説明

Fターム[5F045AC07]の内容

気相成長(金属層を除く) (114,827) | 導入ガス (14,721) | 有機化合物ガス (3,422)

Fターム[5F045AC07]の下位に属するFターム

Fターム[5F045AC07]に分類される特許

21 - 40 / 1,519


【課題】InGaNを含む半導体の形成で、高品質・高In組成のInGaNを含む半導体の形成を可能とする。
【解決手段】
気相成長装置を用いて、基板上に少なくともInGaNを含む半導体薄膜を形成する気相成長方法であって、前記気相成長装置内で第一のN源とIn源とを反応させ、InN源を生成する第1のステップと、前記気相成長装置内で、第一のN源とは異なる第二のN源とGa源とを反応させ、GaN源を生成する第2のステップと、前記第1のステップで生成された前記InN源と、前記第2のステップで生成された前記GaN源とを前記基板上で反応させ、前記基板上に薄膜を形成する第3のステップとを有する気相成長方法を提供する。 (もっと読む)


【課題】成膜を繰り返し実行しても、ピット密度が低く高品質な成膜を行うことができ、量産性に優れたバーチカル方式のMOCVD装置などの気相成膜装置及びこれに用いられる材料ガス噴出装置を提供する。
【解決手段】材料ガス噴出器12は材料ガス供給室23,24と、材料ガス供給室に隣接して設けられた冷却器21と、材料ガス供給室側に材料ガス流入開口25,26を備え、冷却器を貫通して材料ガス供給室の反対側に材料ガス噴出開口31,32を備える材料ガス通気孔と、を備えている。上記材料ガス通気孔は冷却器内部で屈曲した形状を備え、材料ガス噴出開口31,32から材料ガス流入開口26,26への見通し経路を有しないように形成されている。 (もっと読む)


【課題】消費エネルギーを抑制しつつ成膜性能を向上する半導体装置の製造方法を提供する。
【解決手段】半導体装置の製造方法は、ウエハ2を処理室20へ搬入する搬入工程(S1)と、処理室20を排気する排気工程と、処理室20を所定の圧力まで降下する降圧工程(S2)と、複数の処理ガスを供給してウエハ2に膜を形成する成膜工程(S4)と、処理室20を所定の圧力まで上昇する昇圧工程(S7)と、ウエハ2を処理室20から搬出する搬出工程(S8)と、成膜工程(S4)における排気量が、降圧工程(S2)及び昇圧工程(S7)における排気量よりも大きくなるように調整する調整工程と、を有する。 (もっと読む)


【課題】液体原料の温度を精度よく制御できる基板処理装置および半導体装置の製造方法を提供する。
【解決手段】基板200が収容される処理室201と、気化空間271を有し、気化空間内に封じ込められた液体原料270を気化して気化ガスを生成する液体原料容器260と、気化ガスを処理室内へ供給する気化ガス供給ライン240aと、液体原料容器内の液体原料を加熱するための加熱装置263と、気化空間内の圧力を測定する圧力計261と、気化空間内の圧力計による測定圧力に基づいて加熱装置を制御する制御部266と、を有する。 (もっと読む)


【課題】結晶成長を繰り返し実行しても、成長結晶層の層厚及び結晶組成の変化が低減された、高品質な結晶層を成長できる結晶成長装置を提供する。
【解決手段】押さえガスを供給する副噴射器の内部に遮熱器25が設けられている。遮熱器25は、押さえガスが流入する複数の流入側通気部27Aと、流入側通気部と互いに連通し、流入側通気部27Aから流入した押さえガスを噴出する複数の流出側通気部27Bを有し、上記流出側通気部27B及び流入側通気部27Aは、流出側通気部27Bの開口部から流入側通気部27Aの開口部への見通し経路を有しないように形成されている。 (もっと読む)


【課題】比較的低温でも埋め込み特性が良好で且つ表面ラフネスの精度も向上するアモルファス状態の不純物含有のシリコン膜のような薄膜を形成することが可能な薄膜の形成方法を提供する。
【解決手段】真空排気が可能になされた処理容器内で被処理体Wの表面にシード膜88と不純物含有のシリコン膜90を形成する薄膜の形成方法において、処理容器内へアミノシラン系ガスと高次シランの内の少なくともいずれか一方のガスよりなるシード膜用原料ガスを供給してシード膜を形成する第1ステップと、処理容器内へシラン系ガスと不純物含有ガスとを供給してアモルファス状態の前記不純物含有のシリコン膜を形成する第2ステップとを有する。 (もっと読む)


【課題】シリコン基板上に形成した、転位及びクラックの少ない窒化物半導体ウェーハ、窒化物半導体装置及び窒化物半導体結晶の成長方法を提供する。
【解決手段】実施形態によれば、シリコン基板と、その上に順次設けられた、下側歪緩和層、中間層、上側歪緩和層及び機能層と、を有する窒化物半導体ウェーハが提供される。中間層は、第1下側層と、第1ドープ層と、第1上側層と、を含む。第1下側層は、下側歪緩和層の上に設けられ、下側歪緩和層の格子定数よりも大きい格子定数を有する。第1ドープ層は、第1下側層の上に設けられ、第1下側層の格子定数以上の格子定数を有し1×1018cm−3以上1×1021cm−3未満の濃度で不純物を含有する。第1上側層は、第1ドープ層の上に設けられ、第1ドープ層の格子定数以上で第1下側層の格子定数よりも大きい格子定数を有する。 (もっと読む)


【課題】複数の処理部を順番に通過させ、複数種類の処理ガスを順番に供給すると共にプラズマ処理を行うにあたり、基板に均一な成膜処理を行うこと。
【解決手段】回転テーブルにおける基板載置領域側の面にプラズマ生成用のガスを供給するガス供給部と、プラズマ生成用のガスを誘導結合によりプラズマ化するために、前記回転テーブルの中央部から外周部に亘って伸びるように当該回転テーブルにおける基板載置領域側の面に対向して設けられたアンテナと、を備えるように装置を構成する。そして、前記アンテナは、前記基板載置領域における回転テーブルの中央部側との離間距離が、前記基板載置領域における回転テーブルの外周部側との離間距離よりも3mm以上大きくなるように配置する。 (もっと読む)


【課題】LEDまたはSiCデバイスのコスト低減のために、GaN、AlNまたはSiCバファー膜を大量に堆積できる装置、及び、GaNまたはSiCエピタキシャル層のストレスの低減法、基板形成方法を提供する。
【解決手段】縦型ホットウォールタイプのクリーニング用プラズマ手段つき、減圧CVDおよびリモートプラズマCVD装置によりデバイスのコストを低減する。基板のデバイス形成領域の周辺に深い溝を形成することで、GaNまたはSiCエピタキシャル層のストレスを低減する。さらに基板表面を異方性、等方性パターンをエッチングにより形成する基板形成する。LEDデバイス基板に関しては、その表面にSiO2パターンを形成し、マイクロチャネルエピタキシーによって良好なエピタキシャル膜を形成し、欠陥の少ない良好な膜を得るようにする。 (もっと読む)


【課題】基板の処理の終了後に余熱によって薄膜に所望しない反応が生じてしまうことを防止でき、薄膜の結晶構造を安定させ、搬送ロボット等の破損を低減する。
【解決手段】複数の処理領域を有する反応容器内に設けられた基板支持部に基板を載置する工程と、基板を所定の処理温度に加熱しつつ、第1のガスを第1の処理領域内に供給し、プラズマ状態とした第2のガスを第2の処理領域内に供給し、第1の処理領域及び第2の処理領域を基板が通過するようにさせて、基板上に薄膜を形成する工程と、反応容器内への第1のガス及び第2のガスの供給を停止し、反応容器内に不活性ガスを供給して処理済みの基板を冷却する工程と、反応容器外に処理後の基板を搬出する工程と、を有する。 (もっと読む)


【課題】一般的な結晶成長方法による窒化物半導体層の積層で、分極効果が制御できるようにする。
【解決手段】c軸方向に結晶成長された窒化物半導体から構成されて主表面がIII族極性面104aとされた第2半導体層104の主表面に、第1半導体層103のIII族極性面103aを貼り合わせた後、第1半導体層103と基板101とを、分離層102で分離する。 (もっと読む)


【課題】結晶性の優れた炭化シリコン膜を形成することができる炭化シリコンからなる半導体装置の製造方法を提供する。
【解決手段】基板1上に、絶縁膜2を介してシリコン膜3が形成された半導体基板を用意し、炭化シリコン膜6形成予定領域を選択的に被覆するマスク膜5を形成する。このマスク膜5で被覆されない領域のシリコン膜3を酸化し、酸化シリコン膜4を形成する。マスク膜5を除去し、シリコン膜3を露出させ、露出したシリコン膜3を炭化し、炭化シリコン膜6を形成する。その後、炭化シリコン膜6上に炭化シリコンのエピタキシャル成長膜8を形成する。 (もっと読む)


【課題】電子素子等のデバイスを実装するには、炭化珪素基板の高周波損失が大きく、実際には電子素子を炭化珪素基板に実装できなかった。
【解決手段】20GHzにおける高周波損失が2.0dB/mm以下の炭化珪素基板であれば、電子素子を実装して十分に動作させることができることを見出し、2.0dB/mm以上の高周波損失特性を有する炭化珪素基板を2000℃以上で加熱する。この熱処理により20GHzにおける高周波損失を2.0dB/mm以下にすることができた。また、ヒーターに窒素を流さないで、CVDにより炭化珪素基板を作製することによって高周波損失を2.0dB/mm以下にすることができた。 (もっと読む)


【課題】閾値電圧のばらつきを低減できる炭化珪素半導体装置を提供する。
【解決手段】炭化珪素半導体装置10は、基板11と、基板11上に設けられ、主表面13Aと、主表面13Aと交差する厚さ方向とを有する炭化珪素層4とを含む。炭化珪素層4は、チャネル層7と、ソース領域15と、ドレイン領域17と、ソース領域15とドレイン領域17との間において、ゲート領域16Rとを含む。ゲート領域16Rはチャネル層7に対して、第1の導電型と異なる第2の導電型を有するようにエピタキシャル成長されている。 (もっと読む)


【目的】
GaN系化合物半導体成長層に生じる歪が低減されるとともに、当該結晶成長層にダメージを与えることなくSi基板から結晶成長層を容易に分離することが可能なGaN系化合物半導体の成長方法及び成長層付き基板を提供する。
【解決手段】
Si基板上にコラム状結晶層を成長する工程と、上記コラム状結晶層上に島状成長又は網目状成長の窒化アルミニウム(AlN)結晶層であるバッファ層を成長する工程と、上記バッファ層上にGaN系化合物結晶を成長する工程と、を有する。 (もっと読む)


【課題】 低温領域での成膜により基板上に形成された薄膜の膜質を向上させる。
【解決手段】 所定の成膜温度で形成された薄膜を有する基板が搬入される処理室と、処理室内に酸素又は窒素の少なくともいずれかを含む処理ガスを供給するガス供給部と、処理室内に供給された処理ガスを励起する励起部と、処理室内の基板を加熱する加熱部と、加熱部により基板を加熱させ、ガス供給部により供給させた処理ガスを励起部により励起させ、励起した処理ガスを基板の表面に供給して基板を処理する際、基板の温度が成膜温度以下の温度となるように、少なくともガス供給部、励起部及び加熱部を制御する。 (もっと読む)


【課題】動作特性に優れた窒化物半導体発光素子を容易に得られる窒化物半導体基板を実現できるようにする。
【解決手段】窒化物半導体基板101は、基板110の主面上に形成された複数の成長阻害領域となるマスク膜120と、基板の主面におけるマスク膜から露出する領域の上に形成された複数の第1の窒化物半導体層111と、各第1の窒化物半導体層111の側面上にのみ成長により形成された複数の第2の窒化物半導体層112と、複数の第1の窒化物半導体層111及び複数の第2の窒化物半導体層112を覆うように成長により形成された第3の窒化物半導体層113とを有している。複数の第2の窒化物半導体層は、成長阻害領域の上において互いに隣り合う半導体層同士が接合しておらず、第3の窒化物半導体層は、第2の窒化物半導体層同士が互いに隣り合う領域において接合している。 (もっと読む)


【課題】シリコンウェハ等のベース基板上方に窒化物半導体からなる半導体結晶層を形成する場合に、当該半導体結晶層の転位密度を低減する。
【解決手段】ベース基板、接着層、バッファ層および活性層を有し、前記ベース基板、前記接着層、前記バッファ層および前記活性層がこの順に位置し、前記ベース基板の前記接着層と接する領域にSiが存在し、前記接着層、前記バッファ層および前記活性層が、窒化物半導体からなる半導体基板の製造方法であって、前記ベース基板をエピタキシャル結晶成長装置の成長室に設置した後、前記ベース基板の温度を1000℃以上1150℃以下に維持しつつ前記ベース基板の表面を水素ガスに暴露する水素ガス暴露工程と、前記水素ガス暴露工程の後、前記ベース基板の上に、前記接着層、前記バッファ層および前記活性層をエピタキシャル成長法により順次形成する層形成工程と、を有する半導体基板の製造方法を提供する。 (もっと読む)


【課題】パターン化された窒化ガリウムのテンプレートの上に酸化亜鉛の半導体エピ層を製作する方法を提供する。
【解決手段】この方法は以下の工程を含む:(1)サファイア基板101aを含む基板101上に窒化ガリウム層103を少なくとも1000℃の温度で成長させ;(2)SiO2マスク105を窒化ガリウム103上で配向した開口107にパターン化し;(3)成長温度と反応器を選択することによって結晶面を制御して(ELO)窒化ガリウム層のエピタキシャル横方向異常成長を行い、窒化ガリウム層103から開口107の配列を通して成長した窒化ガリウム層109(テンプレート)が形成され;(4)この窒化ガリウムテンプレート上に単結晶酸化亜鉛半導体層111を堆積させる。 (もっと読む)


【課題】基板上に効率よく三族窒化物半導体の膜を生成し、かつ生成膜の均一性を向上させる。
【解決手段】窒化物半導体結晶成長装置100は、窒素含有ガス供給口8と三族金属含有ガス供給口9と、窒素含有ガス6を分解して活性種を生成する触媒材料1と、を備えており、触媒材料1は、窒素含有ガス供給口8の内部等に設けられており、窒素含有ガス供給口8および三族金属含有ガス供給口9は、何れも基板面に正対している。 (もっと読む)


21 - 40 / 1,519