターン上に形成されたり、下に位置することを意味したり、他の層(膜)、他の領域、他の電極、他のパターン、又は他の構造物が対象物や基板上に追加的に形成されることを意味する。
【0057】
本明細書に開示している本発明の実施形態に対して、特定の構造的又は機能的説明は、単に本発明の実施形態を説明するための目的で例示したものであり、本発明の実施形態は多様な形態で実施可能であって、本明細書に説明した実施形態に限定するものではない。即ち、本発明は多様な変更を加えることができ、種々な形態を有することができるが、特定の実施形態を図面に例示し、本明細書に詳細に説明したものである。これは本発明を特定の開示形態に限定しようとするものではなく、本発明の思想及び技術範囲に含まれる全ての変更、均等物或いは代替物を含むものと理解すべきである。
【0058】
図1は、本発明の第1実施形態による導電構造物の断面図であり、図2は、図1に示した導電構造物の斜視図である。
【0059】
図1及び図2を参照すると、基板50上に絶縁膜52が提供される。絶縁膜52は基板50の一部を露出させる開口部54を含む。例えば、開口部54は基板50の導電領域を露出させる。本実施形態において、基板50上に導電性パターンを備えることができ、開口部54は基板50上の導電性パターンを露出する。
【0060】
本実施形態によると、開口部54はコンタクトホール(contact hole)形状を有する。しかし、導電構造物の構造により開口部54の構造も変化する。即ち、開口部54は多様な形状を有することができ、図1に例示的に示した開口部54の構造に限定されるものではない。例えば、開口部54はトレンチ(trench)形状を有することもできる。
【0061】
開口部54の側壁と底面上にバリア金属膜パターン56aが形成される。バリア金属膜パターン56aはシリンダー形状を有する。バリア金属膜パターン56aは金属及び窒化物のうちの少なくとも一つを含むことができる。例えば、バリア金属膜パターン56aはチタン(Ti)及びチタン窒化物(TiNx)のうちの一つ以上を含む。バリア金属膜パターン56aは単層構造又は多層構造を有することができる。例えば、バリア金属膜パターン56aはチタン膜及びチタン窒化膜のうちの一つ以上を含む。
【0062】
バリア金属膜パターン56aは金属パターン58b内の金属原子及び/又は金属イオンが絶縁膜52又は基板50に広がることを防止する役割をする。バリア金属膜パターン56aは導電構造物のコンタクト領域を増加させて導電構造物のコンタクト抵抗を減少させる。
【0063】
本実施形態において、バリア金属膜パターン56aはゆっくり酸化されるか又は殆ど酸化されない物質を含むことができる。
【0064】
金属パターン58bはバリア金属膜パターン56a上に配置される。例えば、金属パターン58bはタングステン(W)を含む。金属パターン58bは開口部54を完全に満たさないことがある。即ち、金属パターン58bは開口部54を部分的に満たすことができる。バリア金属膜パターン56a及び金属パターン58bは基板50の導電領域に電気的に連結される導電パターンの役割をする。
【0065】
金属パターン58b上には金属酸化物パターン60が形成される。例えば、金属酸化物パターン60はタングステン酸化物(WOx)を含む。一実施形態において、金属酸化物パターン60は金属パターン58bの表面を酸化させて収得することができる。金属酸化物パターン60は絶縁膜52から突出する。一実施形態によると、金属酸化物パターン60の突出部は開口部54内に位置する金属酸化物パターン60の一部に比べて実質的に大きい厚さを有することができる。また、金属酸化物パターン60は金属パターン58bと実質的に同じ幅を有することができる。
【0066】
本実施形態において、金属酸化物パターン60は金属パターン58bの抵抗より実質的に高い抵抗を有する。金属パターン58bを酸化させて金属酸化物パターン60を形成する酸化工程の工程条件を調整することによって、金属酸化物パターン60の厚さを調節することができる。これに伴い、金属酸化物パターン60の抵抗も調節することができる。
【0067】
金属酸化物パターン60の幅は写真エッチング工程の限界幅(CD)より実質的に小さくすることもできる。一実施形態において、金属酸化物パターン60の幅はバリア金属膜パターン56aの厚さが増加することによって減少させることができる。例えば、金属酸化物パターン60は約50nm以下の小さい幅を有する。
【0068】
金属酸化物パターン60が相対的に高い抵抗を有する場合、金属酸化物パターン60に電流が印加されることによって金属酸化物パターン60内にジュール加熱効果(Joule heating effect)が発生することから金属酸化物パターン60が加熱電極の役割を担うことができる。
【0069】
本実施形態において、金属酸化物パターン60がライン(line)形状を有する場合には、金属酸化物パターン60は写真エッチング工程の限界幅(CD)より小さい幅を有する配線の役割を担うことができる。
【0070】
図3〜図5は、図1に示した導電構造物の形成方法を説明するための断面図である。
【0071】
図3を参照すると、基板50上に絶縁膜52を形成する。基板50は、半導体基板、半導体層を有する基板、金属酸化物基板などで形成することができる。絶縁膜52は、例えば、シリコン酸化物と同じ酸化物を使って形成することができる。
【0072】
絶縁膜52を部分的に除去して基板50の一部を露出させる開口部54を形成する。開口部54の写真エッチング工程を通じて絶縁膜52を貫通するように形成することができる。基板50の露出部分は導電領域を含む。一実施形態において、開口部54はコンタクトホール形状を有する。開口部54が写真エッチング工程を通じて形成される場合、開口部54は写真エッチング工程の限界幅(CD)と実質的に同一であるか又は実質的に大きな幅を有する。
【0073】
開口部54の側壁と底面及び絶縁膜52上にバリア金属膜56を形成する。バリア金属膜56は開口部54と絶縁膜52のプロファイル(profile)に沿って形成される。バリア金属膜56は後に形成される金属膜58に含まれた金属原子及び/又は金属イオンが絶縁膜52又は基板50に拡散する現象を防止する役割をする。バリア金属膜56はゆっくり酸化されるか又は殆ど酸化されない物質を使って形成することができる。例えば、バリア金属膜56は、チタン、チタン窒化物、タンタル、タンタル窒化物などで形成する。これらは単独又は2以上を組み合わせて使用することができる。バリア金属膜56は単層構造又は多層構造で形成することができる。
【0074】
バリア金属膜56は開口部54を完全に満たさないことがある。バリア金属膜56は開口部54のプロファイルに沿って開口部54の側壁と底面上に均一に形成される。バリア金属膜56が開口部54の側壁上に形成される場合、開口部54はバリア金属膜56の厚さの約2倍程度減少した幅を有する。従って、バリア金属膜56の厚さを調節することによって、開口部54の幅を調節することができる。
【0075】
バリア金属膜56上に開口部54を完全に満たしながら金属膜58を形成する。金属膜58は、例えば、タングステンを使って形成する。一実施形態において、開口部54の幅がバリア金属膜56の厚さを調節して変更されるために、金属膜58の厚さ又は幅もバリア金属膜56の厚さにより変化する。
【0076】
図4を参照すると、絶縁膜52の上部面が露出するまで金属膜58及びバリア金属膜56を部分的に除去する。例えば、金属膜58及びバリア金属膜56は化学機械的研磨(CMP)工程を通じて部分的に除去する。これに伴い、開口部54内にバリア金属膜パターン56a及び予備金属パターン58aが形成される。
【0077】
本実施形態による化学機械的研磨工程において、絶縁膜52が研磨されて予備金属パターン58a及びバリア金属膜パターン56aが絶縁膜52から突出する。例えば、予備金属パターン58a及びバリア金属膜パターン56aの突出部はそれぞれ約10nm程度の高さを有する。この場合、突出部を有する予備金属パターン58a及びバリア金属膜パターン56aは追加的なエッチング工程や平坦化工程を要求せずに、1回の化学機械的研磨工程で収得することができる。
【0078】
本実施形態において、突出部を有する予備金属パターン58a及びバリア金属膜パターン56aは互いに異なる工程条件下で遂行される2回以上の化学機械的研磨工程を通じて形成することができる。例えば、金属膜58及びバリア金属膜56を第1工程条件下で第1化学機械的研磨工程を通じて研磨した後、絶縁膜52を第2工程条件下で第2化学機械的研磨工程により研磨する。その結果、絶縁膜52から突出する突出部を有する予備金属パターン58a及びバリア金属膜パターン56aを形成することができる。
【0079】
図5を参照すると、予備金属パターン58aを酸素の雰囲気下で熱処理し、バリア金属膜パターン56a上に金属パターン58b及び金属酸化物パターン60を形成する。
【0080】
予備金属パターン58aを酸素の雰囲気下で熱処理すると、予備金属パターン58aの表面が酸素と反応することによって、予備金属パターン58aの表面が開口部54の側壁に沿って熱的に膨張する。これに伴い、予備金属パターン58aが金属パターン58bに変化しながら予備金属パターン58a上に金属酸化物パターン60が生成される。一実施形態において、予備金属パターン58aの構造により金属酸化物パターン60の形状が変化する。
【0081】
予備金属パターン58aの上部表面が絶縁膜52の上部表面に比べて高く位置する場合、予備金属パターン58aの上部表面から異方性で(anisotropically)金属酸化物パターン60が成長する。従って、金属酸化物パターン60は予備金属パターン58aの幅と実質的に類似の幅を有することができる。しかし、予備金属パターン58aの上部表面が絶縁膜52の上部表面に比べて低く位置する場合には、予備金属パターン58aの上部表面から等方性で(isotropically)金属酸化物パターン60が成長する。一実施形態において、金属酸化物パターン60は予備金属パターン58aの幅より広い幅を有することができる。
【0082】
図4に示した通り、予備金属パターン58aの上部表面が絶縁膜52の上部表面よりやや高く位置する場合、金属酸化物パターン60は予備金属パターン58aの上部表面から異方性で成長する。即ち、金属酸化物パターン60は予備金属パターン58aから実質的に垂直に形成され、金属酸化物パターン60は予備金属パターン58aの幅と実質的に類似の幅を有する。従って、金属酸化物パターン60の幅は開口部54の幅より実質的に狭くすることもできる。
【0083】
一方、金属酸化物パターン60の幅が減少すると、金属酸化物パターン60は減少した表面粗さ(surface roughness)を有する。例えば、金属酸化物パターン60が約50nm程度の幅を有する場合、金属酸化物パターン60が1Å〜数十Å程度に減少した表面粗さを有する。その結果、金属酸化物パターン60の表面凹凸による電気的な不良発生を減少させることができる。一実施形態において、開口部54が写真エッチング工程を通じて形成される場合、バリア金属膜パターン56aの厚さを調節することによって、金属酸化物パターン60が約50nm以下の小さい幅を有することができる。
【0084】
本実施形態において、予備金属パターン58aの上部表面を酸素と反応させながら開口部54の上部表面上に金属酸化物パターン60を形成する。従って、金属酸化物パターン60は開口部54から外部に突出する。金属酸化物パターン60を形成する間、予備金属パターン58aは予備金属パターン58aより低い高さを有する金属パターン58bに変化する。金属酸化物パターン60の高さが増加するほど予備金属パターン58aの高さは減少する。一実施形態において、金属酸化物パターン60は金属パターン58bの抵抗に比べて実質的に高い抵抗を有する。
【0085】
本実施形態において、金属パターン58bは予備金属パターン58aを熱処理して収得される。このような熱処理工程は予備金属パターン58aの付近で遂行される。熱処理工程はプラズマ(plasma)処理及び急速熱処理(RTA)のうちの一つ以上で遂行することができる。例えば、金属酸化物パターン60はプラズマ処理又は急速熱処理を通じて形成される。これとは異なって、金属酸化物パターン60を形成するためにプラズマ処理及び急速熱処理を次々と遂行することもできる。
【0086】
金属パターン58b及び金属酸化物パターン60の高さと厚さはそれぞれ熱処理工程の工程条件を変化させることによって調節する。また、金属パターン58b及び金属酸化物パターン60の幅はバリア金属膜56の厚さを調節することによって調節する。これに伴い、金属パターン58b及び金属酸化物パターン60の抵抗を容易に調節することができる。
【0087】
本実施形態において、金属パターン58b及び金属酸化物パターン60は急速熱処理工程を通じて形成される。このような急速熱処理工程は酸素の雰囲気下で約400℃〜約600℃程度の温度で約1分〜約10分程度遂行される。これとは異なって、金属パターン58b及び金属酸化物パターン60はプラズマ処理工程を通じて形成することもできる。一実施形態において、プラズマ処理工程は酸素の雰囲気下で約20W〜約100W程度のパワーを印加しながら約1分〜約10分程度遂行される。
【0088】
本実施形態において、予備金属パターン58aは、酸素(O)ガス、オゾン(O)ガスなどを含む処理ガスを使って酸化することができる。例えば、予備金属パターン58aは酸素ガスを約500sccm以上の流量で供給しながら酸化される。しかし、予備金属パターン58aは上述したガスと工程条件によって限定されるものではなく多様なガスと工程条件下で酸化することもできる。
【0089】
本実施形態において、予備金属パターン58aを酸化させる間、バリア金属膜パターン56aは酸化されないこともある。たとえバリア金属膜パターン56aが若干酸化されたとしても、バリア金属膜パターン56aの酸化された部分は金属酸化物パターン60の厚さに比べて非常に小さい厚さを有することがある。例えば、バリア金属膜パターン56aがチタン及びチタン酸化物うちの少なくとも一つを含む場合、バリア金属膜パターン56aは実質的に酸化されないこともある。
【0090】
金属酸化物パターン60を形成した後、金属酸化物パターン60の表面を処理する工程が追加的に遂行される。このような表面処理工程は金属酸化物パターン60の表面を窒素雰囲気下で熱処理する急速熱窒化(RTN)工程を含む。また、金属酸化物パターン60の表面に対して還元工程が遂行されて金属酸化物パターン60内の金属酸化物の量を減少させることができる。表面処理工程及び/又は還元工程を通じて金属酸化物パターン60の抵抗が変わるので、導電構造物の抵抗を調節することができる。
【0091】
本実施形態によると、金属酸化物の蒸着や蒸着された金属酸化物をエッチングせず、金属酸化物パターン60を形成する。また、金属酸化物パターン60は写真エッチング工程の限界幅(CD)より実質的に小さい幅を有する。金属酸化物パターン60の下にはコンタクトプラグ(contact plug)として機能できる金属パターン58bとバリア金属膜パターン56aが提供される。これに伴い、コンタクトプラグは金属酸化物パターン60より実質的に小さい抵抗を有する反面、コンタクトプラグの幅は金属酸化物パターン60の幅より実質的に大きくなる。金属パターン58b及び金属酸化物パターン60の厚さと幅を調節して金属パターン58b及び金属酸化物パターン60の抵抗を調整することができることから導電構造物に要求される水準の抵抗を有することができる。
【0092】
図6は、本発明の第1実施形態による磁気メモリ(magnetic memory)装置の断面図である。図6に示した磁気メモリ装置は本発明の上記実施形態による導電構造物を含むことができる。例えば、磁気メモリ装置は、図1を参照して説明した導電構造物と実質的に同じ構造を有する導電構造物を含む。
【0093】
図6を参照すると、半導体基板400上にMOSトランジスタが提供される。MOSトランジスタは磁気メモリ装置の少なくとも一つの単位セルを選択する。MOSトランジスタは、ゲート絶縁膜402、ゲート電極404、及び不純物領域406を含む。ゲート電極404は磁気メモリ装置のワードライン(word line)で提供される。一実施形態において、ゲート電極404は第1方向に沿って延長する。
【0094】
スピントランスファートルク(spin transfer torque)磁気メモリ装置において、磁気トンネル接合(MJT)構造物に磁気メモリ装置の両方向に電流を供給する。従って、磁気メモリ装置にスイッチング装置としてMOSトランジスタが適用される。
【0095】
半導体基板400上にはMOSトランジスタを覆う第1絶縁膜408が形成される。第1絶縁膜408は、例えば、シリコン酸化物などの酸化物を含む。第1絶縁膜408を貫通してコンタクトプラグ410が形成される。コンタクトプラグ410は不純物領域406に電気的に接触する。
【0096】
コンタクトプラグ410上には導電パターン412が配置される。導電パターン412は第1方向に延長することができる。導電パターン412はライン形状を有することができる。導電パターン412は、例えば、タングステンなどの金属を含む。
【0097】
第1絶縁膜408上に導電パターン412を覆う第2絶縁膜414が形成される。第2絶縁膜414は、例えば、シリコン酸化物と同じ酸化物を含む。第2絶縁膜414を貫通して開口部415が形成される。開口部415は導電パターン412を部分的に露出させる。開口部415はコンタクトホールの形状を有する。一実施形態において、磁気メモリ装置のセル領域に複数の開口部415が規則的に配置される。他の実施形態によると、磁気メモリ装置の一つの単位セルに一つの開口部415が配置される。
【0098】
開口部415の側壁と底面上に第1バリア金属膜パターン416が形成される。第1バリア金属膜パターン416上には金属パターン418が位置する。金属パターン418はタングステンを含むことができる。金属パターン418は開口部415を部分的に満たす。
【0099】
金属パターン418上には金属酸化物パターン420が配置される。金属酸化物パターン420は開口部415から突出する。金属酸化物パターン420は金属パターン418を酸化させて形成される。金属パターン418がタングステンを含む場合、金属酸化物パターン420はタングステン酸化物を含む。
【0100】
金属パターン418及び金属酸化物パターン420は実質的に同じ幅を有する。即ち、第1バリア金属膜パターン416、金属パターン418、及び金属酸化物パターン420は図1に示したパターン構造物と同じ形状を有する。
【0101】
本実施形態において、金属パターン418の幅は金属酸化物パターン420の幅と実質的に同一である。例えば、第1バリア金属膜パターン416、金属パターン418、及び金属酸化物パターン420は、図1を参照して説明したバリア金属膜パターン56a、金属パターン58b、及び金属酸化物パターン60にそれぞれ対応する。
【0102】
導電構造物において、金属パターン418及び第1バリア金属膜パターン416は磁気メモリ装置の下部電極コンタクトの役割を担うことができる。相対的に高い抵抗を有する金属酸化物パターン420は磁気メモリ装置の磁気トンネル接合(MJT)構造物内の自由膜パターン(free layer pattern)を加熱できる加熱電極の機能を遂行することができる。
【0103】
第2絶縁膜414上には第3絶縁膜422が形成される。第3絶縁膜422は隣接する金属酸化物パターン420の間のギャップを満たす。第3絶縁膜422は高い緻密度と優秀なステップカバレッジ(step coverage)を有する物質を含むことができる。例えば、第3絶縁膜422は高密度プラズマ−化学気相蒸着(HDP−CVD)工程又は原子層積層(ALD)工程を利用して収得されたシリコン酸化物を含む。従って、第3絶縁膜422は金属酸化物パターン420のプロファイルに沿って均一に形成することができる。
【0104】
本実施形態において、第3絶縁膜422の上部表面と金属酸化物パターン420の上部表面は実質的に同じ平面上に位置する。第1バリア金属膜パターン416の上部表面は第3絶縁膜422によって覆われていることから、第1バリア金属膜パターン416は露出しない。
【0105】
第3絶縁膜422上に磁気トンネル接合(MTJ)構造物が配置される。磁気トンネル接合構造物は、外部から信号が磁気メモリ装置に印加された場合に電子が二つの強磁性薄膜層の間に介在する非常に薄いトンネル酸化膜を通じてトンネリング(tunneling)を起こせるようにサンドイッチ形態の多層構造を有する。磁気トンネル接合構造物は、自由膜パターン426、トンネル酸化膜パターン428、第1及び第2固定膜パターン(pinned layer patterns)430a、430b、430c、432を含む。第1及び第2固定膜パターン430a、430b、430c、432は二つの強磁性薄膜に固定された磁気分極の磁化方向と実質的に同じ磁化方向を有するスピンを含む。
【0106】
磁気トンネル接合構造物において、自由膜パターン426の少なくとも一部が金属酸化物パターン420の上部表面に接触する。一実施形態において、磁気トンネル接合体は自由膜パターン426、トンネル酸化膜パターン428、第1及び第2固定膜パターン430a、430b、430c、432を含む多様な形状の積層構造を有することができるため、磁気トンネル接合構造物の構造が限定されるものではない。
【0107】
本実施形態において、自由膜パターン426は、例えば、コバルト−鉄−ホウ素(Co−Fe−B)のような金属化合物を含む。
【0108】
第3絶縁膜422と自由膜パターン426との間には第2バリア金属膜パターン424が備わる。第2バリア金属膜パターン424は自由膜パターン426に含まれる金属の異常成長を防止する。第2バリア金属膜パターン424は金属及び金属化合物うちの少なくとも一つを含むことができる。例えば、第2バリア金属膜パターン424は、タンタル(Ta)、チタン、タンタル窒化物(TANx)、チタン窒化物などを含む。
【0109】
トンネル酸化膜パターン428はマグネシウム酸化物(MgOx)等の金属酸化物を含むことができる。第1及び第2固定膜パターン430a、430b、430c、432は、第1固定膜パターン430a、430b、430cと第2固定膜パターン432が積層された構造を有する。第1固定膜パターン430a、430b、430cはトンネル酸化膜パターン428に直接接触する。
【0110】
本実施形態において、第1固定膜パターン430a、430b、430cは、下部強磁性層430a、反強磁性カップリングスペーサー(anti−ferromagnetic coupling spacer)430b、及び上部強磁性層430cに区分することができる。第1固定膜パターン430a、430b、430cは積層された合成(synthetic)反強磁性層構造を有する。下部強磁性層430aはコバルト−鉄−ホウ素(Co−Fe−B)を含むことができ、上部強磁性層430cはコバルト−鉄(Co−Fe)を含むことができる。反強磁性カップリングスペーサー430bは、例えば、ルテニウム(Ru)と同じ金属を含む。第2固定膜パターン432は白金−マンガン(Pt−Mn)を含むことができる。
【0111】
磁気接合トンネル構造物において、自由膜パターン426の底面は金属酸化物パターン420上に位置する。金属酸化物パターン420は自由膜パターン426を加熱するための加熱膜パターンの機能を遂行する。金属酸化物パターン420の幅が第2絶縁膜414内の開口部415の幅より小さいので、金属酸化物パターン420は自由膜パターン426をより効果的に加熱できる高い抵抗を有することができる。
【0112】
凹凸部を有する層と同じように表面粗さが劣悪な層上部に磁気トンネル接合構造物が提供される場合、ニールカップリング(Neel coupling)現象によって磁気トンネル接合構造物の特性が劣化することがある。しかし、本実施形態による磁気メモリ装置は優秀な平坦面を有する金属酸化物パターン420上に配置されるため、磁気メモリ装置の優秀な動作特性を確保することができる。
【0113】
自由膜パターン426が高い温度を有する場合、磁気メモリ装置にデータを保存する際、自由膜パターン426の保磁力(coercive force)が減少する。自由膜パターン426が高い温度を有すると、スピン注入メカニズムを利用する磁気メモリ装置(Spin Transfer Torque Magnetic Random Access Memory:STT−MRAM)において書き込み電流又は臨界電流が減少して装置の電力消耗を減少させることができる。一実施形態において、磁気トンネル接合構造物上にはハードマスクパターンが配置される。
【0114】
第3絶縁膜422上に隣接する磁気トンネル接合構造物の間のギャップを満たしながら第4絶縁膜434が形成される。第4絶縁膜434上には第5絶縁膜436が形成される。第4絶縁膜434及び第5絶縁膜436は、例えば、それぞれ酸化物を含む。
【0115】
第5絶縁膜436内には上部電極438が位置する。上部電極438は第5絶縁膜436を貫通して磁気トンネル接合構造物の最上層に配置される固定膜パターンに接触する。上部電極438は小さい抵抗を有する金属、例えば、タングステンを含む。
【0116】
第5絶縁膜436上にはビットライン440が形成される。ビットライン440は上部電極438に電気的に連結される。ビットライン440はワードラインが延長する方向に対して実質的に直交する第2方向に沿って延長する。
【0117】
以下、本実施形態による磁気メモリ装置のデータ保存過程を説明する。
【0118】
図6を参照すると、トランジスタのゲート電極404にワードライン信号を印加し、同時にビットライン440にビットライン書き込み信号を印加する。ワードライン信号は所定の時間の間にトランジスタのスレッショルド電圧より高いワードライン電圧を有する電圧パルス信号(voltage pulse signal)に該当する。従って、ワードラインに接続されたトランジスタはワードライン電圧が印加される間にターンオン(turn on)する。ビットライン書き込み信号はワードライン信号が印加される間ビットライン440に電流を加える電流パルス信号に該当する。その結果、磁気トンネル接合構造物及び磁気トンネル接合構造物に電気的に連結されたトランジスタを通じて書き込み電流が流れる。
【0119】
書き込み電流は第1書き込み電流と第2書き込み電流を含む。第1書き込み電流は自由膜パターン426から第2固定膜パターン432に向かって流れる。第2書き込み電流は第2固定膜パターン432から自由膜パターン426に向かって流れる。一実施形態において、第1書き込み電流は磁気トンネル接合構造物内でY軸の正(positive)の方向に向かって流れることができ、第2書き込み電流はY軸の負(negative)の方向に向かって流れることができる。言い換えると、第1書き込み電流が流れる間に電子はY軸の負の方向に向かって流れる。また、第2書き込み電流が流れる間に電子はY軸の正の方向に向かって流れる。
【0120】
第1書き込み電流が磁気トンネル接合構造体を通じて流れる時、自由膜パターン426内に電子が注入される。電子はアップスピン電子及びダウンスピン電子を含む。第2固定膜パターン432内の固定された磁気分極の大部分がアップスピンを有する場合、自由膜パターン426内に注入されたアップスピン電子のみがトンネル絶縁膜パターン428を通り過ぎて第2固定膜パターン432に到達することができ、自由膜パターン426内に注入されたダウンスピン電子は自由膜パターン426内に蓄積される。
【0121】
自由膜パターン426内に注入されるアップスピン電子及びダウンスピン電子の数は第1書き込み電流の電流密度に比例する。従って、第1書き込み電流の電流密度を増加させると、自由膜パターン426内に蓄積されたダウンスピン電子によって自由膜パターン426は初期の磁化方向に関係なく第2固定膜パターン432の磁化方向に逆方向で平行した多数の磁気分極(majority magnetic polarizations)を有することになる。その結果、第1書き込み電流の電流密度が第1臨界電流密度(critical current density)より大きい場合に磁気トンネル接合構造物は最大抵抗値を有するようにスイッチングできる。第1書き込み電流が供給されることによって、金属酸化物パターン420は自由膜パターン426を加熱して自由膜パターン426の保磁力を減少させ、第1臨界電流密度を低くする。これに伴い、第1書き込み電流が減少して、磁気メモリ装置の消耗電力を最小化することができる。
【0122】
第2書き込み電流が磁気トンネル接合構造物を通じて流れる場合、第2固定膜パターン432を通過する電子の大部分は第2固定膜パターン432内の固定された磁気分極(fixed magnetic polarizations)と同じ磁化方向を示すスピンを有する。例えば、第2固定膜パターン432内の多数の磁気分極(majority magnetic polarizations)がアップスピン(up−spin)を有する場合、第2固定膜パターン432を過ぎる電子の大部分はアップスピンを有する。例えば、第2固定膜パターン432が合成反強磁性層である場合、電子の大部分は合成反強磁性固定膜パターンの上部強磁性層430cと同じ磁化方向を見せるスピンを有する。アップスピン電子(up−spin electrons)はトンネル絶縁膜パターン428を通り過ぎて自由膜パターン426に到達する。自由膜パターン426に到達したアップスピン電子の数は第2書き込み電流の電流密度に比例する。従って、第2書き込み電流の電流密度を増加させると、自由膜パターン426は初期の磁化方向に関係なく第2固定膜432内の固定された磁気分極に平行した多数の磁気分極を有することになる。このような点は自由膜パターン426内に注入されたアップスピン電子に起因する。その結果、第2書き込み電流の電流密度が第2臨界電流密度(critical current density)より大きい場合、磁気トンネル接合構造物は低い抵抗値を有するようにスイッチングできる。第2書き込み電流が供給されることによって、金属酸化物パターン420は自由膜パターン426を加熱して自由膜パターン426の保磁力を減少させ、第2臨界電流密度を低くする。これに伴い、第2書き込み電流が減少して、磁気メモリ装置の消耗電力を最小化することができる。
【0123】
図7〜図10は、図6に示した磁気メモリ装置の製造方法を説明するための断面図である。
【0124】
図7を参照すると、半導体基板400上に磁気メモリ装置の所望のセルを選択するためのMOSトランジスタを形成する。
【0125】
MOSトランジスタを形成する過程において、半導体基板400上にゲート絶縁膜402及びゲート電極膜を形成する。この後、ゲート電極膜をパターニングしてゲート絶縁膜402上にゲート電極404を形成する。ゲート電極404に隣接する半導体基板400の一部に不純物を注入して不純物領域406を形成する。ゲート電極404は磁気メモリ装置のワードラインで提供される。ゲート電極404は第1方向に沿って延長するライン形状を有する。
【0126】
半導体基板402上にMOSトランジスタを覆う第1絶縁膜408を形成する。第1絶縁膜408を貫通するコンタクトプラグ410を形成する。コンタクトプラグ410は不純物領域406と接触する。第1絶縁膜408及びコンタクトプラグ410上に導電パターン412を形成する。導電パターン412はコンタクトプラグ410を通じて不純物領域406に電気的に連結される。コンタクトプラグ410及び導電パターン412はそれぞれ低い抵抗を有する金属を含む。
【0127】
コンタクトプラグ410及び導電パターン412を形成する過程において、第1絶縁膜408を部分的にエッチングしてコンタクトホールを形成する。コンタクトホールは、例えば、写真エッチング工程を通じて形成される。コンタクトホールを満たしながら第1絶縁膜408上に導電膜を形成する。導電膜をパターニングしてコンタクトプラグ410と導電パターン412を形成する。他の実施形態において、コンタクトホール内にコンタクトプラグ410を形成した後、コンタクトプラグ410と第1絶縁膜408上に追加的な導電膜を形成してパターニングし、コンタクトプラグ410と第1絶縁膜408上に導電パターン412を形成することができる。また他の実施形態において、コンタクトプラグ410及び導電パターン412はダマシン(damascene)工程を通じて形成することができる。
【0128】
図8を参照すると、第1絶縁膜408上に導電パターン412を覆う第2絶縁膜414を形成する。第2絶縁膜414を部分的にエッチングして導電パターン412を少なくとも部分的に露出させる開口部415を形成する。開口部415は、例えば、写真エッチング工程を通じて形成される。開口部415はコンタクトホール形状を有する。
【0129】
図3〜図5を参照して説明した工程と実質的に同一であるか又は実質的に類似の工程を遂行し、開口部415内部を満たす導電構造物を形成する。導電構造物は開口部415から突出する。導電構造物は、第1バリア金属膜パターン416、金属パターン418、及び金属酸化物パターン420を含む。第1バリア金属膜パターン416は開口部415側壁と底面上に形成され、金属パターン418は第1バリア金属膜パターン416上に形成される。金属パターン418は開口部415を部分的に満たす。金属酸化物パターン420は開口部415の外部に突出する。金属パターン418と金属酸化物パターン420はそれぞれタングステンとタングステン酸化物を含むことができる。一実施形態において、金属パターン418及び第1バリア金属膜パターン416は磁気メモリ装置の下部電極として使われ、金属酸化物パターン420は磁気メモリ装置の加熱電極として使われる。
【0130】
図9を参照すると、第2絶縁膜414上に金属酸化物パターン420を覆う第3絶縁膜422を形成する。金属酸化物パターン420が露出するまで第3絶縁膜422を部分的に除去する。第3絶縁膜422は化学機械的研磨工程を通じて部分的に除去される。
【0131】
第3絶縁膜422は高い緻密度と優秀なステップカバレッジを有する物質を使って形成することができる。例えば、第3絶縁膜422は高密度プラズマ−化学気相蒸着(HDP−CVD)工程又は原子層積層(ALD)工程を通じて収得されるシリコン酸化物を含む。従って、第3絶縁膜422が導電構造物のプロファイルに沿って均一に形成される。第3絶縁膜422が高い緻密度を有する場合、化学機械的研磨工程で第3絶縁膜422を部分的に除去した後、第3絶縁膜422と金属酸化物パターン420が凹凸なしで均一な表面を有する。
【0132】
図10を参照すると、第3絶縁膜422及び金属酸化物パターン420上に磁気トンネル接合構造物を構成する複数の薄膜を形成する。一実施形態において、磁気トンネル接合構造物を形成するために、第2バリア金属膜、自由膜、トンネル酸化膜、第1固定膜及び第2固定膜を次々と積層する。第1固定膜は、下部強磁性層、反強磁性カップリングスペーサー層、上部強磁性層などを含む。第2バリア金属膜は自由膜パターンに含まれる金属の異常成長を防止する。第2バリア金属膜はアモルファス金属を含むことができる。例えば、第2バリア金属膜は、タンタル、タンタル窒化物、チタン、チタン窒化物などを含む。自由膜はコバルト−鉄−ホウ素を含むことができ、トンネル酸化膜はマグネシウム酸化物を含むことができる。第1固定膜において、下部強磁性層はコバルト−鉄−ホウ素を包含でき、上部強磁性層はコバルト−鉄を含むことができ、反強磁性カップリングスペーサー層はルテニウムを含むことができる。第1固定膜上に位置する第2固定膜は白金−マンガン(Pt−Mn)を含むことができる。
【0133】
磁気トンネル接合構造物を形成するための複数の薄膜を順にパターニングし、第2バリア金属膜パターン424、自由膜パターン426、トンネル酸化膜パターン428、第1固定膜パターン430a、430b、430c、及び第2固定膜パターン432を形成する。即ち、磁気トンネル接合構造物は、第2バリア金属膜パターン424、自由膜パターン426、トンネル酸化膜パターン428、第1固定膜パターン430a、430b、430c、及び第2固定膜パターン432を含む。磁気トンネル接合構造物は金属酸化物パターン420に接触する。磁気トンネル接合構造物は島(island)形状を有することができる。一実施形態において、磁気トンネル接合構造物上にハードマスクパターンが形成される。ハードマスクパターンは磁気トンネル接合構造物を形成するためのエッチングマスクとして使われる。
【0134】
図6に示したように、磁気トンネル接合構造物を覆いながら第3絶縁膜422上に第4絶縁膜434を形成する。第4絶縁膜434は隣接する磁気トンネル接合構造物の間のギャップを充分に埋めたてる。第4絶縁膜434上には第5絶縁膜436が形成される。
【0135】
第5絶縁膜436を部分的にエッチングして、第5絶縁膜436を貫通する第2コンタクトホールを形成する。第2コンタクトホールは磁気トンネル接合を部分的に露出させる。即ち、第2固定膜パターン432が第2コンタクトホールを通じて露出する。
【0136】
第2コンタクトホールを満たしながら第5絶縁膜436上に導電物質を蒸着した後、第5絶縁膜436が露出するまで導電物質を部分的に除去する。これに伴い、第2コンタクトホール内に上部電極438が形成される。上部電極438はタングステンを含むことができ、化学機械的研磨工程を通じて形成される。
【0137】
第5絶縁膜436及び上部電極438上に導電膜を形成する。導電膜をパターニングしてビットライン440を形成する。ビットライン440は写真エッチング工程を通じて形成することができる。
【0138】
上述のように、導電構造物は簡単な工程を通じてタングステン酸化物を含む金属酸化物パターン420を具備することができる。金属酸化物パターン420が低い抵抗と小さい幅を有することから、磁気メモリ装置の加熱電極として使われる。磁気メモリ装置がタングステン酸化物を含む金属酸化物パターン420を具備する場合、磁気メモリ装置は低い保磁力を有する。
【0139】
図11は、本発明の第1実施形態による相変化メモリ装置の断面図である。図11に示した相変化メモリ装置は、図1を参照して説明した導電構造物と実質的に同一又は類似の構成を有する導電構造物を含む。
【0140】
図11を参照すると、素子分離領域及びアクティブ領域を含む基板490が用意される。基板490のアクティブ領域には不純物領域490aが形成される。例えば、不純物領域490aは、リン(P)、ヒ素(As)等と同じN型不純物を含む。基板490の素子分離領域には素子分離用トレンチが提供され、素子分離用トレンチ内には素子分離膜パターン492が形成される。
【0141】
基板490上に第1絶縁膜494が形成される。第1絶縁膜494を貫通して不純物領490aを露出させる第1開口部496が形成される。第1開口部496内にP−Nダイオード500が配置される。P−Nダイオード500は第1開口部496を満たす。P−Nダイオード500は不純物領域490aに電気的に接触する。
【0142】
本実施形態において、P−Nダイオード500は第1ポリシリコン膜パターン500a及び第2ポリシリコン膜パターン500bを含む。第1ポリシリコン膜パターン500aはN型不純物でドーピングできる反面、第2ポリシリコン膜パターン500bはP型不純物でドーピングできる。P−Nダイオード500上には金属シリサイドパターンが形成され、金属シリサイドパターンはP−Nダイオード500と導電構造物との間の界面抵抗を減少させる。
【0143】
第1絶縁膜494及びP−Nダイオード500上に第2絶縁膜504が形成される。第2絶縁膜504はP−Nダイオード500を部分的に露出させる第2開口部505を含む。第2開口部505はコンタクトホール形状を有する。
【0144】
第2開口部505内には導電構造物が位置する。導電構造物は図1を参照して説明した導電構造物と実質的に同じ構成を有する。導電構造物は、バリア金属膜パターン506、金属パターン508、及び金属酸化物パターン510を含む。例えば、金属パターン508と金属酸化物パターン510はそれぞれタングステンとタングステン酸化物を含む。導電構造物は相変化メモリ装置のメモリセルの下部電極として利用される。タングステン酸化物を含む金属酸化物パターン510は高い抵抗を有するため、導電構造物の金属酸化物パターン510は相変化構造物514を加熱することができる。例えば、金属酸化物パターン510は金属パターン508に比べて高い抵抗を有する。また、金属酸化物パターン510は金属パターン508とバリア金属膜パターン506の合計抵抗より大きい抵抗を有することができる。
【0145】
第2絶縁膜504上には第3絶縁膜512が形成される。導電構造物の金属酸化物パターン510は第2絶縁膜504から突出し、第3絶縁膜512内に埋められる。従って、第3絶縁膜512は隣接する金属酸化物パターン510の間のギャップを満たす。
【0146】
本実施形態において、第3絶縁膜512は、高い緻密度と優秀なステップカバレッジの物質を使って形成することによって、第3絶縁膜512に隣接する金属酸化物パターン510を十分に電気的に絶縁させながら金属酸化物パターン510のプロファイルに沿って第2絶縁膜504上に均一に形成される。例えば、第3絶縁膜512は高密度プラズマ−化学気相蒸着工程又は原子層積層工程を通じて形成されたシリコン酸化物を含む。第3絶縁膜512は金属酸化物パターン510と実質的に同じ高さを有する。一実施形態において、第3絶縁膜512の上部表面と金属酸化物パターン510の上部表面は実質的に同じ平面上に位置する。
【0147】
相変化構造物514は導電構造物の金属酸化物パターン510上に配置される。金属酸化物パターン510が写真エッチング工程の限界幅より小さい幅を有する場合、金属酸化物パターン510と相変化構造物との間の接触面積が減少する。従って、相変化構造物514内でジュール加熱によって容易に相転移(phase transition)が起きる。
【0148】
本実施形態において、相変化構造物514はアモルファス状態と結晶状態が可逆的に変わるカルコゲニド(chalcogenide)化合物を含む。カルコゲニド化合物が結晶状態を有する時、カルコゲニド化合物は高い光学的反射度と低い電気抵抗を有する。反面、カルコゲニド化合物がアモルファス状態を有する場合、カルコゲニド化合物の光学的反射度は低く電気抵抗は高くなる。相変化構造物514は、ゲルマニウム−アンチモン−テルル(Ge−Sb−Te)合金などのようにカルコゲニド化合物を含む。
【0149】
相変化構造物514上には上部電極516が配置される。上部電極516は、例えば、チタン窒化物と同じ金属窒化物を含む。
【0150】
上部電極516を覆う第4絶縁膜518が第3絶縁膜512上に形成される。即ち、上部電極516と相変化構造物514は第4絶縁膜518内に埋められる。
【0151】
第4絶縁膜518にはコンタクトホールが形成される。コンタクトホールは上部電極516を部分的に露出させる。コンタクトホール内には上部電極コンタクト522が配置され、上部電極コンタクト522は上部電極516に接触する。上部電極コンタクト522は、例えば、タングステンなどの金属を含む。
【0152】
本実施形態による相変化メモリ装置において、導電構造物が相変化構造物に接触する金属酸化物パターンを具備する。タングステン酸化物を包含できる金属酸化物パターンが高い抵抗と小さい幅を有することから、相変化構造物のジュール加熱効率が高くなり、相変化メモリ装置のリセット電流が減少する。一実施形態において、セット(set)状態とリセット(reset)状態で相変化構造物の抵抗散布が減少するために、相変化メモリ装置のセット状態及びリセット状態が明らかに区分される。
【0153】
図12は、図11に示した相変化メモリ装置の製造方法を説明するための断面図である。
【0154】
図12を参照すると、基板490の所定の部分に不純物を注入し、基板490の所定の部分に不純物領域490aを形成する。不純物領域490aはイオン注入工程を利用して形成することができる。
【0155】
基板490を部分的にエッチングして基板490に素子分離用トレンチを形成する。トレンチは第1方向に沿って延長する。素子分離用トレンチ内部を満たすように素子分離膜を形成した後、素子分離膜を部分的に除去してトレンチ内に素子分離膜パターン492を形成する。素子分離膜パターン492は、例えば、酸化物を含む。
【0156】
素子分離膜パターン492を有する基板490上に第1絶縁膜494を形成する。例えば、第1絶縁膜494はシリコン酸化物と同じ酸化物を使って形成される。第1絶縁膜494を部分的にエッチングして不純物領域490aを部分的に露出させる第1開口部496を形成する。
【0157】
第1開口部496を満たしながら第1絶縁膜494上にシリコン膜を形成する。第1絶縁膜494が露出するまでシリコン膜を部分的に除去する。これに伴い、第1開口部496内の不純物領域490a上にシリコン膜パターンを形成する。
【0158】
P型不純物をシリコン膜パターンの上部にドーピングする一方、N型不純物をシリコン膜パターンの下部に注入する。これに伴い、第1開口部496内の不純物領域490a上にP−Nダイオード500が形成される。P−Nダイオード500は第1シリコン膜パターン500a及び第2シリコン膜パターン500bを含む。第1及び第2シリコン膜パターン500a、500bはそれぞれN型不純物及びP型不純物を含む。
【0159】
本実施形態において、P−Nダイオード500上に金属シリサイドパターンが追加的に形成される。
【0160】
第1絶縁膜494及びP−Nダイオード500上に第2絶縁膜504を形成する。第2絶縁膜504は、例えば、シリコン酸化物と同じ酸化物を使って形成される。第2絶縁膜504を部分的にエッチングし、P−Nダイオード500を部分的に露出させる第2開口部505を形成する。
【0161】
P−Nダイオード500上に導電構造物を形成する。導電構造物は図3〜図5を参照して説明した工程と実質的に同一又は実質的に類似の工程を通じて形成される。導電構造物は第2開口部505を満たしながら第2開口部505上に突出する。
【0162】
導電構造物は、バリア金属膜パターン506、金属パターン508、及び金属酸化物パターン510を具備する。バリア金属膜パターン506は第2開口部505側壁及び底面上に形成される。金属パターン508はバリア金属膜パターン506上に位置する。金属パターン508は第2開口部505を部分的に満たす。金属パターン508はタングステンを含むことができる。金属酸化物パターン510は金属パターン508上に位置して、第2開口部505を完全に満たす。金属酸化物パターン510はタングステン酸化物を含むことができる。バリア金属膜パターン506を介在して金属酸化物パターン510が第2開口部505内に形成されることから、金属酸化物パターン510は第2開口部505の幅より実質的に小さい幅を有する。
【0163】
第2絶縁膜504上に金属酸化物パターン510を覆う第3絶縁膜512を形成する。第3絶縁膜512は高い緻密度と優秀なステップカバレッジを有する物質を使って形成することができる。例えば、第3絶縁膜512は高密度プラズマ−化学気相蒸着工程又は原子層積層工程を通じて形成されたシリコン酸化物を含む。金属酸化物パターン510が露出するように第3絶縁膜512を部分的に除去する。第3絶縁膜512は化学機械的研磨工程及び/又はエチバック工程を利用して部分的に除去される。
【0164】
図11を参照すると、第3層間絶縁膜512上に相変化物質膜を形成する。相変化物質膜は、例えば、ゲルマニウム−アンチモン−テルル(GST)合金と同じカルコゲニド化合物を使って形成される。
【0165】
相変化物質膜上に上部電極膜を形成する。例えば、上部電極膜はチタン窒化物などの金属窒化物を使って形成される。上部電極膜及び相変化物質膜をパターニングして相変化構造物514と上部電極516を形成する。上部電極516と相変化構造物514は写真エッチング工程を通じて形成することができる。
【0166】
第3絶縁膜512上に上部電極516及び相変化構造物514を覆う第4絶縁膜518を形成する。第4絶縁膜518を部分的にエッチングして、上部電極516の少なくとも一部を露出させるコンタクトホール520を形成する。
【0167】
コンタクトホール520内に導電物質を蒸着して、上部電極522上に上部電極コンタクト522を形成する。例えば、上部電極コンタクト522は、タングステン、アルミニウム、チタン、タンタル、銅(Cu)、白金などの金属を含む。
【0168】
本実施形態によると、簡略化された工程を通じて低い抵抗と小さい幅を有するタングステン酸化物からなる金属酸化物パターン510を収得することができる。このような金属酸化物パターン510は相変化構造物514を加熱するための電極の役割を十分に遂行できる。相変化メモリ装置が金属酸化物パターン510を含む場合、相変化メモリ装置のリセット電流が減少し、抵抗散布が減少して相変化メモリ装置に容易にデータを記録でき、相変化メモリ装置に保存されたデータを容易に読み取ることができる。
【0169】
図13は、本発明の第2実施形態による相変化メモリ装置の断面図である。図13に示した相変化メモリ装置は、図1を参照して説明した導電構造物と実質的に同じ構成を有する導電構造物を含む。図13に示した相変化メモリ装置は、相変化構造物を除くと、図11を参照して説明した相変化メモリ装置と実質的に同じ構成を有する。
【0170】
図13を参照すると、基板490上に第1絶縁膜494、P−Nダイオード500、及び第2絶縁膜504が提供される。第2絶縁膜504を貫通してP−Nダイオード500を露出させる第2開口部505が形成される。第2開口部505内には導電構造物が配置される。導電構造物は、図11を参照して説明した導電構造物の構成要素と実質的に同じ形状を有するバリア金属膜パターン506、金属パターン508、及び金属酸化物パターン510aを含む。
【0171】
第2絶縁膜504上には第3絶縁膜512が配置される。第3絶縁膜512は導電構造物をカバーする。第3絶縁膜512は高い緻密度と優秀なステップカバレッジを有して物質を含むことができる。例えば、第3絶縁膜512は高密度プラズマ−化学気相蒸着工程、原子層積層工程等を通して収得されたシリコン酸化物を含む。第3絶縁膜512は金属酸化物パターン510aの上部表面より実質的に高く位置する上部表面を有する。
【0172】
第3絶縁膜512を貫通して金属酸化物パターン510aを露出させる第3開口部515が形成される。第3開口部515の幅は金属酸化物パターン510aの幅と実質的に同一である。
【0173】
金属酸化物パターン510a上に第3開口部515を満たしながら相変化構造物514aが形成される。相変化構造物514aは第3開口部515上に突出する。一実施形態において、相変化構造物514aは第3開口部515内に位置する下部と第3開口部515上に突出する上部を含む。相変化構造物514aの下部幅はその上部幅より小さい。相変化構造物514aが金属酸化物パターン510aに接触することから、金属酸化物パターン510aにより加熱される相変化構造物514aの一部分が第3開口部515内に限定される。
【0174】
相変化構造物514a上には上部電極516が配置される。上部電極516と相変化構造物514aを覆う第4絶縁膜518が第3絶縁膜512上に配置される。第4絶縁膜518を貫通して上部電極コンタクト522が形成される。上部電極コンタクト512は上部電極516に電気的に連結される。
【0175】
図14は、図13に示した相変化メモリ装置の製造方法を説明するための断面図である。
【0176】
図12を参照して説明した通り、基板490上に素子分離膜パターン492、第1絶縁膜494、及びP−Nダイオード500を形成する。第1絶縁膜494とP−Nダイオード500上に第2絶縁膜504を形成する。第2絶縁膜504を部分的にエッチングして第2絶縁膜504を貫通する第2開口部505を形成する。第2開口部505はP−Nダイオード500を少なくとも部分的に露出させる。
【0177】
図3〜図5を参照して説明した工程と実質的に同一又は実質的に類似の工程を通じて、P−Nダイオード500上に予備導電構造物を形成する。予備導電構造物は第2開口部505を満たしながら第2開口部505上に突出する。予備導電構造物は、バリア金属膜パターン506、金属パターン508、及び予備金属酸化物パターンを含む。
【0178】
金属パターン508及び予備金属酸化物パターンはそれぞれタングステン及びタングステン酸化物を含むことができる。バリア金属膜パターン506は第2開口部505の側壁と底面上に形成される。バリア金属膜パターン506上に形成される金属パターン508は第2開口部505を部分的に満たす。予備金属酸化物パターンは第2開口部505上に突出する。予備金属酸化物パターンは後続して形成される金属酸化物パターン510aの厚さより実質的に大きい厚さを有する。例えば、予備金属酸化物パターンの高さは金属酸化物パターン510aの高さと相変化構造物514aの下部の高さの和と実質的に同一である。
【0179】
第2絶縁膜504上に予備金属酸化物パターンを覆う第3絶縁膜512を形成する。第3絶縁膜512は高い緻密度と優秀なステップカバレッジを有する物質を使って形成することができる。予備金属酸化物パターンが露出するまで第3絶縁膜512を部分的に除去する。第3絶縁膜512は化学機械的研磨工程及び/又はエチバック工程を通じて部分的に除去される。
【0180】
図14を参照すると、予備金属酸化物パターンを部分的に除去して金属パターン508上に金属酸化物パターン510aを形成する。この時、金属酸化物パターン510aが第2絶縁膜504上に突出し、金属酸化物パターン510aの形成後にバリア金属膜パターン506が露出しない。
【0181】
金属酸化物パターン510aが金属パターン508上に形成されると、予備金属酸化物パターンが部分的に除去された部位に第3開口部515が形成される。即ち、予備金属酸化物パターンの除去された部分が第3開口部515に対応する。第3絶縁膜512に形成される第3開口部515を通じて金属酸化物パターン510aが露出する。第3開口部515の幅は金属酸化物パターン510aの幅と実質的に同一である。
【0182】
図13に示したように、第3開口部515を満たしながら第3絶縁膜512上に相変化物質膜を形成する。相変化物質膜は、例えば、ゲルマニウム−アンチモン−テルル(GST)合金などのカルコゲニド化合物を使って形成される。相変化物質膜上に上部電極膜を形成する。上部電極膜はチタン窒化物と同じ金属窒化物を使って形成することができる。
【0183】
上部電極膜及び相変化物質膜をパターニングして金属酸化物パターン510a上に相変化構造物514a及び上部電極516を形成する。一実施形態において、相変化構造物514aは第3開口部515内で金属酸化物パターン510a上に位置する下部を含む。相変化構造物514aの下部の幅は相変化構造物514aの上部の幅に比べて実質的に広くすることもできる。
【0184】
第3絶縁膜512上に上部電極515を覆う第4絶縁膜518を形成する。第4絶縁膜518を貫通して、上部電極516に接触する上部電極コンタクト522を形成する。
【0185】
図15は、本発明の第3実施形態による相変化メモリ装置の断面図である。図15に示した相変化メモリ装置は、図1を参照して説明した導電構造物と実質的に同一又は類似の構成を有する導電構造物を含む。図15に示した相変化メモリ装置は、相変化構造物を除くと、図13を参照して説明した相変化メモリ装置と実質的に同一又は実質的に類似の構成を有する。
【0186】
図15を参照すると、第2絶縁膜504を貫通して形成された第2開口部505内に導電構造物が位置する。導電構造物は、第1バリア金属膜パターン506、金属パターン508、及び金属酸化物パターン510aを含む。
【0187】
第2絶縁膜504上には第3絶縁膜512aが配置される。第3絶縁膜512aを貫通して第3開口部513が形成される。第3開口部513は金属酸化物パターン510aを少なくとも部分的に露出させる。第3開口部513の幅は金属酸化物パターン510aの幅と実質的に同一である。
【0188】
第3開口部513内の金属酸化物パターン510a上に相変化構造物514bが配置される。相変化構造物514bは第3開口部513内に位置して第3開口部513上に突出しない。即ち、第3開口部513の深さと相変化構造物514bの高さは実質的に同一である。
【0189】
第3絶縁膜512a及び相変化構造物514b上に上部電極516が配置される。第3絶縁膜512a上には上部電極516を覆う第4絶縁膜518が形成される。第4絶縁膜518を貫通して上部電極コンタクト522が配置される。上部電極コンタクト522は上部電極516に電気的に連結される。
【0190】
図15に示した相変化メモリ装置は後述する方法を通じて製造することができる。
【0191】
図14を参照して説明した工程と実質的に同一又は実質的に類似の工程を遂行して、図14に示した結果と実質的に同じ構成を有する結果を形成する。
【0192】
図15を参照すると、第3開口部513を完全に満たしながら第3絶縁膜512a上に相変化物質膜を形成する。第3絶縁膜512aが露出するまで相変化物質膜を部分的に除去する。これに伴い、第3開口部513内に相変化構造物514bが形成される。相変化構造物514aは、例えば、化学機械的研磨工程を通じて形成される。
【0193】
相変化構造物514b及び第3絶縁膜512a上に上部電極膜を形成する。次いで、上部電極膜をパターニングして相変化構造物514a上に上部電極516を形成する。
【0194】
第3絶縁膜512a上に上部電極516と相変化構造物514bを覆う第4絶縁膜518を形成する。第4絶縁膜518を貫通して、上部電極516に電気的に連結される上部電極コンタクト522を形成する。
【0195】
図16は、本発明の第2実施形態による導電構造物の断面図である。
【0196】
図16を参照すると、基板50上に絶縁膜52が提供される。絶縁膜52は基板50の一部を露出させる開口部54を含む。
【0197】
開口部54の側壁上にはスペーサー62が配置される。スペーサー62はシリコン窒化物と同じ窒化物又はシリコン酸窒化物と同じ酸窒化物を含む。スペーサー62は金属パターン59aに含まれた金属原子及び/又は金属イオンが絶縁膜52に広がる現象を防止することができる。一実施形態において、開口部54の側壁上にはバリア金属膜パターンが形成されないことがある。これとは異なって、開口部54内のスペーサー62及び基板50上にバリア金属膜パターンが形成されることもある。
【0198】
開口部54内には金属パターン59aが配置される。金属パターン59aは開口部54を部分的に埋める。金属パターン59aはタングステンを含むことができる。開口部54内の金属パターン59a上に金属酸化物パターン60が配置される。金属酸化物パターン60はタングステン酸化物を含むことができる。金属酸化物パターン60は開口部54の幅より実質的に狭い幅を有する。金属酸化物パターン60は金属パターン59aから生成される。例えば、金属パターン59aを酸化させて金属酸化物パターン60を形成する。金属酸化物パターン60は開口部54上に突出する。
【0199】
本実施形態において、金属酸化物パターン60は写真エッチング工程の限界幅より実質的に小さい幅を有する。金属酸化物パターン60の幅は開口部54側壁上に位置するスペーサー60の厚さを調節して変化させることができる。
【0200】
図17は、図16に示した導電構造物の形成方法を説明するための断面図である。
【0201】
図17を参照すると、基板50上に開口部54を含む絶縁膜52を形成する。開口部54は、例えば、導電領域と同じ基板50の所定の部分を露出させる。
【0202】
開口部54の側壁と底面及び絶縁膜52上にスペーサー形成膜を形成する。スペーサー形成膜は、例えば、窒化物又は酸窒化物を使って形成される。例えば、スペーサー形成膜はシリコン窒化物又はシリコン酸窒化物を使って形成される。スペーサー形成膜を異方性でエッチングして開口部54の側壁上にスペーサー62を形成する。スペーサー62が形成されると、開口部54はスペーサー62の厚さの約2倍程度に幅が減少する。
【0203】
スペーサー62、基板50、及び絶縁膜52上に開口部54を完全に満たす金属膜59を形成する。金属膜59は、例えば、タングステンを使って形成される。
【0204】
図16及び図17を参照すると、絶縁膜52が露出するまで金属膜59を部分的に除去して、開口部54内に予備金属パターンを形成する。予備金属パターンは化学機械的研磨工程を通じて形成される。一実施形態において、予備金属パターンの上部表面は絶縁膜52及びスペーサー62の上部表面に比べて実質的に高く位置することができる。例えば、予備金属パターンの上部表面は絶縁膜52から約10Å以上の厚さほど突出する。即ち、予備金属パターンの上部表面は絶縁膜52の上部表面から微細に高い位置に位置する。
【0205】
予備金属パターンを酸素の雰囲気下で熱処理することによって、金属酸化物パターン60を形成する。予備金属パターンを酸化させる間に予備金属パターンは金属パターン59aに変化する。熱処理工程は図5を参照して説明した熱処理工程と実質的に同一又は実質的に類似している。
【0206】
上述の工程を通じて、基板50上に、図16に示した導電構造物と実質的に同じ構成を有する導電構造物を形成する。一実施形態において、導電構造物は、図6を参照して説明した磁気メモリ装置、図11を参照して説明した相変化メモリ装置、図13を参照して説明した相変化メモリ装置などに適用される。
【0207】
図18は、本発明の第3実施形態による導電構造物の断面図であり、図19は、図18に示した導電構造物の斜視図であり、図20は、図18に示した導電構造物の平面図である。
【0208】
図18〜図20を参照すると、基板64上に絶縁膜66が配置される。絶縁膜66は基板64上のコンタクト領域を露出させる開口部68を含む。これとは異なって、開口部68は基板64の一部又は基板64上に形成された導電性パターンを直接露出させることができる。
【0209】
本実施形態において、開口部68は、コンタクトホール形状、トレンチの形状などのような多様な形状を有することができる。
【0210】
開口部68の側壁と底面上にバリア金属膜パターン70aが配置される。バリア金属膜パターン70aは開口部68のプロファイルに沿って均一に形成される。例えば、バリア金属膜パターン70aは、チタン、チタン窒化物、タンタル、タンタル窒化物などを含む。これらは単独又は組み合わせて使用することができる。
【0211】
バリア金属膜パターン70aは金属パターン72bに含まれた金属原子及び/又は金属イオンの拡散を防止する役割をする。バリア金属膜パターン70aは導電構造物と基板64のコンタクト領域又は基板64の間の接触面積を減少させて導電構造物が減少した接触抵抗を有する。
【0212】
開口部68内のバリア金属膜パターン70a上に金属パターン72bが配置される。金属パターン72bはシリンダー形状を有し、タングステンを含むことができる。金属パターン72bの上部はリング形状を有する。一実施形態において、金属パターン72bはシリンダーチューブ形状を有する。金属パターン72bの上部表面はバリア金属膜パターン70aの上部表面より実質的に低く位置する。従って、金属パターン72bは開口部68内にだけ位置する。
【0213】
金属パターン72b上には金属酸化物パターン76が配置される。金属酸化物パターン76の外側下部は金属パターン72bに接触する。金属酸化物パターン76は金属パターン72bの上部から延びて、金属酸化物パターン76が絶縁膜66上に突出する。金属酸化物パターン76は、例えば、タングステン酸化物を含む。金属酸化物パターン76は金属パターン72bに比べて実質的に高い抵抗を有する。
【0214】
本実施形態において、金属酸化物パターン76の上部は金属パターン72bの上部と実質的に同じリング形状を有することができる。金属酸化物パターン76の上部の幅も金属パターン72bの上部の幅と実質的に同一である。金属酸化物パターン76は金属パターン72bを酸化させて生成される。金属酸化物パターン76の上部がリング形状を有する場合、金属酸化物パターン76の上部の面積は円形柱や多角形柱に比べて実質的に小さい。金属酸化物パターン76は開口部68の幅より実質的に小さい幅を有する。
【0215】
金属パターン72b上に開口部68を完全に満たす充填膜パターン74aが配置される。従って、充填膜パターン74aの上部表面は絶縁膜66の上部表面と実質的に同じ平面上に位置する。金属パターン76の内側下部は充填膜パターン74aに接触する。
【0216】
本実施形態において、充填膜パターン74aは酸化反応が遅かったり又は殆ど酸化されなかったりする金属を含むことができる。例えば、充填膜パターン74aは、チタン、チタン窒化物、タンタル、タンタル窒化物などからなる。これらは単独又は組み合わせて使われる。これとは異なって、充填膜パターン74aは、例えば、酸化物、窒化物、酸窒化物などの絶縁物質からなることができる。
【0217】
本実施形態において、バリア金属膜パターン70a、金属パターン72b、及び充填膜パターン74aは共に導電領域に電気的に連結される導電パターンの役割をする。金属酸化物パターン76は相対的に高い抵抗と小さい面積を有することから、金属酸化物パターン76は加熱電極の役割を担うことができる。
【0218】
図21及び図22は、図18に示した導電構造物の形成方法を説明するための断面図である。
【0219】
図21を参照すると、コンタクト領域が上部に形成された基板64上に絶縁膜66を形成する。絶縁膜66を部分的にエッチングして、基板64の導電領域を部分的に露出させる開口部68を形成する。開口部68は写真エッチング工程を通じて形成することができる。
【0220】
開口部68の側壁と底面及び絶縁膜66上にバリア金属膜70を形成する。バリア金属膜70は開口部68と絶縁膜66のプロファイルに沿って均一に形成される。開口部68にバリア金属膜70が形成されると、開口部68の幅はバリア金属膜70の厚さの約2倍程度に減少する。従って、バリア金属膜70の厚さを調節して開口部68の幅を調節することができる。その結果、開口部68の幅を調節し、金属パターン72b及び金属酸化物パターン76の幅を調節することができる。
【0221】
バリア金属膜70上に金属膜72を形成する。例えば、金属膜72はタングステンを使って形成される。金属膜72はバリア金属膜70のプロファイルに沿って均一に形成される。金属膜72は金属パターン72bの上部幅に実質的に対応する厚さを有する。従って、金属パターン72bの上部幅は金属膜72の厚さを調節して変化させることができる。
【0222】
金属膜72上に開口部68を完全に満たしながら充填膜74を形成する。充填膜74は酸化が遅いか又は殆ど酸化されない物質を使って形成することができる。一実施形態において、充填膜74はバリア金属膜70と同じ物質を使って形成する。他の実施形態において、充填膜74は、酸化物、窒化物、酸窒化物、有機物などの絶縁物質を使って形成することができる。
【0223】
図22を参照すると、絶縁膜66が露出するまで、金属膜72、バリア金属膜70、及び充填膜74を部分的に除去する。金属膜72、バリア金属膜70、及び充填膜74は化学機械的研磨工程及び/又はエチバック工程を通じて部分的に除去される。これに伴い、開口部68内に、バリア金属膜パターン70a、予備金属パターン72a、及び充填膜パターン74aが形成される。バリア金属膜パターン70aと予備金属パターン72aはそれぞれシリンダー形状を有する。予備金属パターン72a上の充填膜パターン74aは開口部68を満たす。
【0224】
金属膜72、バリア金属膜70、及び充填膜74を化学機械的研磨工程で除去する工程において、金属膜72に比べて絶縁膜66がより早く研磨される。従って、予備金属パターン72a、バリア金属膜パターン70a、及び充填膜パターン74aは絶縁膜66上に突出する。例えば、予備金属パターン72a、バリア金属膜パターン70a、及び充填膜パターン74aの上部表面は絶縁膜66上部表面より約10Å以上の厚さで微細に突出する。
【0225】
図18に示したように、予備金属パターン72aを酸素の雰囲気下で熱処理することによって、バリア金属膜パターン70a上に金属パターン72b及び金属酸化物パターン76を形成する。金属パターン72b及び金属酸化物パターン76は図5を参照して説明した熱処理工程と実質的に同一又は実質的に類似の熱処理工程を通じて収得することができる。
【0226】
本実施形態において、予備金属パターン72aが部分的に酸化され、予備金属パターン72aより実質的に低い高さを有する金属パターン72bが形成される。従って、金属パターン72bは絶縁膜66上部表面より実質的に低い高さを有するシリンダー形状を有する。金属酸化物パターン76は金属パターン72bから延長するシリンダー形状を有する。ここで、金属酸化物パターン76の上部はリング形状を有し、絶縁膜66上に突出する。一実施形態において、予備金属パターン72aの酸化程度を調節することによって、金属酸化物パターン76の高さを調節することができる。
【0227】
本実施形態によれば、別途のタングステン蒸着工程及び/又はタングステン膜のエッチング工程を遂行せずに、シリンダー形状のタングステン酸化物パターンを形成することができる。タングステン酸化物パターンの下にはタングステンパターンと同じプラグ又はコンタクトが提供される。プラグ又はコンタクトはタングステン酸化物パターンより実質的に低い抵抗を有する。タングステンパターン及びタングステン酸化物パターンの厚さと幅を容易に調節することができるので、タングステンパターン及びタングステン酸化物パターンを含む導電構造物が多様な半導体メモリ装置によって望まれる水準の抵抗を有することができる。
【0228】
図23は、本発明の第2実施形態による磁気メモリ装置の断面図である。図23に示した磁気メモリ装置は、図18を参照して説明した導電構造物と実質的に同一又は実質的に類似の構成を有する導電構造物を含む。図23に示した磁気メモリ装置は、導電構造物を除くと、図6を参照して説明した磁気メモリ装置と実質的に同じ構成を有する。
【0229】
図23を参照すると、半導体基板400上にMOSトランジスタ及びMOSトランジスタを覆う第1絶縁膜408が配置される。第1絶縁膜408を貫通してコンタクトプラグ410が形成される。コンタクトプラグ410は不純物領域406に電気的に接触する。コンタクトプラグ410上には導電パターン412が配置される。
【0230】
第1絶縁膜408上には導電パターン412を覆う第2絶縁膜414が配置される。第2絶縁膜414を貫通して導電パターン412を部分的に露出させる開口部415が形成される。開口部415はコンタクトホール形状を有する。
【0231】
開口部415内には導電構造物が位置する。導電構造物は図18を参照して説明した導電構造物と実質的に同一又は類似の形状を有する。導電構造物は、開口部415の側壁と底面上に形成された第1バリア金属膜パターン610、第1バリア金属膜パターン610上に形成された金属パターン612、金属パターン612上に形成された充填膜パターン614、そして金属パターン612から延長する金属酸化物パターン616を含む。
【0232】
金属パターン612と金属酸化物パターン616は、例えば、タングステンとタングステン酸化物をそれぞれ含む。金属パターン612はシリンダー形状を有し、充填膜パターン614は開口部415を満たす。金属酸化物パターン616は開口部415上に突出する。金属酸化物パターン616は金属パターン612を酸化させて形成される。従って、金属パターン612がタングステンを含む場合、金属酸化物パターン616はタングステン酸化物を含む。
【0233】
導電構造物において、金属パターン612、第1バリア金属膜パターン610、及び充填膜パターン614は共に磁気メモリ装置の下部電極コンタクトとして提供される。相対的に高い抵抗を有する金属酸化物パターン616は磁気メモリ装置の磁気トンネル接合構造物内の自由膜パターンを加熱させる加熱電極として提供される。
【0234】
第2絶縁膜414上には第3絶縁膜618が配置される。第3絶縁膜618は隣接する金属酸化物パターン616の間のギャップを満たす。第3絶縁膜618は高い緻密度と優秀なステップカバレッジを有する物質を含むことができる。例えば、第3絶縁膜618は高密度プラズマ−化学気相蒸着工程や原子層積層工程で収得されるシリコン酸化物で構成される。第3絶縁膜618と金属酸化物パターン616の上部表面は実質的に同一の平面上に位置する。第1バリア金属膜パターン610の上部表面は第3絶縁膜618によって覆われているため、第1バリア金属膜パターン610は露出しない。
【0235】
第3絶縁膜618上に磁気トンネル接合構造物が配置される。磁気トンネル接合構造物は図6を参照して説明した磁気トンネル接合構造物と実質的に同一又は類似の構造を有する。磁気トンネル接合構造物の自由膜パターン426は金属酸化物パターン616上に位置する。金属酸化物パターン616がリング形状を有する場合、自由膜パターン426と金属酸化物パターン616の間の接触面積が減少する。これによって、金属酸化物パターン616による自由膜パターン426の加熱効率がより一層高まることになる。金属酸化物パターン616の上部表面面積が減少することによって金属酸化物パターン616の上部表面の平坦度がより一層向上する。
【0236】
図6を参照して説明した工程と実質的に同一又は実質的に類似の工程を遂行して、第3絶縁膜618上に第4絶縁膜434、第5絶縁膜436、上部電極438、及びビットライン440を形成する。
【0237】
図24及び図25は、図23に示した磁気メモリ装置の製造方法を説明するための断面図である。図23に示した磁気メモリ装置は、導電構造物を除くと、図6を参照して説明した磁気メモリ装置と実質的に同一又は類似の構成を有する。従って、図23に示した磁気メモリ装置を製造するための工程は、導電構造物を形成する工程を除くと、図7〜図10を参照して説明した工程と実質的に同一又は類似している。
【0238】
図7を参照して説明した工程と実質的に同一又は類似の工程を遂行して、半導体基板400上にトランジスタ、第1絶縁膜408、コンタクトプラグ410、及び導電パターン412を形成する。
【0239】
図24を参照すると、第1絶縁膜408上に導電パターン412を覆う第2絶縁膜414を形成する。第2絶縁膜414を部分的に除去することによって、導電パターン412を少なくとも部分的に露出させる開口部415を形成する。
【0240】
図21及び図22を参照して説明した工程と実質的に同一又は類似の工程を遂行することによって、開口部415を満たす導電構造物を形成する。導電構造物は、シリンダー形状を有するバリア金属膜パターン610、シリンダー形状を有する金属パターン612、開口部415内を満たす充填膜パターン614、そして金属パターン612から上部に延長する金属酸化物パターン616を含む。
【0241】
図25を参照すると、第2絶縁膜414上に金属酸化物パターン616を覆う第3絶縁膜618を形成する。第3絶縁膜618は高い緻密度と優秀なステップカバレッジを有する物質を使って形成することができる。例えば、第3絶縁膜618は高密度プラズマ−化学気相蒸着工程又は原子層積層工程を通じて収得されて形成されたシリコン酸化物を含む。
【0242】
金属酸化物パターン616が露出するまで第3絶縁膜618を部分的に除去する。第3絶縁膜618は化学機械的研磨工程を通じて部分的に除去される。この場合、バリア金属膜パターン610は第3絶縁膜618を通じて露出しない。第3絶縁膜618が高い緻密度を有する場合、第3絶縁膜618を部分的に除去するための化学機械的研磨工程後、第3絶縁膜618及び金属酸化物パターン616は凹凸なしで均一な表面を有する。
【0243】
図23に示したように、第3絶縁膜618及び金属酸化物パターン616上に磁気トンネル接合構造物を形成する。第3絶縁膜618上に磁気トンネル接合構造物を覆いながら第4絶縁膜434、第5絶縁膜436、上部電極438、及びビットライン440を形成する。磁気トンネル接合構造物、第4絶縁膜434、第5絶縁膜436、上部電極438、及びビットライン440を形成する工程は図10を参照して説明した工程と実質的に同一又は類似している。
【0244】
図26は、本発明の第4実施形態による相変化メモリ装置の断面図である。図26に示した相変化メモリ装置は、図1又は図22を参照して説明した導電構造物と実質的に同一又は類似の構成を有する導電構造物を含む。一実施形態において、図26に示した相変化メモリ装置は、導電構造物を除くと、図11を参照して説明した相変化メモリ装置と実質的に同一又は類似の構成を有する。
【0245】
図26を参照すると、基板490上に第1絶縁膜494、P−Nダイオード500、及び第2絶縁膜504が配置される。第1絶縁膜494はP−Nダイオード500が位置する第1開口部496を含む。
【0246】
第2絶縁膜504を貫通して第2開口部505が形成される。第2開口部505はP−Nダイオード500を部分的に露出させる。
【0247】
第2開口部505内には、第1バリア金属膜パターン650、金属パターン652、充填膜パターン654、及び金属酸化物パターン656が配置される。例えば、金属パターン652及び金属酸化物パターン656はそれぞれタングステン及びタングステン酸化物を含む。第1バリア金属膜パターン650、金属パターン652、充填膜パターン654、及び金属酸化物パターン656は図18を参照して説明したバリア金属膜パターン70a、金属パターン72b、充填膜パターン74a、及び金属酸化物パターン76と実質的に同じ構造を有する。金属酸化物パターン656は相変化構造物514を加熱する。
【0248】
第2絶縁膜504上には第3絶縁膜660が配置される。第3絶縁膜660は隣接する金属酸化物パターン656の間のギャップを満たす。
【0249】
相変化構造物514は金属酸化物パターン656及び第3絶縁膜660上に配置される。相変化構造物514は金属酸化物パターン656に接触する。金属酸化物パターン656がリング形状を有する場合、金属酸化物パターン656と相変化構造物514の間の接触面積が減少する。従って、ジュール加熱によって相変化構造物514内に容易に相転移が起きる。
【0250】
相変化構造物514上に、上部電極516、第4絶縁膜518、及び上部電極コンタクト522が配置される。
【0251】
本実施形態によれば、相変化メモリ装置は高いジュール加熱効率と減少したリセット電流を確保することができる。相変化メモリ装置のセット状態及びリセット状態での相変化構造物の抵抗散布が減少するため、相変化メモリ装置のセット状態及びリセット状態が明らかに区分される。
【0252】
図26に示した相変化メモリ装置の製造過程において、図12を参照して説明した工程と実質的に同一又は類似の工程を遂行し、基板490上に第1絶縁膜494、P−Nダイオード500、第2絶縁膜504、及び第2開口部505を形成する。この後、図21及び図22を参照して説明した工程と実質的に同一又は類似の工程を遂行することによって、第2開口部505を満たしながら第2開口部505上に突出する導電構造物を形成する。
【0253】
第2絶縁膜504上に金属酸化物パターン656を覆う第3絶縁膜660を形成した後、化学機械的研磨工程を通じて第3絶縁膜660を部分的に除去することによって、金属酸化物パターン656を露出させる。
【0254】
図11を参照して説明した工程と実質的に同一又は類似の工程を遂行し、金属酸化物パターン656と第3絶縁膜660上に相変化構造物514、上部電極516、第4絶縁膜518、及び上部電極コンタクト522を形成する。
【0255】
図27は、本発明の第4実施形態による導電構造物の断面図である。
【0256】
図27を参照すると、基板64上に絶縁膜66が提供される。絶縁膜66は基板64の導電領域を露出させる開口部68を含む。
【0257】
開口部68の側壁上に絶縁物質で構成されたスペーサー80が配置される。例えば、スペーサー80は、シリコン窒化物、シリコン酸窒化物などを含む。一実施形態において、開口部68の側壁上にはバリア金属膜パターンが形成されないことがある。これとは異なって、開口部68内のスペーサー80及び基板64上にバリア金属膜パターンが配置されることがある。
【0258】
開口部68内にシリンダー形状を有してタングステンを含む金属パターン82が配置される。金属パターン82は開口部68及び基板64のプロファイルに沿って均一に形成される。金属パターン82上には充填膜パターン84が配置される。充填膜パターン84は開口部68を満たす。金属パターン82上にはタングステン酸化物を含む金属酸化物パターン86が配置される。金属酸化物パターン86は金属パターン82から延長する。金属パターン82、金属酸化物パターン86、及び充填膜パターン84はそれぞれ図18を参照して説明した金属パターン72b、充填膜パターン74a、及び金属酸化物パターン76と実質的に同じ構造を有する。
【0259】
図27に示した導電構造物を形成する過程において、基板64上に絶縁膜66を形成する。絶縁膜66を部分的にエッチングして基板64の一部を露出させる開口部68を形成する。開口部68は写真エッチング工程を通じて形成することができる。開口部68の側壁上にスペーサー80を形成する。
【0260】
スペーサー80、基板64、及び絶縁膜66上に金属膜を形成する。金属膜は開口部68のプロファイルに沿って均一に形成される。金属膜上に開口部68を満たす充填膜を形成する。
【0261】
絶縁膜66が露出するまで金属膜及びスペーサー80を、化学機械的研磨工程を通じて部分的に除去する。これに伴い、開口部68内に予備金属パターンが形成される。予備金属パターンを酸素の雰囲気下で熱処理することによって、開口部68内にタングステンを含む金属パターン82及びタングステン酸化物を含む金属酸化物パターン86を形成する。その結果、図18を参照して説明した導電構造物と実質的に同じ構成を有する導電構造物を収得することができる。
【0262】
本実施形態において、図27に示した導電構造物は図6を参照して説明した磁気メモリ装置、図11を参照して説明した相変化メモリ装置、図13を参照して説明した相変化メモリ装置などに多様に適用することができる。
【0263】
図28は、本発明の第5実施形態による相変化メモリ装置の断面図である。
【0264】
図28を参照すると、基板490上に第1絶縁膜494及びP−Nダイオード500が配置される。第1絶縁膜494及びP−Nダイオード500は図11を参照して説明したものと実質的に同一である。
【0265】
第1絶縁膜494上にはタングステンを含む金属パターン530aが配置される。金属パターン530aはP−Nダイオード500dに電気的に連結される。金属パターン530aを覆う第2絶縁膜504が第1絶縁膜494上に配置される。
【0266】
金属パターン530a上にタングステン酸化物を含む金属酸化物パターン536が配置される。金属酸化物パターン536は金属パターン530aから延び、シリンダー形状を有することができる。
【0267】
金属酸化物パターン536に接触する絶縁膜パターン534が形成される。金属酸化物パターン536がシリンダー形状を有する場合、絶縁膜パターン534は金属酸化物パターン536の内部を満たす。例えば、絶縁膜パターン534はシリコン酸化物と同じ酸化物を含む。これとは異なって、絶縁膜パターン534はシリコン窒化膜及びシリコン酸化膜を含む多層構造を有することもできる。
【0268】
絶縁膜パターン534及び第2絶縁膜504上に相変化構造物514が配置される。相変化構造物514は金属酸化物パターン536に接触する。相変化構造物514上には上部電極516と上部電極コンタクト522が配置される。
【0269】
図29は、図28に示した相変化メモリ装置の製造方法を説明するための断面図である。
【0270】
図29を参照すると、図12を参照して説明した工程と実質的に同一又は類似の工程を遂行して、基板490上に素子分離膜パターン492、第1絶縁膜494、及びP−Nダイオード500を形成する。
【0271】
P−Nダイオード500上にタングステンを含む予備金属パターン530を形成して、第1絶縁膜494上に予備金属パターン530を覆う第2絶縁膜504を形成する。第2絶縁膜504を部分的にエッチングして予備金属パターン530を露出させる第2開口部505を形成する。
【0272】
第2開口部505の側壁及び底面上にスペーサー形成膜を形成する。スペーサー形成膜は、酸化物、窒化物、酸窒化物などを使って形成することができる。例えば、スペーサー形成膜は、シリコン酸化物、シリコン窒化物、シリコン酸窒化物などで形成される。スペーサー形成膜を、異方性エッチング工程を通じて部分的にエッチングすることによって、第2開口部505の側壁上に内側(inner)スペーサーを形成する。
【0273】
内側スペーサーが形成された第2開口部505に追加絶縁膜を形成する。追加絶縁膜は、例えば、酸化物、窒化物、又は酸窒化物を使って形成される。一実施形態において、追加絶縁膜はスペーサー形成膜に対してエッチング選択費を有する物質を使って形成される。例えば、スペーサー形成膜がシリコン窒化物を含む場合、追加絶縁膜はシリコン酸化物を含む。
【0274】
第2絶縁膜504及び内側スペーサーが露出するまで追加絶縁膜を部分的に除去する。追加絶縁膜は化学機械的研磨工程及び/又はエチバック工程を利用して部分的に除去される。
【0275】
第2開口部505から内側スペーサーを除去し、第2開口部505に第3開口部532を含む絶縁膜パターン534を形成する。絶縁膜パターン534はシリンダー形状を有する。内側スペーサーは等方性エッチング工程又は異方性エッチング工程を通じて除去される。絶縁膜パターン534はシリコン酸化物を含む。一実施形態において、第3開口部532の幅は絶縁膜パターン534の厚さによって変わる。
【0276】
図28に示したように、第3開口部532を通じて露出する予備金属パターン530を酸化させて第3開口部532に金属酸化物パターン536を形成する。金属酸化物パターン536は第3開口部532を満たす。金属酸化物パターン536の形成と同時に予備金属パターン530から金属パターン530aが形成される。即ち、酸化によって予備金属パターン530が部分的に消耗することによって、予備金属パターン530が金属パターン530aに変化する。
【0277】
第2絶縁膜504が露出するまで絶縁膜パターン534及び金属酸化物パターン536を部分的に除去する。絶縁膜パターン534及び金属酸化物パターン536は、例えば、化学機械的研磨工程を通じて部分的に除去される。
【0278】
金属酸化物パターン536及び第2絶縁膜504上に相変化構造物514を形成する。相変化構造物514上に上部電極516及び上部電極コンタクト522を形成する。
【0279】
図30は、図28に示した相変化メモリ装置の他の製造方法を説明するための断面図である。
【0280】
図30を参照すると、図12を参照して説明した工程と実質的に同一又は類似の工程を遂行し、基板490上に素子分離膜パターン492、第1絶縁膜494、及びP−Nダイオード500を形成する。
【0281】
図29を参照して説明した工程と実質的に同一又は類似の工程を遂行することによって、タングステンを含む予備金属パターン530、第2絶縁膜504、及び第2開口部505を形成する。予備金属パターン530はP−Nダイオード500に接触し、第2絶縁膜504は予備金属パターン530を覆う。第2開口部505は予備金属パターン530の上部表面を部分的に露出させる。
【0282】
第2開口部505の側壁と底面上に第1追加絶縁膜を形成した後、第1追加絶縁膜上に第2開口部505を完全に満たす第2追加絶縁膜を形成する。一実施形態において、第2追加絶縁膜は第1追加絶縁膜に対してエッチング選択比を有する物質を含む。第2絶縁膜504が露出するまで第1及び第2追加絶縁膜を部分的に除去する。
【0283】
第1及び第2追加絶縁膜を部分的にエッチングして第3開口部532を含む絶縁膜パターン534を形成する。絶縁膜パターン534は異方性エッチング工程を通じて形成される。絶縁膜パターン534はシリンダー形状を有する。第2開口部505に第1追加絶縁膜が部分的に残留することから、絶縁膜パターン534はシリコン窒化物及びシリコン酸化物を含む。即ち、絶縁膜パターン534は第1及び第2追加絶縁膜の残留部分を含む。
【0284】
図28を参照して説明した工程と実質的に同一又は実質的に類似の工程を遂行し、絶縁膜パターン534上に金属パターン530a、タングステン酸化物を含む金属酸化物パターン536、相変化構造物514、上部電極516、及び上部電極コンタクト522を次々と形成する。
【0285】
図31は、本発明の第6実施形態による相変化メモリ装置の断面図である。図31に示した相変化メモリ装置は、相変化構造物を除くと、図28を参照して説明した相変化メモリ装置と実質的に同一又は類似の構成を有する。
【0286】
図31を参照すると、相変化メモリ装置の相変化構造物514aはタングステン酸化物を含む金属酸化物パターン536aから延長する下部を含む。即ち、相変化構造物514aはシリンダー形状を有する。相変化構造物514aは第2絶縁膜504内に突出する。
【0287】
図31に示した相変化メモリ装置を製造するための工程は図29を参照して説明した工程と実質的に同一又は類似している。
【0288】
図31に示した相変化メモリ装置の製造過程において、第3開口部532を通じて露出したタングステンを含む予備金属パターンを酸化させて、タングステン酸化物を含む金属酸化物パターン536a及び金属パターン530aを形成する。ここで、金属酸化物パターン536aは第3開口部532を部分的に満たす。また、金属酸化物パターン536aと金属パターン530aは部分的に除去されない。
【0289】
第3開口部532を金属酸化物パターン536aが部分的に満たすようにした後、相変化構造物514aは金属酸化物パターン536a及び第2絶縁膜504上に第3開口部532を完全に満たすように形成される。
【0290】
本実施形態において、図28に示した加熱電極として使われる導電構造物を、図6を参照して説明した磁気メモリ装置にも適用することができる。即ち、図6に示した磁気トンネル接合構造物に接触する導電構造物が図28に示した導電構造物を代替することができる。
【0291】
図32は、本発明の第5実施形態による導電構造物の断面図である。
【0292】
図32を参照すると、基板90上にタングステンを含む金属パターン92aが配置される。金属パターン92aはリセスが形成された上部を具備する。即ち、熱処理工程の工程条件を調節して、金属パターン92aの上部の中央部が金属パターン92aの上部の端の部分より早く酸化するようにする。金属パターン92aのリセスは、例えば、アーチ(arch)形状のようにラウンド形状を有することができる。従って、金属パターン92aの上部のエッジの部分は金属パターン92aの上部の中央部より高く位置する。
【0293】
基板90上に金属パターン92aを覆う絶縁膜94が形成される。絶縁膜94を貫通して開口部96が形成される。開口部96はリセスを有する金属パターン92aの上部表面を露出させる。
【0294】
金属パターン92a上にタングステン酸化物を含む金属酸化物パターン98が配置される。金属酸化物パターン98は開口部96を満たす。金属酸化物パターン98は金属パターン92aから生成される。例えば、金属酸化物パターン98は金属パターン92aを酸化させて形成される。
【0295】
図33は、図32に示した導電構造物の形成方法を説明するための断面図である。
【0296】
図33を参照すると、基板90上にタングステンを含む金属膜を形成した後、金属膜をパターニングして基板90上に予備金属パターン92を形成する。基板90上に予備金属パターン92を覆う絶縁膜94を形成する。
【0297】
絶縁膜94を部分的にエッチングすることによって、予備金属パターン92の少なくとも一部を露出させる開口部96を形成する。開口部96は写真エッチング工程を通じて形成することができる。
【0298】
図32及び図33を参照すると、開口部96を通じて露出する予備金属パターン92を酸素の雰囲気下で熱処理することによって、基板90上に金属酸化物パターン98及び金属パターン92aを形成する。金属酸化物パターン98及び金属パターン92aはそれぞれタングステン酸化物及びタングステンを含む。
【0299】
金属酸化物パターン98及び金属パターン92aを形成するための熱処理工程において、予備金属パターン92が酸素と反応して開口部96内の上方で膨張する。従って、開口部96を満たす金属酸化物パターン98が金属パターン92a上に形成される。同時に、予備金属パターン92の上部が酸化されることによって、予備金属パターン92が金属パターン92aに変化する。熱処理工程の工程条件を調節することによって、予備金属パターン92の上部の中央の部分が予備金属パターン92の上部のエッジの部分より早く酸化される。これに伴い、金属パターン92aがラウンド形状のリセスが形成された上部を具備することができ、金属酸化物パターン98は金属パターン92aのリセスに対応する突出部を含むことができる。
【0300】
本実施形態において、金属酸化物パターン98と絶縁膜パターン94は平坦化工程を通じて平坦化される。例えば、金属酸化物パターン98と絶縁膜パターン94は化学機械的研磨工程を通じて平坦化される。
【0301】
図34は、本発明の第3実施形態による磁気メモリ装置の断面図である。図34に示した磁気メモリ装置は、図32を参照して説明した導電構造物の導電パターン及び下部電極パターンと実質的に同じ構成を有する導電パターン及び下部電極コンタクトを含む。また、図34に示した磁気メモリ装置は、導電パターン及び下部電極コンタクトを除くと、図6を参照して説明した磁気メモリ装置と実質的に同じ構成を有する。
【0302】
図34を参照すると、第1絶縁膜408及びコンタクトプラグ410上に導電構造物が配置される。導電構造物は図32を参照して説明した導電構造物と実質的に同一又は類似の構造を有することができる。
【0303】
導電構造物はタングステンを含む金属パターン450とタングステン酸化物を含む金属酸化物パターン454を具備する。金属パターン450はコンタクトプラグ410に接触する。金属パターン450はラウンド形状のリセス(recess)が形成された上部を含む。金属パターン450の上部エッジ(edge)は金属パターン450の上部中央部より実質的に高く位置する。
【0304】
金属パターン450を覆う第2絶縁膜452が第1絶縁膜408上に配置される。第2絶縁膜452を貫通する開口部453が提供される。開口部453は金属パターン450の上部の少なくとも一部を露出させる。
【0305】
タングステン酸化物を含む金属酸化物パターン454は金属パターン450上に配置される。金属酸化物パターン454は開口部453を満たす。金属酸化物パターン454は金属パターン450を酸化させて生成される。
【0306】
金属酸化物パターン454は磁気メモリ装置の磁気トンネル接合構造物を加熱させるための加熱電極の役割をする。金属酸化物パターン454は磁気メモリ装置の下部電極コンタクトの機能も遂行する。
【0307】
第2絶縁膜452上に磁気トンネル接合構造物、第3絶縁膜434a、第4絶縁膜436、上部電極438、及びビットライン440が配置される。
【0308】
図34に示した磁気メモリ装置は、導電パターン及び下部電極パターンを除くと、図6を参照して説明した磁気メモリ装置と実質的に同一又は類似の構成を有する。従って、図34に示した磁気メモリ装置は、導電パターン及び下部電極コンタクトを形成する工程を除くと、図7〜図10を参照して説明した工程と実質的に同一又は類似の工程を遂行して製造することができる。導電パターン及び下部電極コンタクトは図32を参照して説明した工程と実質的に同一又は類似の工程を通じて形成される。
【0309】
図35は、本発明の第4実施形態による磁気メモリ装置の断面図である。図35に示した磁気メモリ装置は、導電パターン及び下部電極コンタクトを除くと、図6を参照して説明した磁気メモリ装置と実質的に同一又は類似の構成を有する。図35に示した磁気メモリ装置は、金属酸化物パターン側壁上のスペーサーを除くと、図32を参照して説明した導電構造物の導電パターン及び下部電極コンタクトと実質的に同一又は類似の導電パターン及び下部電極コンタクトを含む。
【0310】
図35を参照すると、第2絶縁膜452を貫通して形成された開口部453の側壁上にスペーサー455が提供される。スペーサー455は開口部453の幅を減少させ、これに伴い、タングステン酸化物を含む金属酸化物パターン456の上部幅が図34を参照して説明した導電構造物に比べて相当減少する。
【0311】
図35に示した磁気メモリ装置を製造するための工程は、図34を参照して説明した磁気メモリ装置を製造するための工程と実質的に同一又は類似している。一実施形態において、第2絶縁膜452を貫通して開口部453を形成した後、開口部453の側壁上にスペーサー455を形成する。スペーサー455は、酸化物、窒化物、酸窒化物などを含むことができる。例えば、スペーサー455は、シリコン酸化物、シリコン窒化物、シリコン酸窒化物などを使用して形成される。
【0312】
図36は、本発明の第7実施形態による相変化メモリ装置の断面図である。
【0313】
図36を参照すると、基板490上に第1絶縁膜494とP−Nダイオード500が提供される。第1絶縁膜494上にはタングステンを含む金属パターン502aが位置する。金属パターン502aはP−Nダイオード500に接触する。金属パターン502aはラウンド形状のリセスを含む上部を有する。一実施形態において、金属パターン502aのラウンド形状のリセスは後述する酸化工程を通じて形成する。
【0314】
第1絶縁膜494上に金属パターン502aを覆う第2絶縁膜550が配置される。第2絶縁膜550を貫通する開口部553が形成される。開口部553は金属パターン502aの少なくとも一部を露出させる。開口部553の側壁上にはスペーサー552が提供される。スペーサー552は絶縁物質を含み、開口部553内にスペーサー552が位置する場合、開口部553の幅を減少させることができる。
【0315】
スペーサー552が形成された開口部553内に位置する金属パターン502a上にはタングステン酸化物を含む金属酸化物パターン554が配置される。金属酸化物パターン554は金属パターン502aを部分的に酸化させて金属パターン502aから生成される。金属酸化物パターン554の上部表面は開口部553の上端より実質的に低く位置する。即ち、金属酸化物パターン554は開口部553を部分的に満たす。金属酸化物パターン554は相変化メモリ装置の下部電極コンタクトとして機能する。
【0316】
金属酸化物パターン554上に相変化構造物556が配置される。相変化構造物556は開口部553を満たして、開口部553内に突出する。相変化構造物556は開口部553内に位置する下部と開口部553上に突出した上部を含む。相変化構造物556の下部は相変化構造物556の上部より実質的に小さい幅を有する。
【0317】
相変化構造物556上に上部電極516、第3絶縁膜518a、及び上部電極コンタクト522が提供される。
図37は、本発明の第6実施形態による導電構造物の断面図である。
【0318】
図37に示した導電構造物は、タングステンを含む金属酸化物パターン98aが開口部96を部分的に満たすという点を除くと、図32を参照して説明した導電構造物と実質的に同一又は類似の構成を有する。
【0319】
図37に示した導電構造物を形成するための工程は、図33を参照して説明した工程と実質的に同一又は類似している。一実施形態において、予備金属パターンに対して遂行される酸化工程の工程条件を調節することによって、金属酸化物パターン98aが開口部96を部分的に埋めることができる。
【0320】
図38は、本発明の第8実施形態による相変化メモリ装置の断面図である。
【0321】
図38を参照すると、基板8上に第1絶縁膜10とP−Nダイオード11が提供される。P−Nダイオード11及び第1絶縁膜10上には金属を含む導電パターン12aが配置される。導電パターン12aは低い抵抗を有する金属を含む。例えば、導電パターン12aはタングステンを含む。
【0322】
第1絶縁膜10上に導電パターン12aを覆う第2絶縁膜パターン14が形成される。第2絶縁膜パターン14には第1開口部16が形成される。第1開口部16は導電パターン12aを少なくとも部分的に露出させる。第2絶縁膜パターン14は酸化物又は窒化物を含む。例えば、第2絶縁膜パターン14はシリコン窒化物又はシリコン酸化物を含む。
【0323】
本実施形態において、導電パターン12aはリセスが形成された上部を有する。導電パターン12aの上部のエッジは導電パターン12aの上部の中央に比べて実質的に高く位置する。一実施形態によると、熱処理工程の工程条件を調節することによって、予備金属パターンの上部の中央部が予備金属パターンの上部のエッジの部分より早く酸化される。
【0324】
第1開口部16内には下部電極コンタクト18が配置される。下部電極コンタクト18は導電パターン12aから生成された金属酸化物を含む。下部電極コンタクト18は第1開口部16を満たす。
【0325】
本実施形態において、下部電極コンタクト18は導電パターン12aを酸化させて収得される。例えば、第1開口部16内の上方で導電パターン12aから金属酸化物が生成され、これに伴い、第1開口部16内に下部電極コンタクト18を形成する。導電パターン12aはラウンド形状の(rounded)リセスを含み、下部電極コンタクト18は導電パターン12aのラウンド形状のリセスに対応するラウンド形状の突出部を含む。下部電極コンタクト18がラウンド形状の突出部を有して導電パターン12aがラウンド形状のリセスを有する場合、下部電極コンタクト18の上部表面は導電パターン12aの上部表面からより離隔する。これに伴い、相変化構造物22aと下部電極コンタクト18の間で発生する熱が拡散する現象を減少させることができる。即ち、相変化構造物22aはより向上したジュール加熱効率を確保することができる。
【0326】
本実施形態において、導電パターン12aはタングステンを含むことができ、これに伴い、下部電極コンタクト18はタングステン酸化物を含む。
【0327】
第1開口部16の側壁上にはスペーサー20が配置される。スペーサー20は下部電極コンタクト18に接触する。第1開口部16の幅はスペーサー20の形成により減少する。従って、下部電極コンタクト18と相変化構造物22aとの間の接触面積も減少する。スペーサー20はシリコン窒化物と同じ窒化物やシリコン酸窒化物と同じ酸窒化物を含む。
【0328】
相変化構造物22aは第1開口部16を満たしながら下部電極コンタクト18上に配置される。一実施形態において、下部電極コンタクト18上に提供されるスペーサー20の接触面積に対応する広さ程下部電極コンタクト18と相変化構造物22aとの間の接触面積が減少する。
【0329】
相変化構造物22aは加熱によりアモルファス状態と結晶質の状態で結晶構造が変化するカルコゲニド(chalcogenide)化合物を含む。カルコゲニド化合物は結晶質状態で光学的反射度が相対的に高く、電気抵抗が相対的に低い。反面、カルコゲニド化合物はアモルファス状態では反射度が低く電気抵抗が高い。一実施形態において、カルコゲニド化合物は、ゲルマニウム−アンチモン−テルル(Ge−Sb−Te)合金を含む。第1開口部16を満たす相変化構造物22aは第2絶縁膜パターン14の上部に突出する。一実施形態において、相変化構造物22aの上部はその下部に比べて広い幅を有する。
【0330】
相変化構造物22a上には上部電極24が配置される。例えば、上部電極24はチタン窒化物などの金属窒化物を含む。上部電極24は相変化構造物22aの上部と実質的に同じ幅を有する。
【0331】
第2絶縁膜パターン14上には第3絶縁膜パターン26が形成される。第3絶縁膜パターン26は上部電極24と相変化構造物22aを覆う。第3絶縁膜パターン26を貫通して第2開口部28が形成される。第2開口部28は上部電極24を少なくとも部分的に露出させる。
【0332】
第2開口部28内には上部電極コンタクト30が配置される。上部電極コンタクト30は、例えば、タングステンと同じ金属を含む。
【0333】
本実施形態によると、相変化メモリ装置は金属を導電パターンから生成された金属酸化物を含む下部電極コンタクトを具備する。一実施形態において、下部電極コンタクトは高い抵抗を有する。相変化メモリ装置が金属酸化物から構成された下部電極コンタクトを具備するため、相変化メモリ装置はジュール加熱効果が向上することによって減少したリセット電流を確保することができる。セット状態とリセット状態で相変化構造物の抵抗散布が微細であるため相変化メモリ装置のセット状態とリセット状態が明らかに区分される。一実施形態において、開口部内で相変化構造物の下に下部電極コンタクトが配置されることから、相変化構造物が位置する部分に形成された開口部が減少した縦横比(aspect ratio)を有する。従って、相変化構造物にボイド(void)やシーム(seam)が生成される現象を防止して相変化メモリ装置の動作不良を防止することができる。
【0334】
図39〜図44は、図38に示した相変化メモリ装置の製造方法を説明するための断面図である。
【0335】
図39を参照すると、基板8上に素子分離膜パターンと不純物領域8aが形成される。素子分離膜パターンと不純物領域8aを覆いながら基板8上に第1絶縁膜10を形成する。第1絶縁膜10は、例えば、シリコン酸化物と同じ酸化物を使って形成される。
【0336】
第1絶縁膜10を貫通してP−Nダイオード11を形成する。P−Nダイオード11は不純物領域8aに電気的に接触する。P−Nダイオード11と第1絶縁膜10上に予備導電パターン12を形成する。予備導電パターン12はP−Nダイオード11に接触する、予備導電パターン12は金属を含む。
【0337】
本実施形態において、予備導電パターン12は低い抵抗を有する金属を含む。この場合、このような金属の酸化物は電気伝導性を有して、このような金属を酸化させる場合に上方に膨張する。例えば、予備導電パターン12はタングステンと同じ金属を含む。
【0338】
予備導電パターン12を覆いながら第2絶縁膜を第1絶縁膜10上に形成する。第2絶縁膜はシリコン酸化物と同じ酸化物やシリコン窒化物などの窒化物を使って形成される。
【0339】
第2絶縁膜を部分的にエッチングして予備導電パターン12を部分的に露出させる第1開口部16を形成する。第1開口部16はコンタクトホール形状を有する。第1開口部16の形成によって第1絶縁膜10上に第1開口部16を含む第2絶縁膜パターン14が形成される。
【0340】
図40を参照すると、第1開口部16を通じて予備導電パターン12の露出した部分を酸素の雰囲気下で熱処理して、予備導電パターン12上に下部電極コンタクト18を形成する。例えば、予備導電パターン12を酸素と反応させ、予備導電パターン12の反応した部分が第1開口部16の上方に向かって熱的に膨張することによって、下部電極コンタクト18が形成される。下部電極コンタクト18は第1開口部16を部分的に埋める。
【0341】
本実施形態において、下部電極コンタクト18は予備導電パターン12の金属から生成された金属酸化物を含む。金属酸化物を含む下部電極コンタクト18は予備導電パターン12の抵抗より実質的に高い抵抗を有する。
【0342】
予備導電パターン12を酸素の雰囲気下で熱処理する間、予備導電パターン12の露出した部分が酸素と反応し続けることによって、予備導電パターン12の上部表面に沿って下部電極コンタクト18が側傍に拡張される。従って、予備導電パターン12はその上部にリセスが形成された導電パターン12aに変化する。一実施形態において、導電パターン12aのリセスは傾斜した側壁を有する。下部電極コンタクト18は導電パターン12aのリセス内に位置する側傍に拡張された部分を含む。例えば、下部電極コンタクト18は先端が切断された矢印形状の断面を有する。
【0343】
上述のように、熱処理工程により導電パターン12aはリセスを有し、下部電極コンタクト18は拡張された下部を有する。これに伴い、導電パターン12aと下部電極コンタクト18との間のコンタクト領域が増加する。
【0344】
本実施形態において、熱処理工程は、プラズマ処理工程、急速熱処理(RTA)工程などを適用できる。例えば、導電パターン12a及び下部電極コンタクト18はプラズマ処理工程又は急速熱処理工程によって形成される。これとは異なって、導電パターン12aと下部電極コンタクト18はプラズマ処理工程と急所熱処理工程を次々と遂行して形成することもできる。
【0345】
本実施形態によれば、下部電極コンタクト18の厚さは熱処理工程の工程条件を調節することによって変わる。例えば、下部電極コンタクト18は導電パターン12aの上部表面から約200Å〜約600Å程度の厚さを有する。
【0346】
本実施形態において、導電パターン12aはタングステンを含み、下部電極コンタクト18はタングステン酸化物を含む。酸素の雰囲気下で熱処理するとタングステンが酸化され、タングステン酸化物が急速に膨張する。タングステン酸化物はタングステンに比べて実質的に高い抵抗を有し、湿式エッチング工程に使われるエッチング溶液に対してエッチング抵抗性を有する。導電パターン12a及び/又は下部電極コンタクト18の適切な抵抗とエッチング抵抗性を確保するために、導電パターン12aと下部電極コンタクト18はそれぞれタングステンとタングステン酸化物を含むことになる。
【0347】
本実施形態において、熱処理工程は酸素の雰囲気下で約400℃〜約600℃程度の温度で約1分〜約10分の間に遂行される急速熱処理工程を含むことができる。これとは異なって、熱処理工程は酸素の雰囲気下で約20W〜約100W程度のパワーを印加しながら約1分〜約10分程度遂行されるプラズマ処理工程を含むことができる。
【0348】
本実施形態において、第1開口部16内に形成される下部電極コンタクト18は膜の蒸着工程及び膜のエッチング工程を遂行せずに高い抵抗を有することができる。従って、下部電極コンタクト18は単純な工程を通じて収得することができる。
【0349】
図41を参照すると、第2絶縁膜パターン14、第1開口部16の側壁、及び下部電極コンタクト18上にスペーサー形成膜を形成する。スペーサー形成膜はシリコン窒化物と同じ窒化物を使って形成される。スペーサー形成膜は第1開口部16の幅を減少させる。従って、スペーサー形成膜の厚さを調節して第1開口部16の幅を所定の値に減少させることができる。
【0350】
スペーサー形成膜を部分的にエッチングして第1開口部16の側壁上にスペーサー20を形成する。スペーサー20は異方性エッチング工程を通じて形成される。スペーサー20はスペーサー形成膜と実質的に同一又は類似の幅を有する。
【0351】
図42を参照すると、第1開口部16を満たしながら下部電極コンタクト18とスペーサー20上に相変化物質膜22を形成する。相変化物質膜22は、例えば、カルコゲニド化合物のゲルマニウム−アンチモン−テルル(GST)合金を使って形成される。
【0352】
スペーサー20によって相変化物質膜22と下部電極コンタクト18の間の接触面積が減少する。これによって、相変化物質膜22のジュール加熱(Joule heating)によって相転移が起きる部分の面積が減少し、相変化メモリ装置のリセット電流(reset current)を減少させることができる。下部電極コンタクト18が第1開口部16内に位置することから、相変化物質膜22が形成された第1開口部16の縦横比が減少する。従って、相変化物質膜22にボイド又はシームを発生させずに第1開口部16内に相変化物質膜22を容易に形成することができる。
【0353】
図43を参照すると、相変化物質膜22上に上部電極膜を形成する。上部電極膜は金属窒化物を含むことができる。例えば、上部電極膜はチタン窒化物を使って形成する。
【0354】
上部電極膜及び相変化物質膜22をパターニングして相変化構造物22a及び上部電極24を形成する。相変化構造物22aは下部電極コンタクト18と第1絶縁膜14上に形成され、上部電極24は相変化構造物22a上に配置される。ここで、相変化構造物22aの下部は第1開口部16内に位置し、相変化構造物22aの上部は第2絶縁膜パターン14上に突出する。
【0355】
図44を参照すると、上部電極24と相変化構造物22aを覆いながら第2絶縁膜パターン14上に第3絶縁膜を形成する。第3絶縁膜を部分的にエッチングして、上部電極24を部分的に露出させる第2開口部28を形成する。これに伴い、第3絶縁膜は第2開口部28を含む第3絶縁膜パターン26に変化する。例えば、第2開口部28はコンタクトホール形状を有する。
【0356】
第2開口部28内に導電物質を蒸着して、上部電極24上に上部電極コンタクト30を形成する。上部電極コンタクト30は金属を含む。例えば、上部電極コンタクト30はタングステンを含む。その結果、金属酸化物で構成された下部電極コンタクト18を具備する相変化メモリ装置が提供される。
【0357】
図45は、本発明の第9実施形態による相変化メモリ装置の断面図である。図45に示した相変化メモリ装置は、第1開口部の側壁上にスペーサーが配置されないという点を除くと、図38を参照して説明した相変化メモリ装置と実質的に同一又は類似の構成を有する。
【0358】
図45を参照すると、基板8上部に配置された第2絶縁膜パターン14を貫通して形成された第1開口部16内に下部電極コンタクト18が提供される。下部電極コンタクト18は第1開口部16を部分的に満たし、金属酸化物を含む。
【0359】
下部電極コンタクト18上には相変化構造物22aが配置される。相変化構造物22aは第1開口部16を完全に満たす。相変化構造物22aの上部表面は第2絶縁膜パターン14の上部表面より実質的に高く位置する。相変化構造物22a上には上部電極24が配置される。
【0360】
第2絶縁膜パターン14上には上部電極24を覆う第3絶縁膜パターン26が形成され、上部電極24と相変化構造物22aが第3絶縁膜パターン26によって覆われる。
【0361】
第3絶縁膜パターン26を貫通して第2開口部28が形成される。第2開口部28は上部電極24を部分的に露出させる。第2開口部28内には上部電極コンタクト30が配置される。
【0362】
図45に示した相変化メモリ装置は、相変化構造物22aの側壁上にスペーサーが備わらないために、下部電極コンタクト18と相変化構造物22aとの間の接触面積が第1開口部16の幅と実質的に同一である。従って、図45に示した相変化メモリ装置は、要求される特性を確保しながらより簡単な工程を通じて製造することができる。
【0363】
図46は、図45に示した相変化メモリ装置の製造方法を説明するための断面図である。
【0364】
図46に示した相変化メモリ装置の製造方法において、図39及び図40を参照して説明した工程と実質的に同一又は類似の工程を遂行し、図40を参照して説明した結果と実質的に同じ構造を有する結果を形成する。
【0365】
図46を参照すると、下部電極18が形成された第1開口部16を満たしながら第2絶縁膜パターン14上に相変化物質膜22を形成する。この場合、第1開口部16側壁上にはスペーサーが形成されない。
【0366】
その後、図43及び図44を参照して説明した工程と実質的に同一又は実質的に類似の工程を遂行し、図38に示した相変化メモリ装置と実質的に同じ構成を有する相変化メモリ装置を製造する。
【0367】
図47は、本発明の第10実施形態による相変化メモリ装置の断面図である。図47に示した相変化メモリ装置は単位セルがアレイ構造で配置される構成を有する。
【0368】
図47を参照すると、素子分離領域100a及びアクティブ領域が定義された基板100上に第1絶縁膜パターン102が配置される。第1絶縁膜パターン102を貫通して第1開口部104が形成される。第1開口部104は相変化メモリ装置の単位セルが形成される基板100の部分に選択的に形成される。第1開口部104は基板100上に反復的に配置される。第1開口部104はそれぞれコンタクトホール形状を有する。第1開口部104は基板100の所定の部分を露出させる。
【0369】
第1開口部104内にはそれぞれP−Nダイオード106が配置される。一実施形態において、第1開口部104内には垂直型P−Nダイオード106が配置される。例えば、垂直型P−Nダイオード106はそれぞれポリシリコンを含む。P−Nダイオード106は第1開口部104を部分的に埋める。例えば、P−Nダイオード106は第1開口部104の下部を満たす。
【0370】
P−Nダイオード106上には金属シリサイドパターン108が配置される。金属シリサイドパターン108はP−Nダイオード106と導電パターン110aとの間のコンタクト抵抗を減少させる。例えば、金属シリサイドパターン108は、それぞれコバルトシリサイド、チタンシリサイド、ニッケルシリサイド、タングステンシリサイドなどを含む。
【0371】
導電パターン110aは金属シリサイドパターン108上に配置される。導電パターン110aはそれぞれ小さい抵抗を有する金属を含む。ここで、導電パターン110aの上部表面は第1開口部104の上端より実質的に低く位置する。また、導電パターン110aはそれぞれラウンド形状のリセスを含む上部を有する。即ち、導電パターン110aの上部のエッジが導電パターン110aの上部の中央より高く位置する。一実施形態において、導電パターン110aはそれぞれタングステンを含む。
【0372】
導電パターン110a及び第1絶縁膜パターン102上に第2絶縁膜パターン112が配置される。例えば、第2絶縁膜パターン112はシリコン酸化物などの酸化物を含む。第2絶縁膜パターン112を貫通して第2開口部114が形成される。第2開口部114はそれぞれ導電パターン110aを部分的に露出させる。各第2開口部114はコンタクトホール形状を有する。一実施形態において、第2開口部114は導電パターン110aの幅より小さい幅を有する。
【0373】
第2開口部114内の導電パターン110a上には下部電極コンタクト116が配置される。下部電極コンタクト116はそれぞれ導電パターン110aから生成される金属酸化物を含む。下部電極コンタクト116は第2開口部114を部分的に満たす。例えば、下部電極コンタクト116は第2開口部114の下部を満たす。
【0374】
下部電極コンタクト116は導電パターン110aを酸化させて形成される。例えば、第2開口部114内の上方で導電パターン110aから金属酸化物が成長し、金属酸化物を含む下部電極コンタクト116が第2開口部114内に形成される。導電パターン110aはその上部にラウンド形状のリセスを有し、下部電極コンタクト116は導電パターン110aのラウンド形状のリセスに対応するラウンド形状の突出部を含む。一実施形態において、導電パターン110aはそれぞれタングステンを含み、下部電極コンタクト116はそれぞれタングステン酸化物を含む。
【0375】
第2開口部114の側壁上にスペーサー118が配置される。スペーサー118は下部電極コンタクト116に接触する。スペーサー118の形成により第2開口部114は減少した幅を有する。スペーサー118はそれぞれ窒化物又は酸窒化物を含む。例えば、スペーサー118はそれぞれシリコン窒化物又はシリコン酸窒化物を含む。
【0376】
下部電極コンタクト116上には第2開口部114を満たしながら相変化構造物120が配置される。相変化構造物120はカルコゲニド化合物を含むことができる。第2開口部114を満たす相変化構造物120の上部表面と第2絶縁膜パターン112の上部表面は実質的に同じ平面上に位置する。従って、相変化構造物120は第2絶縁膜パターン112上に突出しない。
【0377】
相変化構造物120上に上部電極122が配置される。上部電極122はそれぞれチタン窒化物と同じ金属酸化物を含むことができる。上部電極122は相変化構造物120より実質的に大きな幅を有する。
【0378】
第2絶縁膜パターン112上に第3絶縁膜パターン124が配置される。第3絶縁膜124は上部電極122と相変化構造物120を覆う。第3絶縁膜パターン124には上部電極122を部分的に露出させる第3開口部126が形成される。第3開口部126内には上部電極コンタクト128が配置される。例えば、上部電極コンタクト128はそれぞれタングステンと同じ金属からなる。図47に示した相変化メモリ装置は第1及び第2開口部104、114に単位セルが配置されるアレイ構造を有する。
【0379】
図48〜図51は、図47に示した相変化メモリ装置の製造方法を説明するための断面図である。
【0380】
図48を参照すると、基板100に対してシャロートレンチ(shallow trench)素子分離工程などのような素子分離工程を遂行して、基板100に素子分離領域100a及びアクティブ領域を定義する。アクティブ領域及び素子分離領域100aを含む基板100上に酸化膜を形成する。酸化膜を部分的にエッチングして第1開口部104を形成しながら酸化膜を第1絶縁膜パターン102に変化させる。第1開口部104は相変化メモリ装置の単位セルが形成される部分の基板100に形成される。
【0381】
第1絶縁膜パターン102の第1開口部104内にP−Nダイオード106を形成する。P−Nダイオード106はそれぞれポリシリコンを含み、垂直型構造を有する。
【0382】
P−Nダイオード106を形成する過程において、第1開口部104内にポリシリコン膜を形成した後、ポリシリコン膜を部分的にエッチングしてP−Nダイオード106を形成する。従って、P−Nダイオード106は第1開口部104内に位置する。一実施形態において、第1開口部104内のポリシリコン膜の下部にはN型不純物がドーピングされ、ポリシリコン膜の上部にはP型不純物が注入される。
【0383】
P−Nダイオード106上に金属シリサイドパターン108を形成する。金属シリサイドパターン108は、P−Nダイオード106上に金属膜を形成した後、P−Nダイオード106と金属膜を熱処理して形成される。即ち、金属シリサイドパターン108は金属膜内の金属とP−Nダイオード106内のシリコンとの間の反応により形成される。金属シリサイドパターン108は、それぞれコバルトシリサイド、チタンシリサイド、タングステンシリサイド、ニッケルシリサイドなどを含む。
【0384】
金属シリサイドパターン108上に予備導電パターン110を形成する。予備導電パターン110は第1開口部104を埋める。予備導電パターン110はそれぞれ金属を含む。例えば、予備導電パターン110はタングステンを含む。
【0385】
予備導電パターン110を形成する過程において、第1開口部104を満たしながら金属シリサイドパターン108と第1絶縁膜パターン102上に金属膜を形成した後、第1絶縁膜パターン102が露出するまで金属膜を部分的に除去して予備導電パターン110を形成する。この場合、金属膜は化学機械的研磨工程で部分的に除去される。
【0386】
図49を参照すると、予備導電パターン110を覆いながら第1絶縁膜パターン102上に第2絶縁膜を形成する。第2絶縁膜はシリコン酸化物と同じ酸化物を使って形成される。
【0387】
第2絶縁膜を部分的にエッチングして予備導電パターン110を部分的に露出させる第2開口部114を形成しながら、第2絶縁膜を第2絶縁膜パターン112に変化させる。第2開口部114は写真エッチング工程を利用して形成することができる。一実施形態において、第1開口部114は予備導電パターン110の幅より実質的に小さい幅を有する。
【0388】
図50を参照すると、第2開口部114を通じて露出する予備導電パターン110を酸素の雰囲気下で熱処理することによって、予備導電パターン110上に下部電極コンタクト116を形成する。下部電極コンタクト116は第2開口部114を部分的に埋める。
【0389】
下部電極コンタクト116を形成する過程において、予備導電パターン110の上部が酸素と反応し、これに伴い、第1開口部114内で金属酸化物が上方に成長する。この時、予備導電パターン110は導電パターン110aに変化する。下部電極コンタクト116は導電パターン110aに比べて実質的に高い抵抗を有する。予備導電パターン110がタングステンを含む場合、下部電極コンタクト116はタングステン酸化物を含む。
【0390】
予備導電パターン110を熱処理すると、導電パターン110aはラウンド形状のリセスが形成された上部を有する反面、下部電極コンタクト116は導電パターン110aのリセスに対応してラウンド形状の突出部が形成された下部を有することになる。導電パターン110a及び下部電極コンタクト116は図36を参照して説明した工程と実質的に同一又は実質的に類似の工程を通じて収得される。
【0391】
図51を参照すると、第2開口部114の側壁上にスペーサー118を形成する。第2開口部114を満たしながら下部電極コンタクト116上に相変化物質膜を形成する。例えば、相変化物質膜は、ゲルマニウム−アンチモン−テルル(GST)のようなカルコゲニド化合物を使って形成される。
【0392】
第2絶縁膜パターン112が露出するまで相変化物質膜を部分的に除去することによって、第2開口部114内に相変化構造物120を形成する。相変化構造物120の上部表面と第2絶縁膜パターン112の上部表面は実質的に同じ平面に位置する。
【0393】
図47に示したように、相変化構造物120と第2絶縁膜パターン112上に上部電極膜を形成する。上部電極膜をパターニングして、相変化構造物120上に上部電極122を形成する。
【0394】
上部電極122を覆う第3絶縁膜を第2絶縁膜パターン112上に形成する。第3絶縁膜を部分的にエッチングして上部電極122を部分的に露出させる第3開口部126を形成する。これに伴い、第3絶縁膜は第3絶縁膜パターン124に変化する。例えば、第3開口部126はそれぞれコンタクトホール形状を有する。
【0395】
第3開口部126内に導電物質を蒸着し、上部電極122上の第3開口部126内に上部電極コンタクト128を形成する。上部電極コンタクト128はそれぞれ金属を使って形成される。例えば、上部電極コンタクト128はタングステンを含む。
【0396】
図52は、本発明の第11実施形態による相変化メモリ装置の斜視図である。図52に示した相変化メモリ装置は、下部電極コンタクト、相変化構造物、及び第2絶縁膜パターンを含む垂直に積層された構造物を除くと、図47を参照して説明した相変化メモリ装置と実質的に同一又は実質的に類似の構成を有する。
【0397】
図52を参照すると、下部電極コンタクト116及び相変化構造物120を含む垂直積層構造物は四角形状の上部表面を有し、基板100上にダッシュ形状(dashed shape)で反復的に配置される。従って、基板100の非常に狭い面積内に多数の垂直積層構造物が提供される。
【0398】
第2絶縁膜パターン112は下部電極コンタクト116と相変化構造物120を囲む。第2絶縁膜パターン112は、例えば、シリコン窒化物と同じ窒化物を含む。
【0399】
本実施形態において、第2開口部160が十分に小さい幅を有するので、図52に示したように、下部電極コンタクト116と第2開口部160の側壁上にはスペーサーが提供されない。これとは異なって、下部電極コンタクト116と第2開口部160の側壁上に追加的なスペーサーが位置することもできる。
【0400】
図53〜図58は、図52に示した相変化メモリ装置の製造方法を説明するための斜視図である。
【0401】
図53を参照すると、図51を参照して説明した工程と実質的に同一又は実質的に類似の工程を遂行して図52に示した結果を形成する。
【0402】
予備導電パターン110及び第1絶縁膜パターン102上に第1追加絶縁膜を形成する。第1追加絶縁膜はシリコン窒化物と同じ窒化物を使って形成する。
【0403】
第1追加絶縁膜を部分的にエッチングして予備導電パターン110を露出させる第1トレンチ150を形成する。第1トレンチ150はそれぞれ第1方向に沿って延長する。これに伴い、第1絶縁膜パターン102上に第1トレンチ150を含む第1追加絶縁膜パターン152が形成される。
【0404】
第1トレンチ150内の予備導電パターン110上に第2追加絶縁膜を形成する。第2追加絶縁膜は第1追加絶縁膜パターン152に対して高いエッチング選択比を有する物質を使って形成される。例えば、第2追加絶縁膜はシリコン酸化物と同じ酸化物を使って形成される。
【0405】
第1追加絶縁膜パターン152が露出するまで第2追加絶縁膜を部分的に除去する。第2追加絶縁膜は化学機械的研磨工程及び/又はエチバック工程を利用して除去される。これに伴い、第1追加絶縁膜パターン152の間に第2追加絶縁膜パターン154が形成される。第2追加絶縁膜パターン154はそれぞれ第1方向に対して実質的に直交する第2方向に沿って延長する。
【0406】
第1及び第2追加絶縁膜パターン152、154上にマスクパターンを形成する。マスクパターンは第1方向に対して実質的に垂直な第2方向に延長する。マスクパターンはそれぞれライン形状を有する。また、マスクパターンは第1及び第2追加絶縁膜パターン152、154上で規則的に反復するように配置される。
【0407】
図54を参照すると、マスクパターンをエッチングマスクとして利用し、第1絶縁膜パターン102が露出するまで第1及び第2追加絶縁膜パターン152、154を部分的にエッチングする。第1及び第2追加絶縁膜パターン152、154を部分的にエッチングすることによって、第1絶縁膜パターン102上に第2トレンチ156が形成される。この時、予備導電パターン110は露出しない。第1及び第2追加絶縁膜パターン152、154は各々円形又は多角形の柱形状を有する。
【0408】
図55を参照すると、第1及び第2追加絶縁膜パターン152、154上に第3追加絶縁膜を形成する。例えば、第3追加絶縁膜はシリコン窒化物などの窒化物を使って形成される。第1及び第2追加絶縁膜パターン152、154が露出するまで第3追加絶縁膜を部分的に除去することによって、第2トレンチ156内に第3追加絶縁膜パターン158を形成する。
【0409】
第3追加絶縁膜パターン158を形成すると、実質的に同じ物質を含む第1及び第3追加絶縁膜パターン152、158が第1及び第3追加絶縁膜パターン152、158と異なった物質を含む第2追加絶縁膜パターン154を包むように配置される。
【0410】
図56を参照すると、第1絶縁膜パターン102まで第2追加絶縁膜パターン154を選択的に除去して、第1及び第2追加絶縁膜パターン152、158の間に第2開口部160を形成する。第2開口部160は予備導電パターン110を部分的に露出させる。その結果、第1絶縁膜パターン102上に第2絶縁膜パターン112が提供される。第2絶縁膜パターン112は、第1追加絶縁膜パターン152、第3追加絶縁膜パターン158、及び第2開口部160を含む。第2開口部160はそれぞれコンタクトホール形状を有する。また、第2開口部160は第1方向及び第2方向に沿って延長する。
【0411】
本実施形態において、第2追加絶縁膜パターン154は湿式エッチング工程又は乾式エッチング工程を通じて除去される。乾式エッチング工程の間プラズマによって第1及び第3追加絶縁膜パターン152、158がエッチング損傷を受けることを防止するために、第2追加絶縁膜パターン154を、湿式エッチング工程を通じて除去することが有利である。
【0412】
本実施形態によれば、第2開口部160が写真エッチング工程によって形成される従来のコンタクトホールより実質的に小さい幅を有することができる。第2開口部160は平面上にダッシュ構造(dash structure)を有する。
【0413】
図57を参照すると、酸化工程を通じて予備導電パターン110を部分的に酸化させて、予備導電パターン110から生成された金属酸化物を第2開口部160内で上方に成長させる。これに伴い、第2開口部160内に下部電極コンタクト116が形成される。酸化工程において、予備導電パターン110はラウンド形状のリセスが形成された上部を有する導電パターン110aに変わることになり、下部電極コンタクト116は導電パターン110aがリセスに対応するラウンド形状の突出部を含む。導電パターン110a及び下部電極コンタクト116は、図40を参照して説明した工程と実質的に同一又は実質的に類似の工程を通じて収得される。
【0414】
図58を参照すると、下部電極コンタクト116上に第2開口部160を満たす相変化物質膜を形成した後、第2絶縁膜パターン112が露出するまで相変化物質膜を部分的に除去する。これに伴い、下部電極コンタクト116上に第2開口部160を満たす相変化構造物120が形成される。
【0415】
本実施形態において、第2開口部160が相対的に小さい幅を有するので、第2開口部160の側壁上にスペーサーが形成されない。しかし、第2開口部160の幅を調節するように第2開口部160の側壁上に追加的にスペーサーを形成することもできる。
【0416】
図52に示したように、相変化構造物120上に上部電極122を形成する。また、上部電極122を覆いながら第3開口部を有する第3絶縁膜124を第2絶縁膜パターン112上に形成する。第3開口部内の上部電極122上に上部電極コンタクト128を形成する。従って、高い集積度を有する相変化メモリ装置を製造することができる。
【0417】
図59は、本発明の第12実施形態による相変化メモリ装置の断面図である。
【0418】
図59を参照すると、基板190上に第1絶縁膜192及びP−Nダイオード194が提供される。第1絶縁膜192上に第2絶縁膜パターン202が形成される。第2絶縁膜パターン202はP−Nダイオード194を露出させる第1開口部204を含む。第2絶縁膜パターン202はシリコン窒化物と同じ窒化物やシリコン酸化物などの酸窒化物を含む。
【0419】
第1開口部204を部分的に満たす第1下部電極コンタクト206aがP−Nダイオード194上に配置される。第1下部電極コンタクト206aは金属を含む。第1開口部204を満たす第2下部電極コンタクト208aが第1下部電極コンタクト206a上に配置される。第2下部電極コンタクト208aは第1下部電極コンタクト206aに含まれた金属から生成される金属酸化物を含む。一実施形態において、第1下部電極コンタクト206aはタングステンを含み、第2下部電極コンタクト208aはタングステン酸化物を含む。
【0420】
第2絶縁膜パターン202及び第2下部電極コンタクト208a上には相変化構造物210が配置される。相変化構造物210上には上部電極212が配置される。例えば、上部電極212は金属窒化物を含む。
【0421】
上部電極212を覆う第3絶縁膜パターン214が第2絶縁膜パターン202上に配置される。第3絶縁膜パターン214を貫通して第2開口部が提供される。第2開口部は上部電極212を部分的に露出させる。第2開口部内の上部電極212上には上部電極コンタクト216が配置される。
【0422】
本実施形態によれば、相変化構造物210に接触する第2下部電極コンタクト208aが高い抵抗を有するため、相変化メモリ装置は改善された動作の特性を有することができる。
【0423】
図60〜図62は、図59に示した相変化メモリ装置の製造方法を説明するための断面図である。
【0424】
図60を参照すると、基板190上に第1絶縁膜192とP−Nダイオード194を形成する。P−Nダイオード194は第1絶縁膜192を貫通して基板190上に形成される。第1絶縁膜192上に第2絶縁膜を形成した後、第2絶縁膜を部分的に除去する。これに伴い、第1絶縁膜192上には第1開口部204を含む第2絶縁膜パターン202が形成される。第1開口部204はP−Nダイオード194を露出させる。
【0425】
第1開口部204を満たしながらP−Nダイオード194と第2絶縁膜パターン202上に第1金属膜を形成する。第1金属膜はタングステンを使って形成される。第1金属膜を部分的に除去して第1開口部204内に予備下部電極コンタクト206を形成する。予備下部電極コンタクト206の上部表面は第1開口部204の上端より実質的に低く位置する。これとは異なって、予備下部電極コンタクト206の上部表面と第1開口部204の上端は実質的に同じ平面上に位置することもできる。
【0426】
図61を参照すると、予備下部電極コンタクト206を、酸素を含む雰囲気下で熱処理し、予備下部電極コンタクト206を第1下部電極コンタクト206aに変化させながら第1下部電極コンタクト206a上に予備第2下部電極コンタクト208を形成する。予備第2下部電極コンタクト208は予備下部電極コンタクト206に含まれた金属から生成される金属酸化物を含む。
【0427】
本実施形態において、予備下部電極コンタクト206が酸化されて第2予備下部電極コンタクト208が形成されることから、第1下部電極コンタクト206aは第1開口部204の上端に比べて実質的に低い上部表面を有する。第2予備下部電極コンタクト208は予備下部電極コンタクト206に対して遂行される酸化工程によって第1開口部204から突出する。即ち、予備下部電極コンタクト206の上部表面が第1開口部204の上端と実質的に同一又は実質的に低い位置に位置するため、予備下部電極コンタクト206から金属酸化物が等方性で(isotropically)成長することによって予備第2下部電極コンタクト208は第1開口部204から突出する。
【0428】
図62を参照すると、第2絶縁膜パターン202が露出するまで予備第2下部電極コンタクト208を部分的に除去することによって、第1開口部204を満たす第2下部電極コンタクト208aを第1下部電極コンタクト206a上に形成する。
【0429】
図59に示したように、第2下部電極コンタクト208aを覆いながら第2絶縁膜パターン202上に相変化物質膜及び上部電極膜を形成する。相変化物質膜及び上部電極膜をパターニングして第2下部電極コンタクト208a及び第2絶縁膜パターン202上に相変化構造物210と上部電極212を形成する。
【0430】
上部電極212を覆いながら第2絶縁膜パターン202上に第2開口部を含む第3絶縁膜パターン214を形成する。第2開口部は上部電極212を部分的に露出させる。第2開口部を満たしながら上部電極212上に上部電極コンタクト216を形成する。
【0431】
図63は、本発明の一実施形態による広帯域移動通信が可能な移動通信端末器ネットワークを具備する広帯域通信システムの概略図である。
【0432】
図63を参照すると、広帯域移動通信システム250は、センサーモジュール252、位置追跡システム(GPS)254、及び移動通信端末器256を含む。広帯域移動通信システム250はデータサーバー258及び基地局260と互いに通信することができる。移動通信端末器256はデータサーバー258及び基地局260が数多くのデータを受信/送信することから高速通信速度と高いデータ信頼性が要求される。
【0433】
移動通信端末器256は本発明の上記実施形態による抵抗メモリ装置のうちの少なくとも一つを具備することができる。抵抗メモリ装置は上述した実施形態による磁気メモリ装置及び/又は相変化メモリ装置を含むことができる。本発明の上記実施形態による抵抗メモリ装置は、低い駆動電圧、高速動作、及び高いデータ信頼性を確保できるため、移動通信端末器256に充分に適用することができる。
【0434】
本実施形態による抵抗メモリ装置は、例えば、USBメモリ、MP3プレーヤー、デジタルカメラ、メモリカードなどの多様な電気及び電子装置に使うことができる。
【0435】
<コンタクト構造物の抵抗評価>
本実施形態による抵抗メモリ装置は、下部電極コンタクトが大きな抵抗を有するため高いジュール加熱効率を確保することができる。次のサンプル及び比較サンプルは抵抗メモリ装置に含まれる下部電極コンタクト構造物の抵抗を比較するために製造した。
【0436】
<サンプル1〜サンプル8>
図64は、サンプル1〜サンプル8によるコンタクト構造物を示す断面図である。
【0437】
図64に示したように、基板300上に開口部を含む絶縁膜パターン302を形成した。開口部内にコンタクトプラグ308を形成した。コンタクトプラグ308はタングステンパターン304とタングステン酸化物パターン306を具備した。タングステン酸化物パターン306はタングステンパターン304を急速熱処理工程で熱処理して収得した。
【0438】
サンプル1〜サンプル8によるコンタクトプラグ308の直径は互いに相違する。次の表1にはサンプル1〜サンプル8によるコンタクトプラグ308の直径が記載されている。サンプル1〜サンプル8によるコンタクトプラグ308は上述の抵抗メモリ装置の導電構造物と実質的に同じ構成を有する。
【0439】
<比較サンプル11〜比較サンプル18>
図65は、比較サンプル11〜比較サンプル18によるコンタクト構造物を示す断面図である。
【0440】
図65に示したように、基板300上に開口部を含む絶縁膜パターン302を形成した。開口部内にコンタクトプラグ312を形成した。コンタクトプラグ312は、タングステンパターン304とタングステンパターン304上に形成されたタングステン窒化物パターン310を具備した。比較サンプル11〜比較サンプル18によるコンタクトプラグ312の直径は互いに相違する。次の表1には比較サンプル11〜比較サンプル18によるコンタクトプラグ312の直径を示している。
【0441】
<比較サンプル21〜比較サンプル28>
図66は、比較サンプル21〜比較サンプル28によるコンタクト構造物を示す断面図である。
【0442】
図66に示したように、基板300上に開口部を含む絶縁膜パターン302を形成した。開口部内にタングステンを含むコンタクトプラグ314を形成した。比較サンプル21〜比較サンプル28によるコンタクトプラグ314の直径は互いに異なる。次の表1には比較サンプル21〜比較サンプル28によるコンタクトプラグ314の直径を示している。
【0443】
【表1】

【0444】
図67は、各サンプル及び比較サンプルによるコンタクト構造物の抵抗を示すグラフである。図67において、参照符号320はサンプル1〜サンプル8で測定した抵抗を示し、参照符号322は比較サンプル11〜比較サンプル18で測定した抵抗を示し、参照符号324は比較サンプル21〜比較サンプル28で測定した抵抗を示す。
【0445】
図67に示したように、サンプル及び比較サンプルにより同じ直径を有するコンタクト構造物で抵抗を測定した結果、サンプル1〜サンプル8によるコンタクト構造物の抵抗が相対的に高かった。例えば、約130nmの直径を有する比較サンプル11及び比較サンプル21によるコンタクト構造物の抵抗がそれぞれ約1,380Ω及び約1,310Ωである反面、約130nmの直径を有するサンプル1によるコンタクト構造物の抵抗は約1,480Ωであり、比較サンプル11より約100Ω程度高いことが分かる。
【0446】
上述のように、本実施形態による抵抗メモリ装置のコンタクト構造物はタングステンパターンとタングステン酸化物パターンを含むため高い抵抗を有する。コンタクト構造物によってジュール加熱効率が向上することから、抵抗メモリ装置は改善された特性を確保することができる。
【0447】
<抵抗メモリ装置の電気的特性評価>
<サンプル9>
図45及び図46を参照して説明した工程と実質的に同じ工程を通じて相変化メモリ装置を製造した。サンプル9による相変化メモリ装置は、図38を参照して説明した相変化メモリ装置と実質的に同じ構造を有する。相変化メモリ装置の導電パターンはタングステンを使って形成した。第1開口部内で導電パターン上に形成される下部電極コンタクトは導電パターンを急速熱処理工程で熱処理して形成した。下部電極コンタクトはタングステン酸化物を含んでいる。上部電極はチタン窒化物を使って形成し、上部電極コンタクトはタングステンを使って形成した。
【0448】
<比較サンプル9>
サンプル9による相変化メモリ装置と電気的な特性を比較するために他の相変化メモリ装置を製造した。
【0449】
図68は、比較サンプル9による相変化メモリ装置を示す断面図である。
【0450】
図68を参照すると、比較サンプル9による相変化メモリ装置は、基板8上に形成された導電パターン12a、相変化構造物52a、上部電極24、及び上部電極コンタクト30を含む。相変化メモリ装置は、第1絶縁膜10、第2絶縁膜パターン14、及び第3絶縁膜パターン26を追加的に含む。第1絶縁膜10にはP−Nダイオード11が埋められる。比較サンプル9による相変化メモリ装置は、下部電極コンタクトを具備せず、タングステンで構成された導電パターン12a上に相変化構造物52aが配置される。即ち、導電パターン12aが下部電極として使われる。相変化メモリ装置は相変化構造物52aが形成された開口部の側壁上に配置されるスペーサー50aを含む。
【0451】
サンプル9及び比較サンプル9による構成を有する複数の相変化メモリ装置を製造した。相変化メモリ装置のセット状態及びリセット状態での抵抗とリセット状態での電流をそれぞれ測定した。
【0452】
次の表2に相変化メモリ装置のセット抵抗、リセット抵抗及びリセット電流を示す。
【0453】
【表2】

【0454】
表2に示したように、サンプル9による相変化メモリ装置のセット抵抗が比較サンプル9による相変化メモリ装置のセット抵抗より低く、サンプル9による相変化メモリ装置の抵抗散布も比較サンプル9による相変化メモリ装置の抵抗散布より小さかった。サンプル9による相変化メモリ装置のリセット抵抗は比較サンプル9による相変化メモリ装置のリセット抵抗より更に大きかった。また、比較サンプル9による相変化メモリ装置において、開口内で相変化構造物がより深い深さを有することから相変化構造物にボイドやシーンがしばしば発生し、これに伴い、相変化メモリ装置の動作不良が引き起こされ、その電気的な特性が低下した。
【0455】
反面、サンプル9による相変化メモリ装置において、低い抵抗散布を有するだけでなく、セット状態及びリセット状態での抵抗差が大きく容易にデータを区分することができるため、サンプル9による相変化メモリ装置は要求される電気的特性を充分に満足させるということが分かった。
【0456】
以上、図面を参照しながら本発明の実施形態について詳細に説明したが、本発明は、上述の実施形態に限定されるものではなく、本発明の技術的範囲から逸脱しない範囲内で多様に変更実施することが可能である。
【符号の説明】
【0457】
8、50、64、90、100、190、300、400、490 基板
8a、406、490a 不純物領域
10、192、408、494 第1絶縁膜
11、106、194、500 P−Nダイオード
12、110 予備導電パターン
12a、110a、412 導電パターン
14、112、202 第2絶縁膜パターン
16、104、204、496 第1開口部
18、116 下部電極コンタクト
20、50a、62、80、118、455、552 スペーサー
22 相変化物質膜
22a、52a、120、210、514、514a、514b、556 相変化構造物
24、122、212、438、516 上部電極
26、124、214 第3絶縁膜パターン
28、114、160、505 第2開口部
30、128、216、522 上部電極コンタクト
52、66、94 絶縁膜
54、68、96、415、453、553 開口部
56、70 バリア金属膜
56a、70a、506 バリア金属膜パターン
58、59、72 金属膜
58a、72a、92、530 予備金属パターン
58b、59a、72b、82、92a、418、450、502a、508、530a、612、652 金属パターン
60、76、86、98、98a、420、454、456、510、510a、536、536a、554、616、656 金属酸化物パターン
74 充填膜
74a、84、614、654 充填膜パターン
100a 素子分離領域
102、162 第1絶縁膜パターン
108 金属シリサイドパターン
126、513、515、532 第3開口部
150 第1トレンチ
152 第1追加絶縁膜パターン
154 第2追加絶縁膜パターン
156 第2トレンチ
158 第3追加絶縁膜パターン
206 予備下部電極コンタクト
206a 第1下部電極コンタクト
208 予備第2下部電極コンタクト
208a 第2下部電極コンタクト
250 広帯域移動通信システム
252 センサーモジュール
254 位置追跡システム(GPS)
256 移動通信端末器
258 データサーバー
260 基地局
302、534 絶縁膜パターン
304 タングステンパターン
306 タングステン酸化物パターン
308、312、314、410 コンタクトプラグ
310 タングステン窒化物パターン
402 ゲート絶縁膜
404 ゲート電極
414、452、504、550 第2絶縁膜
416、610、650 第1バリア金属膜パターン
422、434a、512、512a、518a、618、660 第3絶縁膜
424 第2バリア金属膜パターン
426 自由膜パターン
428 トンネル酸化膜パターン
430a、430b、430c 第1固定膜パターン
432 第2固定膜パターン
434、436、518 第4絶縁膜
436 第5絶縁膜
440 ビットライン
492 素子分離膜パターン
500a 第1ポリシリコン膜パターン
500b 第2ポリシリコン膜パターン
520 コンタクトホール

【特許請求の範囲】
【請求項1】
基板上に配置され、該基板の導電領域を露出させる開口部を含む絶縁膜と、
前記開口部内に配置されるバリア膜パターンと、
前記バリア膜パターン上に配置され、前記開口部の外部に延長される酸化された部分(oxidized portion)及び前記開口部内に位置する酸化されなかった部分(non−oxidized portion)を含む導電パターンと、を具備し、
前記導電パターンの幅が前記バリア膜パターンの厚さによって決定されることを特徴とする半導体装置。
【請求項2】
前記導電パターンの幅は前記開口部の幅より小さいことを特徴とする請求項1に記載の半導体装置。
【請求項3】
前記開口部の外部に延長される前記酸化された部分は前記開口部内の前記酸化されなかった部分より厚いことを特徴とする請求項1に記載の半導体装置。
【請求項4】
前記酸化された部分の幅は前記酸化されなかった部分の幅と同一であることを特徴とする請求項1に記載の半導体装置。
【請求項5】
前記酸化された部分の幅は前記酸化されなかった部分の幅より大きいことを特徴とする請求項1に記載の半導体装置。
【請求項6】
前記開口部内に配置される充填膜パターン(filling layer pattern)を更に含み、前記導電パターンは前記バリア膜パターンと前記充填膜パターンとの間に配置されることを特徴とする請求項1に記載の半導体装置。
【請求項7】
前記導電パターンはシリンダー形状を有することを特徴とする請求項6に記載の半導体装置。
【請求項8】
前記導電パターンはタングステンを含むことを特徴とする請求項1に記載の半導体装置。
【請求項9】
前記バリア膜パターンはチタン及びチタン窒化物のうちの少なくとも一つを含むことを特徴とする請求項1に記載の半導体装置。
【請求項10】
前記バリア膜パターンは窒化物及び酸窒化物のうちの少なくとも一つを含むことを特徴とする請求項1に記載の半導体装置。
【請求項11】
前記導電パターンの前記酸化された部分は相変化メモリ装置(PRAM)の相変化物質膜に接触することを特徴とする請求項1に記載の半導体装置。
【請求項12】
前記バリア膜パターンは前記バリア膜パターンの下に配置されるP−Nダイオード(diode)に接触することを特徴とする請求項11に記載の半導体装置。
【請求項13】
前記導電パターンの前記酸化された部分は磁気メモリ装置(MRAM)の自由膜パターン(free layer pattern)に接触することを特徴とする請求項1に記載の半導体装置。
【請求項14】
前記バリア膜パターンは前記バリア膜パターンの下に配置されるMOSトランジスタに電気的に接触することを特徴とする請求項13に記載の半導体装置。
【請求項15】
平面上で前記酸化された部分の断面面積の大きさは平面上で前記開口部の断面面積の大きさより小さいことを特徴とする請求項1に記載の半導体装置。
【請求項16】
平面上で前記酸化された部分の断面面積の大きさは前記バリア膜パターンの断面面積の大きさによって決定されることを特徴とする請求項15に記載の半導体装置。
【請求項17】
基板上に絶縁膜を形成する段階と、
前記絶縁膜に前記基板を露出させる開口部を形成する段階と、
前記開口部内にバリア膜パターンを形成する段階と、
前記開口部内の前記バリア膜パターン上に導電パターンを形成する段階と、
前記導電パターンの酸化によって前記導電パターンを成長させ、前記導電パターンの一部を前記開口部の外部に延長させる段階と、を有することを特徴とする半導体装置の製造方法。
【請求項18】
前記導電パターンを成長させる段階は、酸素の雰囲気下で400℃〜600℃の温度で1分〜10分の間に急速熱処理(RTA)する段階を含むことを特徴とする請求項17に記載の半導体装置の製造方法。
【請求項19】
前記導電パターンを成長させる段階は、酸素の雰囲気下で20W〜100Wのパワーを印加しながら1分〜10分の間にプラズマ処理する段階を含むことを特徴とする請求項17に記載の半導体装置の製造方法。
【請求項20】
前記導電パターンは等方性又は異方性に成長することを特徴とする請求項17に記載の半導体装置の製造方法。
【請求項21】
前記導電パターンの前記酸化された部分の周囲に窒素雰囲気を提供する段階を更に含むことを特徴とする請求項17に記載の半導体装置の製造方法。
【請求項22】
前記開口部内に充填膜パターンを形成する段階を更に含み、前記導電パターンは前記充填膜パターンと前記バリア膜パターンとの間に配置されることを特徴とする請求項17に記載の半導体装置の製造方法。
【請求項23】
基板と、
前記基板上に配置されて開口部を含む絶縁膜と、
前記基板上に配置される金属パターンと、
前記開口部内及び前記金属パターン上に配置される金属酸化物パターンと、を有し、
前記金属酸化物パターンの断面面積が前記金属パターンの断面面積より小さいことを特徴とする半導体装置。
【請求項24】
前記金属パターンはタングステンを含むことを特徴とする請求項23に記載の半導体装置。
【請求項25】
前記金属酸化物パターンに接触する前記金属パターンの一部がリセスされ(recessed)、前記リセスされた部分に前記金属酸化物パターンの突出部が受容されることを特徴とする請求項23に記載の半導体装置。
【請求項26】
前記金属酸化物パターンと前記絶縁膜との間に配置されるスペーサーを更に含むことを特徴とする請求項23に記載の半導体装置。
【請求項27】
前記金属パターンはP−Nジャンクション(junction)上に配置されることを特徴とする請求項23に記載の半導体装置。
【請求項28】
前記金属パターンはMOSトランジスタに電気的に連結されることを特徴とする請求項23に記載の半導体装置。
【請求項29】
前記金属酸化物パターンは磁気メモリ装置の自由膜パターンに接触することを特徴とする請求項23に記載の半導体装置。
【請求項30】
前記金属酸化物パターンは相変化メモリ装置の相変化物質膜に接触することを特徴とする請求項23に記載の半導体装置。
【請求項31】
前記相変化物質膜と前記絶縁膜との間に配置されるスペーサーを更に含むことを特徴とする請求項30に記載の半導体装置。
【請求項32】
前記相変化物質膜の上部は前記相変化物質膜の下部の幅より広い幅を有することを特徴とする請求項30に記載の半導体装置。
【請求項33】
基板上に金属パターンを形成する段階と、
前記金属パターン上に絶縁膜を形成する段階と、
前記絶縁膜を貫通して前記金属パターンの一部を露出させる開口部を形成する段階と、
前記金属パターンの露出した部分を酸化させて前記開口部内に金属酸化物パターンを形成する段階と、を有することを特徴とする半導体装置の製造方法。
【請求項34】
前記金属酸化物パターンは磁気メモリ装置の自由膜パターンに接触することを特徴とする請求項33に記載の半導体装置の製造方法。
【請求項35】
前記金属パターンは磁気メモリ装置のMOSトランジスタに電気的に接触することを特徴とする請求項34に記載の半導体装置の製造方法。
【請求項36】
前記金属酸化物パターンは相変化メモリ装置の相変化物質膜に接触することを特徴とする請求項33に記載の半導体装置の製造方法。
【請求項37】
前記金属酸化物パターンは前記相変化メモリ装置のP−Nダイオードに接触することを特徴とする請求項36に記載の半導体装置の製造方法。
【請求項38】
前記金属酸化物パターンの幅は前記金属パターンの幅より大きいことを特徴とする請求項33に記載の半導体装置の製造方法。
【請求項39】
基板上に配置される第1絶縁膜と、
前記第1絶縁膜上に配置されて開口部を含む第2絶縁膜と、
前記第2絶縁膜上に配置される第3絶縁膜と、
前記第3絶縁膜上に配置される第4絶縁膜と、
前記第4絶縁膜内に配置されるメモリ保存装置と、
金属パターン及び金属酸化物パターンを含み、前記メモリ保存装置を加熱する導電パターンと、を具備し、
前記金属パターンは前記第2絶縁膜の前記開口部内に配置され、前記金属酸化物パターンは前記第3絶縁膜内に配置され、前記導電パターンの幅が前記開口部の幅より小さいことを特徴とする半導体装置。
【請求項40】
前記第1絶縁膜内に配置されるMOSトランジスタと、前記第4絶縁膜内に配置される磁気メモリ装置の自由膜パターンと、を更に含むことを特徴とする請求項39に記載の半導体装置。
【請求項41】
前記第1絶縁膜内に配置されるP−Nダイオードと、前記第4絶縁膜内に配置される相変化物質膜と、を更に含むことを特徴とする請求項39に記載の半導体装置。
【請求項42】
前記金属酸化物パターンの上部表面は前記第3絶縁膜の上部表面と同じ平面上に配置されることを特徴とする請求項39に記載の半導体装置。
【請求項43】
前記金属パターンと前記第3絶縁膜との間に配置されるバリア金属膜パターンを更に含むことを特徴とする請求項39に記載の半導体装置。
【請求項44】
前記バリア金属膜パターンの上部表面は前記第2絶縁膜の上部表面と同じ平面上に配置されることを特徴とする請求項43に記載の半導体装置。
【請求項45】
前記第3絶縁膜の上部表面は前記金属パターンの上部表面より高く配置されることを特徴とする請求項39に記載の半導体装置。
【請求項46】
前記金属パターンの上部表面は前記バリア金属膜パターンの上部表面より低く配置されることを特徴とする請求項43に記載の半導体装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate

【図36】
image rotate

【図37】
image rotate

【図38】
image rotate

【図39】
image rotate

【図40】
image rotate

【図41】
image rotate

【図42】
image rotate

【図43】
image rotate

【図44】
image rotate

【図45】
image rotate

【図46】
image rotate

【図47】
image rotate

【図48】
image rotate

【図49】
image rotate

【図50】
image rotate

【図51】
image rotate

【図52】
image rotate

【図53】
image rotate

【図54】
image rotate

【図55】
image rotate

【図56】
image rotate

【図57】
image rotate

【図58】
image rotate

【図59】
image rotate

【図60】
image rotate

【図61】
image rotate

【図62】
image rotate

【図63】
image rotate

【図64】
image rotate

【図65】
image rotate

【図66】
image rotate

【図67】
image rotate

【図68】
image rotate


【公開番号】特開2011−109099(P2011−109099A)
【公開日】平成23年6月2日(2011.6.2)
【国際特許分類】
【出願番号】特願2010−256111(P2010−256111)
【出願日】平成22年11月16日(2010.11.16)
【出願人】(390019839)三星電子株式会社 (8,520)
【氏名又は名称原語表記】Samsung Electronics Co.,Ltd.
【住所又は居所原語表記】416,Maetan−dong,Yeongtong−gu,Suwon−si,Gyeonggi−do,Republic of Korea
【Fターム(参考)】