説明

Fターム[5F102GS09]の内容

接合型電界効果トランジスタ (42,929) | ゲート電極構造 (2,097) | 平面形状 (492) | 櫛歯状、蛇行状 (270)

Fターム[5F102GS09]に分類される特許

61 - 80 / 270


【課題】ゲート電極から染み出した金属がドレイン電極に到達することを抑制して、ドレイン−ゲート間の絶縁破壊を抑制する窒化物半導体装置を提供する。
【解決手段】ゲート電極5の直下に位置するAlGaN層22と、このAlGaN層22の直上に位置する絶縁膜30との間の界面Sに、ゲート電極5とドレイン電極1との間に位置するように、溝50を設けている。ゲート電極5から界面Sを伝ってドレイン電極1側へ染み出した金属を、溝50によって、堰き止めることができる。 (もっと読む)


【課題】トランジスタ動作のオフ時におけるリーク電流を低減することができる窒化物半導体素子、およびリーク電流が少なく、信頼性に優れる窒化物半導体素子パッケージを提供すること。
【解決手段】基板41上に、AlN層47、第1AlGaN層48(平均Al組成50%)および第2AlGaN層49(平均Al組成20%)からなるバッファ層44を形成する。バッファ層44上には、GaN電子走行層45およびAlGaN電子供給層46からなる素子動作層を形成する。これにより、HEMT素子3を構成する。このHEMT素子3において、GaN電子走行層45の厚さ方向途中部に、BNとGaNとの混晶からなるBGaN部50を形成する。 (もっと読む)


【課題】開口部にチャネルを備える縦型半導体装置において、高周波特性を向上することができる半導体装置およびその製造方法を提供する。
【解決手段】 n型GaN系ドリフト層4/p型GaN系バリア層6/n型GaN系コンタクト層7、を有し、開口部28は表層からn型GaN系ドリフト層内にまで届いており、該開口部を覆うように位置する電子走行層22および電子供給層26を含む再成長層27と、ソース電極Sと、ドレイン電極Dと、再成長層上に位置するゲート電極Gとを備え、ソース電極を一方の電極とし、またドレイン電極を他方の電極としてコンデンサを構成するとみて、該コンデンサの容量を低下させる容量低下構造を備えることを特徴とする。 (もっと読む)


【課題】挿入損失およびチップサイズの増大を生じることなく、歪特性に優れた高周波スイッチおよび高周波モジュールを提供する。
【解決手段】高周波スイッチであって、高周波信号を入出力するための複数の入出力端子101〜103と、2つの入力端子101、103間に設けられた基本スイッチ部104、105と、基本スイッチ部104、105の導通および遮断を制御するための制御電圧が入力される制御端子106、107とを備え、基本スイッチ部104、105は、メアンダ形状のゲート電極を有するメアンダ型のFET110〜113及びFET120〜123が多段に接続されて形成され、FET110〜113、及び120〜123のうち、入出力端子103からの電気的距離が最も短いFET113、及び120のフィンガー長は、他のFET110〜112、及び121〜123のフィンガー長よりも短い。 (もっと読む)


【課題】特性をさらに向上する半導体装置を提供する。
【解決手段】高電圧側電界効果トランジスタ20aの高電圧側ドレイン電極11aと、高電圧側ドレイン電極11aの一側方に間隔をおいて形成される高電圧側ゲート電極12aと、高電圧側ゲート電極12aの一側方に間隔をおいて形成され、高電圧側電界効果トランジスタ20aのソース電極であり、低電圧側電界効果トランジスタ21aのドレイン電極であるソース兼ドレイン電極13aと、ソース兼ドレイン電極13aの一側方に間隔をおいて形成される低電圧側電界効果トランジスタ21aの低電圧側ゲート電極14aと、低電圧側ゲート電極14aの一側方に間隔をおいて形成される低電圧側電界効果トランジスタ21aの低電圧側ソース電極15aとを有する。 (もっと読む)


【課題】発熱領域が集中して配置されていることによって熱抵抗が増大することを防止し、チップ面積を大きくすることなく発熱領域を分散させる電界効果トランジスタを提供する。
【解決手段】実施形態に係る電界効果トランジスタは、単位FETをゲートフィンガー電極複数本をまとめて一個のセル11とし、チップの長手方向にフィンガー電極を平行にして配置したものである。各セル11間の隙間には、ソースフィンガー電極13aを接続したバイアホール12付ソース電極配線13と、ゲートフィンガー電極14aを接続したゲート電極配線14と、が対称性を鑑みて配置される。また、各ゲート電極配線14は、ゲートバスライン17に接続される。 (もっと読む)


【課題】半導体装置において、抵抗が増大して変換効率が低下してしまうのを防止する。
【解決手段】半導体装置を、基板2上に形成されたGaN系半導体積層構造3を有する第1トランジスタQ1と、GaN系半導体積層構造を有する第2トランジスタQ2とを備え、第1トランジスタが、複数の第1フィンガ8AXを有する第1ゲート電極8Aと、複数の第1ドレイン電極9Aと、複数の第1ソース電極10Aとを備え、第2トランジスタが、複数の第2フィンガ8BXを有する第2ゲート電極8Bと、複数の第2ドレイン電極9Bと、複数の第2ソース電極10Bとを備え、複数の第1ドレイン電極の上方又は下方に接続されたドレインパッド15と、複数の第2ソース電極の上方又は下方に接続されたソースパッド25と、複数の第1ソース電極及び複数の第2ドレイン電極に接続された共通パッド35とを備えるものとする。 (もっと読む)


【課題】放熱スペースが短縮された、複数のユニットセルを有する高出力高周波半導体デバイスを提供する
【解決手段】ユニットセルは各々、制御電極24と、第1及び第2の被制御電極20,22とを有する。熱スペーサ(すなわち、電気的に不活性な領域)40が、これらのユニットセルのうち少なくとも1つを第1の活性部分及び第2の活性部分50に分割し、第2の活性部分は、この熱スペーサにより第1の部分から離隔される。ユニットセルの制御電極ならびに第1及び第2の被制御電極は、第1の熱スペーサを横切っている。 (もっと読む)


【課題】オフ時のリーク電流を低減し、パワースイッチング素子に適用可能なノーマリーオフ型の半導体装置を提供する。
【解決手段】基板101と、基板101の上に形成されたアンドープGaN層103と、アンドープGaN層103の上に形成されたアンドープAlGaN層104と、アンドープGaN層103又はアンドープAlGaN層104の上に形成されたソース電極107及びドレイン電極108と、アンドープAlGaN層104の上に形成され、ソース電極107とドレイン電極108との間に配置されたp型GaN層105と、p型GaN層105の上に形成されたゲート電極106とを備え、アンドープGaN層103は、チャネルを含む活性領域113と、チャネルを含まない不活性領域112とを有し、p型GaN層105は、ソース電極107を囲むように配置されている。 (もっと読む)


【課題】GaAsデバイスにおいて、空洞上に浮遊するGaAs層に素子形成を行うことにより、浮遊容量を抑え、高速化・低電力化を図ることが可能な半導体装置とその製造方法を提供する。
【解決手段】本発明の実施形態は、半導体基板11上に形成される空洞14と、空洞14上に形成されるGaAsエピタキシャル層13と、GaAsエピタキシャル層13上に形成されるゲート電極15と、それぞれGaAsエピタキシャル層13上に形成され、隣接するゲート電極15を挟むように形成される一対のソース電極16及びドレイン電極17と、を備える。 (もっと読む)


【課題】ゲートパッド電極と裏面金属電極間のリーク電流を抑制し、ボンディング強度を向上させ、高性能化・高信頼化を図る。
【解決手段】基板10の第1表面上に配置され、それぞれ複数のフィンガーを有するゲート電極24・ソース電極20およびドレイン電極22およびオーム性電極層18と、ゲート電極・ソース電極およびドレイン電極ごとに複数のフィンガーをそれぞれ束ねて形成したゲート端子電極GE1〜4・ソース端子電極SE1〜4およびドレイン端子電極DEと、オーム性電極層上に配置され、ゲート端子電極と接続するゲートパッド電極30と、オーム性電極層と基板との界面に形成された反応層を覆うように基板内に形成された第1導電型半導体層16と、第1導電型半導体層16を覆うように、基板内に形成され、第1導電型と反対導電型の第2導電型半導体層とを備える半導体装置1。 (もっと読む)


【課題】容量増加による高周波特性の劣化及び裏面電極に起因する絶縁破壊を抑止し、チップ面積を増加させることなく、インパクトイオン化により生成したホールを容易且つ確実に引き抜いて排出することを可能として、高耐圧性及び高信頼性を実現する化合物半導体装置及びその製造方法を提供する。
【解決手段】絶縁性又は半絶縁性の基板1の表面に電子走行層3、電子供給層4が形成され、電子供給層4内には局所的なp型領域7が形成されており、基板1の裏面にp型領域7の一部を露出させる開口1aが形成され、開口1aを導電材料で埋め込みp型領域7とオーミック接続された裏面電極8を備え、AlGaN/GaN・HEMTが構成される。 (もっと読む)


【課題】III-V族窒化物半導体を有する半導体装置において、熱による出力低下を低減する。
【解決手段】半導体装置は、基板101上に設けられ、III-V族窒化物半導体からなるバッファ層102と、バッファ層102上に設けられ、III-V族窒化物半導体からなる第1の半導体層103と、第1の半導体層103上に設けられ、III-V族窒化物半導体からなる第2の半導体層104と、基板101の裏面上に設けられ、接地に接続された裏面電極111と、第2の半導体層104上に互いに離間して設けられたソース電極132及びドレイン電極134と、第2の半導体層104上に設けられたゲート電極136とと、第2の半導体層104、第1の半導体層103、及びバッファ層102を貫通し、少なくとも基板101に達し、ソース電極132と裏面電極111とを電気的に接続させるプラグ109とを備えている。 (もっと読む)


【課題】 ビアホール上にオーミック電極が形成された半導体装置において、装置の小型化を図ること。
【解決手段】 本半導体装置は、基板10と、基板10上に形成された半導体層12と、半導体層上12に形成されたソースまたはドレイン電極を構成するオーミック電極20と、を備え、基板10及び半導体層12には、基板10及び半導体層12を貫通するビアホール30が形成され、ビアホール30は、少なくとも半導体層を貫通する第1ビアホール32と、第1ビアホール32下の基板10に形成された、第1ビアホール32より開口断面積が大きい第2ビアホール34と、を含み、オーミック電極20は、第1ビアホール32の上に設けられている。 (もっと読む)


【課題】出力を大きくすることが可能な半導体装置を提供すること。
【解決手段】半導体基板10上に設けられ、ソースパッド12aと、ソースパッド12aと接続された一端から他端に向けて長さが小さくなる階段状の側部12cを有するソースフィンガー12bと、を含むソース電極12と、ドレインパッド14aと、ドレインパッド14aと接続された一端から他端に向けて長さが小さくなり、側部12cと対向する側部14cを有するドレインフィンガー14bと、を含むドレイン電極14と、ソースフィンガー12bの段差12dと、ドレインフィンガー14bの段差14dとの間に屈曲部16cを有し、ソースフィンガー12a及びドレインフィンガー14aに沿って屈曲するゲート電極16と、を具備し、側部12cの形状と側部14cの形状とは、ソースフィンガー12bの他端とドレインフィンガー14bの他端とを結ぶ線分9の中点に対して対称である半導体装置。 (もっと読む)


【課題】活性層の上に電極パッドを形成する場合に生じる問題を解決し、オン抵抗の上昇を抑えた窒化物半導体装置を実現できるようにする。
【解決手段】窒化物半導体装置は、活性領域102Aを有する窒化物半導体層積層体102と、活性領域の上に互いに間隔をおいて形成されたフィンガー状の第1の電極131及び第2の電極132とを備えている。第1の電極の上に接して第1の電極配線151が形成され、第2の電極の上に第2の電極配線152が接して形成されている。第1の電極配線及び第2の電極配線を覆うように第2の絶縁膜が形成され、第2の絶縁膜の上に第1の金属層161が形成されている。第1の金属層は、第2の絶縁膜を介して活性領域の上に形成され、第1の電極配線と接続されている。 (もっと読む)


【課題】高温・高電圧で動作させた場合でも故障の発生を抑制することが可能な半導体装置を提供すること。
【解決手段】本発明は、GaNキャップ層38上のソースフィンガー12と、ソースフィンガーと交互に配置されたドレインフィンガー14と、ソースフィンガーとドレインフィンガーとの間のゲートフィンガー16と、ゲートフィンガーの上面と側面を覆う第1絶縁膜44と、ゲートフィンガーとドレインフィンガーとの間の第1絶縁膜上に設けられたフィールドプレート26と、活性領域18の外側で第1絶縁膜上にフィンガー方向と交差方向に設けられソースフィンガーとその両側のフィールドプレートとを接続するフィールドプレート配線28と、を備え、フィールドプレートと第1絶縁膜の第1段差部46とは100nm以上離れ、フィールドプレート配線と第1絶縁膜の第2段差部48とは100nm以上離れている半導体装置である。 (もっと読む)


【課題】円弧状の部分を有する電極と先端部分を有する電極での円弧状の部分と先端部分との間で流れる電流密度を均一化するために、電極の先端部分における電流集中を緩和させ、電流集中に起因する半導体装置の破壊を防止できる半導体装置を提供する。
【解決手段】半導体装置は、基板と、基板上に形成され、かつヘテロ接合に基づくキャリア走行層を有する化合物半導体層と、化合物半導体層上に形成される第1の主電極14と、化合物半導体層上において平面的に見て第1の主電極14を包囲するように形成され、かつ直線領域と円弧領域とを有する第2の主電極15と、化合物半導体層上において第1の主電極及び第2の主電極に対向するように形成された制御電極16と、を備え、第1の主電極及び第2の主電極の間に電流が流れる半導体装置であって、第1の主電極と第2の主電極の円弧領域との間に電流制限部19を設けた。 (もっと読む)


【課題】複数段のトランジスタで構成されるモジュールの段間のSパラメータが測定可能な段間プローブ用パターン構造、段間測定方法、およびマルチチップモジュール高周波回路を提供する。
【解決手段】誘電体基板と、誘電体基板の第1表面上に配置された第1信号伝送線路と、誘電体基板の第1表面上に前記第1信号伝送線路に隣接して配置された一対の第1接地端子電極と、第1接地端子電極の下部に配置された第1VIAホールと、誘電体基板の第1表面と反対側の第2表面に配置され、第1接地端子電極に対して第1VIAホールを介して接続された裏面接地電極とを備える。第1信号伝送線路には高周波プローブの信号端子が接続可能であり、一対の第1接地端子電極には、高周波プローブの一対の接地端子が接続可能である。 (もっと読む)


【課題】バランス抵抗器の接続されたゲート間伝導領域を有するマルチゲート半導体デバイスにおいて、スイッチ素子として使用した際の低挿入損失と素子サイズを抑えつつ、オフ時の非線形性を改善する。
【解決手段】バランス抵抗器405のゲート間伝導領域への接続点をゲートの2つの両端より内側に設ける。好ましくはメアンダ状ゲートの屈曲領域4061に設ける。 (もっと読む)


61 - 80 / 270