説明

Fターム[5F041CA05]の内容

発光ダイオード (162,814) | LED形式 (36,241) | 接合構造 (5,632) | 超格子(量子井戸を含む) (2,720)

Fターム[5F041CA05]に分類される特許

101 - 120 / 2,720


【課題】半導体層を積層して形成された同一層構成の積層面に、発光素子と受光素子とが配設された半導体光集積素子を構成するに当たり、発光素子の動作時には動作電流の増大による発熱や余計な発光を抑えることができ、受光素子の動作時には光の吸収効率を高くする半導体光集積素子を提供する。
【解決手段】基板上に第1の導電型の第1のクラッド層、活性層、及び、第2の導電型の第2のクラッド層を少なくとも含んで積層されてなる発光素子、及び、受光素子が、同一基板上の面内に配置されて成る半導体光集積素子において、
活性層は、導電型の第2の活性領域と、アンドープの第1の活性領域とが積層された構造を備え、
第2の活性領域が、第2の活性領域に対し最も近い位置に積層されている第1もしくは第2のクラッド層と同じ導電型とされている。 (もっと読む)


【課題】成長用基板の剥離の際の半導体層の損傷を抑制した半導体発光素子の製造方法及び半導体発光素子用ウェーハを提供する。
【解決手段】実施形態によれば、凹凸が設けられた主面を有する第1基板の主面上に、発光層を含む窒化物半導体層を形成する工程と、窒化物半導体層と第2基板とを接合する工程と、第1基板を介して窒化物半導体層に光を照射して第1基板を窒化物半導体層から分離する工程と、を含む半導体発光素子の製造方法が提供される。窒化物半導体層を形成する工程は、凹凸の凹部の内壁面上に窒化物半導体層の少なくとも一部と同じ材料を含む薄膜を形成しつつ、凹部の内側の空間内に空洞を残すことを含む。分離する工程は、薄膜に光の少なくとも一部を吸収させて、窒化物半導体層のうちで凹部に対向する部分に照射される光の強度を、窒化物半導体層のうちで凹凸の凸部に対向する部分に照射される光の強度よりも低くすることを含む。 (もっと読む)


【課題】良好なPN接合を側面に有して、良好な電気的特性を有する半導体素子等を提供すること。
【解決手段】第1導電型の半導体コア11を覆うように第1導電型の半導体シェル12を形成する。また、第1導電型の半導体シェル12を覆うように第2導電型の半導体シェル13を形成する。 (もっと読む)


【課題】シリコン基板上に形成される、低転位密度で結晶品質が優れた窒化物半導体素子、窒化物半導体ウェーハ及び窒化物半導体層の製造方法を提供する。
【解決手段】実施形態によれば、下地層と、機能層と、を備えた窒化物半導体層が提供される。下地層は、シリコン基板の上に形成されたAl含有窒化物半導体層の上に形成され、不純物濃度が低く、GaNを含む。機能層は、下地層の上に設けられる。機能層は、下地層の不純物濃度よりも高い不純物濃度を有し第1導電形のGaNを含む第1半導体層を含む。Al含有窒化物半導体層は、多層構造体を含む。多層構造体は、Alを含む窒化物半導体を含む複数の第2層と、複数の第2層の間に設けられ第2層におけるAl組成比よりも低いAl組成比を有する窒化物半導体を含む第1層と、を含む。下地層の厚さは、第1層の厚さよりも厚く、第1半導体層の厚さよりも薄い。 (もっと読む)


【課題】長時間使用した場合であっても特性の劣化を抑制できる半導体発光素子を提供する。
【解決手段】半導体発光素子1では、量子井戸層の総膜厚を臨界膜厚よりも大きい範囲とし、かつ量子井戸層の格子不整合を1.0%以上2.5%未満としている。これにより、半導体発光素子1の結晶内部(量子井戸層よりも上層部分)に所定の密度でミスフィット転位が発生し、このミスフィット転位が結晶内部に蓄積された歪みエネルギーを緩和するように作用する。したがって、この半導体発光素子1では、比較的大きな印加電流を長時間通電させた場合であっても結晶内部に状態変化が生じることを抑制でき、特性の劣化を抑制することが可能となる。 (もっと読む)


【課題】任意の基板上に形成でき良好な結晶性を有する窒化物半導体素子、窒化物半導体ウェーハ及び窒化物半導体層の製造方法を提供する。
【解決手段】実施形態によれば、第1層と、機能層と、を備えた窒化物半導体素子が提供される。前記第1層は、非晶質層の上に形成され、窒化アルミニウムを含み、圧縮歪または引張歪を有する。前記機能層は、前記第1層の上に形成され、窒化物半導体を含む。 (もっと読む)


【課題】光取り出し効率および輝度が高められた半導体発光素子を提供する。
【解決手段】半導体発光素子は、III-V族化合物半導体からなる発光層と、反射金属層を有する第1電極と、開口部を有する絶縁層と、第1導電形層と、第2導電形層と、第2電極と、を有する。前記第1導電形層は、前記第1電極の上であり前記発光層の下に設けられ、前記発光層のバンドギャップエネルギーよりも大きなバンドギャップエネルギーを有するIII-V族化合物半導体からなる。第1導電形層は、第1コンタクト層、組成傾斜層、第1クラッド層を含む。前記第2導電形層は、前記発光層と前記第2電極との間に設けられ、電流拡散層および第2コンタクト層を有する。前記第2電極は、パッド部と、前記パッド部から外方に向かい前記第2コンタクト層の上に延在する細線部、とを有する。上方からみて、前記絶縁膜の前記開口部と、前記第2コンタクト層とは、重ならない。 (もっと読む)


【課題】成長用基板に形成された窒化物半導体層を容易に剥離できる窒化物半導体発光素子の製造方法を提供する。
【解決手段】窒化物半導体発光素子の製造方法では、第1のサイズd1を有する第1基板31に窒化物半導体層11を形成する。窒化物半導体層11上に第1のサイズd1より小さい第2のサイズd2を有する第1接着層12aを形成し、第2基板32上に第2接着層12b形成する。第1および第2接着層12a、12bを重ね合わせ、第1および第2基板31、32を張り合わせる。第2のサイズd2より大きいまたは等しい第3のサイズd3を有する凹部31aを生じるように第1基板31を除去する。凹部31aに薬液を注入し、窒化物半導体層11が露出するまで第1基板31をエッチングする。薬液で、露出した窒化物半導体層11を更にエッチングし、窒化物半導体層11の露出面を粗面化する。 (もっと読む)


【課題】静電耐圧が高い窒化物半導体発光素子を歩留まりが高く製造する窒化物半導体発光素子の製造方法を提供する。
【解決手段】本発明の窒化物半導体発光素子は、成長用基板と、該成長用基板上に形成されたn型窒化物半導体層と、該n型窒化物半導体層上に形成された発光層と、該発光層上に形成されたp型窒化物半導体層とを有し、n型窒化物半導体層の発光層と接する側の表面から基板に向けて略垂直に延び、直径が2nm〜200nmであるパイプ穴を5000個/cm2以下有することを特徴とする。 (もっと読む)


【課題】クラッド層中に取り込まれるAsを低減し、発光出力の安定性を高めて信頼性を向上させる。
【解決手段】n型基板10の上に、Alを含有するP系結晶からなるn型クラッド層30と、As系結晶からなる量子井戸構造を有する発光層40と、Alを含有するP系結晶からなるp型クラッド層70とが、この順に積層され、発光層40とp型クラッド層70との間に、p型クラッド層70とはAl組成比が異なる(AlxGa1−xIn1−y
P(但し、0.05≦x≦0.25,0.47≦y≦0.52)からなる挿入層50を備える。 (もっと読む)


【課題】Al含有率が高いIII族窒化物半導体上にP型GaN層が形成された積層体において、その表面が極めて平滑であり、電極特性が良好な積層体の製造方法を提供する。
【解決手段】AlGaInN(X、YおよびZが、X+Y+Z=1.0,Y≧0,Z≧0,0.5≦X≦1.0である)層と、不純物原子がドープされたGaN層と有するIII族窒化物積層体を製造する方法であって、P型GaN層16が、層厚みをT[nm]とし、P型GaN層の層厚み方向における成長速度をGR[nm/分]とし、P型GaN層を形成するために用いられるGa原料の流量をFGa[μmol/分]とし、不純物原子原料の流量をFi[μmol/分]としたときに、GRが0.15以上2.0以下、(Fi/FGa)×ln(T)が0.1を超え0.4以下となるように成長させる。 (もっと読む)


【課題】絶縁膜の剥がれを抑制することが可能な発光素子を提供する。
【解決手段】基板2上に、n型層3a、発光層3b、およびp型層3cを有する光半導体層3を形成する第1工程と、n型層上の露出領域Sp内に第1電極4を形成する第2工程と、p型層上に、発光層で発光した光を反射する第1金属層5a、および第1金属層を覆うとともに金を含む第2金属層5bを順次積層して第2電極5を形成する第3工程と、第2電極上に、チタンおよびシリコンの少なくとも一方を含む密着層6を形成する第4工程と、密着層を酸素雰囲気中で加熱して、密着層の表面を酸化させる第5工程と、表面を酸化させた密着層、第2電極、p型層および発光層を被覆するようにシリコンを含む絶縁膜7を形成する第6工程と、第2電極と重なる領域の一部に位置する、絶縁膜および密着層をエッチングして、第2電極の一部を露出させる第7工程とを有する。 (もっと読む)


【課題】III 族窒化物半導体発光素子の駆動電圧を低減すること。
【解決手段】pクラッド層15は、厚さ0.5〜10nmのp−AlGaN層と、InGaN層とを繰り返し成長させて積層させた超格子構造とする。p−AlGaN層の成長温度は800〜950℃とする。p−AlGaN層上にInGaN層を形成する際、p−AlGaN層の成長温度を保持したまま、TMAの供給を停止してTMIを供給し、Ga源ガスの供給量を増やし、厚さ1〜2分子層のInGaN層を形成する。pクラッド層15の結晶品質を良好に保ちつつ、厚さを薄くできるため、駆動電圧を低減することができる。 (もっと読む)


【課題】効率が高い窒化物半導体素子及び窒化物半導体層成長用基板を提供する。
【解決手段】実施形態によれば、基板と、半導体機能層と、を備えた窒化物半導体素子が提供される。前記基板は、単結晶である。前記半導体機能層は、前記基板の主面上に設けられ、窒化物半導体を含む。前記基板は、前記主面内に配置された複数の構造体を有する。前記複数の構造体のそれぞれは、前記主面上に設けられた凸部、または、前記主面上に設けられた凹部である。前記複数の構造体の配列の最近接の方向と、前記基板の結晶格子の前記主面に対して平行な平面内における最近接の方向と、の間の角度の絶対値は、1度以上10度以下である。 (もっと読む)


【課題】低Vf化を図りながら、逆バイアス印加時の漏洩電流を確実に防止することができ、高輝度及び高光束を有する信頼性の高い窒化物半導体素子を提供することを目的とする。
【解決手段】n側窒化物半導体層、活性層及びp側窒化物半導体層がこの順に積層された窒化物半導体素子であって、前記n側窒化物半導体は、n型コンタクト層、アンドープ半導体層及びn型多層膜層がこの順に積層されてなり、該n型多層膜層が、50nm以上500nm以下の総膜厚を有し、前記活性層は90nm以上200nm以下の総膜厚を有する窒化物半導体素子。 (もっと読む)


【課題】発光効率の向上、及び製造工程の簡素化を図ることができる半導体発光素子及びその製造方法を提供する。
【解決手段】実施形態に係る半導体発光素子は、第1半導体層と、発光層と、第2半導体層と、第1電極層と、第2電極層と、を備える。第1半導体層は、第1導電形であって、第1部分と、第1部分よりも厚い第2部分と、を含む。第2部分は、第1部分の主面から立ち上がる側面を有する。発光層は、第2部分の上に設けられる。第2半導体層は、第2導電形であって、発光層の上に設けられる。第1電極層は、第1部分の主面に沿って設けられ、第2部分の側面に接する。第2電極層は、第2半導体層の上に設けられる。 (もっと読む)


【課題】p型コンタクト層のドーパント濃度の低下と結晶性低下に起因する、順方向電圧の増大、発光出力の低下が生じにくいIII族窒化物半導体発光素子およびその製造方法を提供する。
【解決手段】基板上にn型半導体層と多重量子井戸構造からなる発光層とp型クラッド層とを順次積層した後、キャリアガスとGa源及び窒素源を含む原料ガスとを連続的に供給するとともに、Mg源を含むドーパントガスを間欠的に供給するMOCVD法により、前記p型クラッド層上にp型コンタクト層を形成する工程を有し、前記ドーパントガスを供給する際に前記キャリアガスの流量を減少させることにより、前記p型コンタクト層の形成中における前記キャリアガスと原料ガスとドーパントガスとの総流量を一定に保つことを特徴とするIII族窒化物半導体発光素子の製造方法を採用する。 (もっと読む)


【課題】製造歩留まりを向上することができる窒化物半導体素子の製造方法を提供する。
【解決手段】実施形態に係る窒化物半導体素子の製造方法は、成長用基板と、前記成長用基板の上に形成されたバッファ層と、前記バッファ層の上に形成された窒化物半導体層と、を有する構造体の、前記窒化物半導体層の側に支持基板を接合した後、第1の処理材を用いて前記成長用基板を除去する工程と、前記成長用基板を除去した後、前記第1の処理材とは異なる第2の処理材を用いて前記バッファ層及び前記窒化物半導体層の厚さを減少させる工程と、を備える。 (もっと読む)


【課題】新たな構造を有する発光素子、発光素子パッケージ及びライトユニットを提供すること。
【解決手段】一実施例による発光素子は、第1導電型半導体層、前記第1導電型半導体層上の活性層、前記活性層上の第2導電型半導体層を有する発光構造物と、前記第1導電型半導体層に電気的に接続された第1電極と、前記第2導電型半導体層に電気的に接続された第2電極層とを備え、前記発光構造物の表面は互いに異なる方向の曲率を有する複数個の第1面と第2面が互いに交代に配置される。 (もっと読む)


【課題】高い光取出し効率を実現でき、かつ、製造が容易で低コストな発光ダイオード用基板及び発光ダイオードを提供する。
【解決手段】表面sに発光層7を含む半導体層3が形成される発光ダイオード用基板であって、サファイア基板からなり、表面sには、発光層7が発光する光を乱反射するランダムに配置された凹凸が形成され、かつ、凹凸は結晶方位を反映して形成されており、凹凸の高さが1μm以上5μm以下であり、表面のX線回折ロッキングカーブ半値幅が60秒以下である。 (もっと読む)


101 - 120 / 2,720