説明

Fターム[5F048BB05]の内容

MOSIC、バイポーラ・MOSIC (97,815) | ゲート (19,021) | 材料 (10,904) | 多結晶Si (4,558)

Fターム[5F048BB05]の下位に属するFターム

Fターム[5F048BB05]に分類される特許

21 - 40 / 2,397


【課題】所定の安定した特性を有するN−MISFETとP−MISFETとを備えた半導体装置を容易に実現できるようにする。
【解決手段】半導体装置の製造方法は、半導体基板101の上に高誘電体膜121と、第1の膜122と、犠牲導電膜123と、第2の膜124とを順次形成した後、第2の膜124におけるN−MISFET形成領域101Nに形成された部分を第1の薬液を用いて選択的に除去する。この後、第2の膜124に含まれる第2の金属元素を犠牲導電膜124におけるP−MISFET形成領域101Pに形成された部分に拡散させる。続いて、犠牲導電膜124及び第1の膜122におけるN−MISFET形成領域101Nに形成された部分を、それぞれ第2の薬液及び第3の薬液を用いて選択的に除去する。第3の膜125を形成した後、第3の膜125に含まれる第3の金属元素を高誘電体膜121中に拡散させる。 (もっと読む)


【課題】オン抵抗を増大させることなく、ゲート−ソース間のESD耐量を向上させることのできる半導体装置を提供すること。
【解決手段】ポリシリコンゲート層を利用して形成したツェナーダイオードをESD耐量を向上させるために、並列接続させる構造を有する半導体装置とするものであって、ストライプ状または矩形状のツェナーダイオードを並列接続させて、それぞれ活性部内部に形成する半導体装置とする。
【選択図】 図
(もっと読む)


【課題】閾値電圧ばらつきを改善した半導体装置の製造方法を提供する。
【解決手段】SOI基板を用いた半導体装置の製造方法において、活性層基板を酸化して埋め込み酸化膜4bを生成する工程と、支持基板3表面に、MOSトランジスタ1の閾値電圧を決定するためのチャネルドープ10を行う工程と、支持基板3と活性層基板5とを前記埋め込み酸化膜を介して貼り合せる工程と、活性層基板を部分的に除去し埋め込み酸化膜4aを露出させる工程と、埋め込み酸化膜4a上にゲート電極6aを形成する工程と、を含む半導体装置の製造方法とする。 (もっと読む)


【課題】第1、第2ゲートを有するトンネルトランジスタで、第1、第2のゲート間の電圧の差がより小さい場合にしようできるトンネルトランジスタを提供する。
【解決手段】ドレイン2、ソース4およびドレイン2とソース4との間で電流を制御するための少なくとも第1ゲート6とを含み、第1および第2のゲート誘電体材料7、11の第1側9、13が、それぞれ第1および第2の半導体部分14、15に実質的に沿って、実質的に接続して配置されたトンネルトランジスタ1。 (もっと読む)


【課題】新規な構造のコンタクトプラグを有する半導体装置を提供する。
【解決手段】
半導体装置は、半導体基板と、半導体基板に形成され、ソース/ドレイン領域及びゲート電極を有するトランジスタと、トランジスタのソース/ドレイン領域及びゲート電極を覆う絶縁膜と、絶縁膜中に形成され、トランジスタのソース/ドレイン領域またはゲート電極に接されるコンタクトプラグとを有し、コンタクトプラグは、絶縁膜の厚さ方向に延在しトランジスタのソース/ドレイン領域またはゲート電極に接触する柱部と、柱部の上部から絶縁膜の表面と平行な方向に張り出し上面が平坦化された鍔部とを有する。 (もっと読む)


【課題】微細化しても高いオン電流を得ることができるトランジスタを用いた、半導体装置。
【解決手段】トランジスタが、絶縁表面上の一対の第1導電膜と、一対の第1導電膜上の半導体膜と、一対の第1導電膜にそれぞれ接続されている一対の第2導電膜と、半導体膜上の絶縁膜と、絶縁膜上において、半導体膜と重なる位置に設けられた第3導電膜とを有する。また、半導体膜上における第3導電膜の端部と、一対の第2導電膜が設けられた領域とは、離隔している。 (もっと読む)


【課題】半導体基板等にダメージを与えることなくゲート絶縁膜を形成する半導体装置の製造方法を提供する。
【解決手段】半導体基板上に誘電体膜を形成する成膜工程と、前記誘電体膜を熱処理する熱処理工程と、前記誘電体膜上の一部に電極を形成する電極形成工程と、前記電極の形成されていない前記誘電体膜にイオン化したガスクラスターを照射する照射工程と、前記照射工程の後、ウェットエッチングにより、前記イオン化したガスクラスターの照射された領域における前記誘電体膜を除去するエッチング工程と、を有することを特徴とする半導体装置の製造方法を提供することにより上記課題を解決する。 (もっと読む)


【課題】動作速度を向上し消費電力を低減しうる半導体装置及びその製造方法を提供する。
【解決手段】半導体基板に第1の領域を画定する第1の素子分離絶縁膜と、半導体基板の第1の領域に形成された第1導電型の第1の導電層と、半導体基板上に形成され、第1の領域の一部である第2の領域に第1の導電層に接続して形成された第1導電型の第2の導電層と、第1の領域の他の一部である第3の領域に第1の導電層に接続して形成された第1導電型の第3の導電層とを有する半導体層と、半導体層内に設けられ、第2の導電層と第3の導電層とを分離する第2の素子分離絶縁膜と、第2の導電層上に形成されたゲート絶縁膜と、ゲート絶縁膜上に形成され、第3の導電層を介して第1の導電層に電気的に接続されたゲート電極とを有する。 (もっと読む)


【課題】注入した導電性不純物により形成される結晶欠陥の密度を低減し、歩留まり率が向上するような半導体装置の製造方法を提供する。
【解決手段】本発明の実施形態にかかる半導体装置の製造方法は、半導体基板を加熱することにより、半導体基板の基板温度を200から500℃の間の所望の温度に維持すると同時に、半導体基板に導電性不純物をイオン注入法もしくはプラズマドーピング法を用いてドーピングし、ドーピングした導電性不純物を活性化させるための活性化処理を行う。 (もっと読む)


【課題】既存のCMOS製造工程に対して工程の追加や変更を行うことなく、素子に要求される耐圧に応じて横型半導体装置が有するLocos酸化膜を最適に制御することができる、横型半導体装置の製造方法を提供する。
【解決手段】半導体基板(100、101)上のLocos形成領域に、遮蔽部及び開口部が所定の幅及び間隔で設けられたパターン(113a、113b)を有するマスク(113)を形成する(工程3a、3b)。マスク(113)を用いた熱酸化処理を施してLocos形成領域を酸化させ、半導体基板(100、101)のドリフト領域上に厚さが異なる(115a、155b)Locos酸化膜(105a、105b)を同時に形成する(工程4a、4b)。 (もっと読む)


【課題】半導体基板に形成されたプレーナ型トランジスタと3次元トランジスタを含む半導体装置の形成プロセスを簡略化できるようにする。
【解決手段】半導体基板に形成されたプレーナ型トランジスタと3次元トランジスタを含む半導体装置であり、前記プレーナ型トランジスタ、前記3次元トランジスタはともに高誘電率材料によるゲート絶縁膜を有し、前記プレーナ型トランジスタは、前記ゲート絶縁膜上に、下側が第1のメタル材料(A)、上側が第2のメタル材料(B)からなるゲート電極を有し、前記3次元トランジスタは埋め込みゲート電極を有し、該埋め込みゲート電極の下側のほうに前記第1のメタル材料(A)と同一の材料が、該埋め込みゲート電極の上側のほうに前記第2のメタル材料(B)と同一の材料がそれぞれ使用されている。 (もっと読む)


【課題】残渣による配線間のショートの発生を防ぐ。
【解決手段】本発明の半導体装置は、高誘電率材料を含む第1のゲート絶縁膜4と第1のゲート絶縁膜4上に形成された第1のメタルゲート電極5とを備える第1のトランジスタが形成される半導体基板上の第1の領域と、高誘電率材料を含む第2のゲート絶縁膜4と第2のゲート絶縁膜上に形成された第2のメタルゲート電極12とを備え、第1のトランジスタとは閾値電圧の異なる第2のトランジスタが形成される半導体基板上の第1の領域に並ぶ第2の領域と、電位の異なる第1および第2の配線と、を有し、第1の領域と第2の領域との境界が、第1および第2の配線の少なくとも一方としか重ならない。 (もっと読む)


【課題】 寄生ダイオードの逆回復時間を短縮でき、スイッチング損失の低減が図れるLDMOSトランジスタを低コストで提供する。
【解決手段】 LDMOSトランジスタT1が、p型半導体基板1内にp型ボディ領域2とp型埋め込み拡散領域3とn型ドリフト領域6を、ボディ領域2内にn型ソースコンタクト領域4とp型ボディコンタクト領域5を、ドリフト領域6内にn型ドレインコンタクト領域7を、ソースコンタクト領域7とドリフト領域6間のボディ領域2の上方にゲート絶縁膜8を、ゲート絶縁膜8上にゲート電極9を夫々備えて形成され、ドリフト領域6とボディ領域2は相互に接触し、埋め込み拡散領域3が、ボディ領域2の底面と接触するボディ領域2よりも深い位置に、半導体基板1の表面に平行な方向に、少なくともボディ領域2からドレインコンタクト領域7のボディ領域2から最も離間した遠方端の下方まで延在している。 (もっと読む)


【課題】FinFETの隣接するフィン同士のショートを回避しつつ、エピタキシャル層の表面積を広く確保する。
【解決手段】実施形態によれば、半導体装置は、半導体基板と、前記半導体基板の表面に形成され、(110)面である側面を有するフィンとを備える。さらに、前記装置は、前記フィンの側面に形成されたゲート絶縁膜と、前記フィンの側面および上面に、前記ゲート絶縁膜を介して形成されたゲート電極とを備える。さらに、前記装置は、前記フィンの側面に、フィン高さ方向に沿って順に形成された複数のエピタキシャル層を備える。 (もっと読む)


【課題】内蔵する環流ダイオードの順方向電圧が低く、高耐圧で、低オン抵抗の、ノーマリオフ型の窒化物半導体装置を提供する。
【解決手段】窒化物半導体装置は、基板1、第1の窒化物半導体層3、第2の窒化物半導体層4、及び第2の窒化物半導体層上4に設けられた、ソース電極5、ドレイン電極6、第1のゲート電極9、ショットキー電極10、第2のゲート電極12、を備える。第2の窒化物半導体層4と第1の窒化物半導体層3との界面には、2次元電子ガスが形成される。第1のゲート電極9はノーマリオフ型FET20のゲート電極であり、ソース電極5とドレイン電極6との間に設けられる。ショットキー電極10は、第1のゲート電極9とドレイン電極6との間に設けられる。第2のゲート電極12はノーマリオン型FET21のゲート電極であり、ショットキー電極10とドレイン電極6との間に設けられる。 (もっと読む)


【課題】高耐圧MOSFETの耐圧を向上させる。
【解決手段】MOSFETのドレイン領域を構成するLDD層6内に、LDD層6よりも不純物濃度層が低いN−−層11を形成して、チャネル領域側のドレイン領域端部の不純物濃度を低下させる。また、ソース領域側のLDD層7をLDD層6よりも浅い接合深さで、且つLDD層6よりも低い不純物濃度で形成する。これにより、オン状態およびオフ状態のいずれの状態においてもドレイン領域の電界を緩和し、インパクトイオンおよびパンチスルーの発生を防ぐ。 (もっと読む)


【課題】論理素子のnチャネルMOSトランジスタに十分な膜厚の引張応力膜を形成し、メモリ素子がゲート電極間の層間絶縁膜の埋込不良を生じない製造方法の提供。
【解決手段】論理素子は、第1及び第2のnチャネルMOSトランジスタを含み、第1のゲート高さGH1及び第1のゲート長を有するゲート電極を有し、ゲート電極は第1の間隔Dを有し、メモリ素子は、第3および第4のnチャネルMOSトランジスタを含み、ゲート高さGH2および第2のゲート長を有するゲート電極を含み、論理素子及びメモリ素子は第1の引張応力膜64で覆われ、論理素子は、さらに第2の引張応力膜65で覆われ、論理素子及びメモリ素子のゲート間に形成された引張応力膜の最小距離は各々第1の距離L及び第1の距離Lで隔てられ、第1のアスペクト比(GH1/L)と、第2のアスペクト比(GH2/L)とは略等しい。 (もっと読む)


【課題】ライフタイムキラーが形成されてなる半導体装置において、オン電圧ばらつきや特性ばらつきを抑制することのできる半導体装置の製造方法を提供する。
【解決手段】半導体基板1aの裏面からコレクタ層10を構成する不純物をイオン注入するイオン注入工程と、半導体基板1aの裏面からレーザを照射し、不純物を活性化させてコレクタ層10を形成する活性化工程と、半導体基板1aの裏面からレーザを照射してライフタイムキラー13を形成するライフタイムキラー形成工程とを行う。これによれば、レーザを照射してライフタイムキラー13を形成しているため、ライフタイムキラー13の分布幅は波長のみに依存する。このため、ライフタイムキラー13をイオン照射により形成する場合と比較して、分布幅がばらつくことを抑制することができ、オン電圧ばらつきや特性ばらつきを抑制することができる。 (もっと読む)


【課題】レジストパターンの下地層への悪影響を及ぼすことなくスカムを最適に除去する半導体装置の製造方法を提供する。
【解決手段】半導体基板1の上に酸化膜5cを形成し、前記酸化膜5c上にフォトレジスト8を塗布し、前記フォトレジスト8を露光し、露光された前記フォトレジスト8を現像することにより前記フォトレジス8トに開口部8aを形成し、前記フォトレジスト8をマスクとして、前記酸化膜5cを酸素プラズマ処理し、前記酸素プラズマ処理の後、前記酸化膜5cと前記フォトレジスト8に希釈フッ酸を供給し、前記希釈フッ酸を供給する工程の後、前記フォトレジスト8をマスクとして前記酸化膜5cを通して記半導体基板1に一導電型不純物をイオン注入する工程を含む。 (もっと読む)


【課題】RCATの電流駆動能力を向上させることが可能な半導体装置を提供する。
【解決手段】半導体基板11は、ゲート溝13を有している。拡散層12は、ゲート溝13の上部に対応する半導体基板11の表面領域に形成されている。ゲート絶縁膜14は、ゲート溝の壁面に形成されている。ゲート電極15は、ゲート溝13の内部及びゲート溝13の外部に形成されている。圧縮応力を有する膜16は、ゲート溝13の外部のゲート電極15の全面に形成されている。 (もっと読む)


21 - 40 / 2,397