説明

Fターム[5F103BB08]の内容

Fターム[5F103BB08]に分類される特許

21 - 40 / 47


【課題】 InN結晶を分子線エピタキシャル成長法で成長させようとする場合、基板温度が低いと結晶品質が悪く基板温度が高いと窒素が解離してしまう。窒素解離を抑制して基板温度をより高くして成長させるようにする。
【解決手段】基板面にガスを吹き付けることにより窒素解離を防ぎ基板温度を高めて成長させる。ガスは分子線の経路を遮らないようなガスノズルから吹き出させる。ガスを真空チャンバの外側或いは内側において加熱して基板に吹き付けるようにすると、部品表面での組成原子の脱離の防止やマイグレーション距離を制御することもできる。 (もっと読む)


【課題】良好なp型特性を持つ窒化物半導体層を得ることが可能な窒化物半導体層の成長方法を提供する。
【解決手段】p型ドーパントとしてBeを用いる場合、Mgを用いる場合に比べてp−GaN層23のp型特性は、基板5の表面の転位密度に顕著に依存する。したがって、転位密度5×10cm−2以下の基板5を用いることにより、転位によるBeのキャリア補償を抑制でき、良好なp型特性を持つp−GaN層23が得られる。また、MBE法を用いることにより、p−GaN層23の成長方向や組成分布を精度良く制御できる。 (もっと読む)


【課題】性層の成長にMBE装置を用いるハイブリッド方式において、製品のスループットの向上が図られる半導体レーザ素子の製造方法を提供する。
【解決手段】この半導体レーザ素子1の製造方法では、水素プラズマクリーニングと活性層14の成長とを別々の真空装置で分離して実行することにより、クリーニング終了時の成長室33内の水素残留濃度を考慮する必要が無くなり、成長室33への基板搬送後に速やかに窒素プラズマ発生用のRFガン44の窒素プラズマを点火して活性層14の再成長を行うことが可能となる。したがって、この半導体レーザ素子の製造方法では、従来のように同一の真空装置内で水素プラズマクリーニングと活性層の成長とを連続して行う場合と比較して、製品のスループットの向上が図られる。 (もっと読む)


【課題】受光領域に到達するまでに光の減衰をなるべく防止するとともに、界面でのメジャーキャリアを電子とし、受光領域の検出感度や応答速度が低下しないようなフォトダイオードを提供する。
【解決手段】Si基板1に、n型不純物ドープ領域1aが形成され、主としてn型不純物ドープ領域1aが形成されていないシリコン基板1上に積層されたGaN層2との界面が受光領域となっており、この界面でキャリアを分離している。GaNは可視光に対し透明で、不純物ドーピングによるpn接合を持たない。したがって、高感度、高安定性を実現できる。また、Si基板1とGaN層2との界面で光を受光すると、光電流が発生するが、光電流は、GaNとSiの界面を2次元性キャリアとして流れる。これにより、高速応答性を得ることができる。 (もっと読む)


【課題】 高移動度と対環境安定性を兼ね揃えた半導体および半導体素子を提供する。また可視光領域に受光感度を有する半導体および半導体素子を提供する。
【解決手段】 金属酸窒化物から構成され、前記酸窒化物がIn、Ga、Sn、Mg、Si、Ge、Y、Ti、Mo、W、Alから選択される少なくとも1つの元素と、Znと、を含み、且つ、前記酸窒化物中のN/(N+O)で表されるNの原子組成比率が、7原子%以上80原子%以下であることを特徴とする酸窒化物半導体。 (もっと読む)


【課題】結晶の対称性のミスマッチが無い半導体基板を高スループットかつ低コストで製造することが可能な半導体基板の製造方法、半導体基板、発光素子及び電子素子を提供すること。
【解決手段】Si基板を用いることにより、サファイア基板やSiC基板を用いる場合に比べて製造コストを格段に低下させることができる。また、従来のSi基板の(100)面ではなく、Si基板の(110)面に13族窒化物を成長させることにより、結晶の対称性のミスマッチを解消することができる。さらに、パルススパッタ堆積法によって13族窒化物を成長させるので、例えば12インチ以上の大面積の基板においても製造することができ、高いスループットで製造することができる。 (もっと読む)


【課題】GaAs層上に形成されるInAs量子ドットのサイズを適切に制御する。
【解決手段】量子ドットの形成方法は、基板(110)上にGaAsを含んでなる第1半導体層(120)を形成する第1形成工程と、基板の基板温度を摂氏480度及び摂氏530度の間の温度にした後に、第1半導体層の上に、In及びAsを夫々照射して、InAsを含んでなる第2半導体層(130)を形成する第2形成工程とを備える。第2形成工程において、第2半導体層の成長速度を0.02ML/s及び0.1ML/sの間の成長速度とし、第2半導体層の成長量を1.2ML及び2.5MLの間の成長量とすることにより、第2半導体層の第1半導体層と対向しない側の面(130a)にInAsを含んでなる量子ドット(131)を形成する。 (もっと読む)


【課題】領域選択成長技術を適用して、均一性のある微細構造を生産できる微細構造素子製造装置及び微細構造素子生産方法を提供すること。
【解決手段】基板が搭載される試料ホルダ40と、基板30に選択的に結晶を成長させるため基板の温度を所定の範囲に加熱する加熱器50と、基板30に選択的に結晶を成長させるための少なくとも1つ以上の第1の開口部と、当該1つ以上の第1の開口部の外側に複数の第2の開口部を有するマスク10と、マスク10が搭載されるマスクホルダ20と、を備える微細構造素子製造装置。 (もっと読む)


【課題】分子線エピタキシ装置のための粒子線供給装置を提供する。
【解決手段】粒子線供給装置17では、粒子線生成器31は、分子線エピタキシ成長のための原料を提供する開口31aを有する。シャッタ装置33では、シャッタ35は粒子線生成器31の開口31aの前方に位置し、回転軸37は、シャッタ35を支持しており所定の軸Axに沿って延び、駆動機構39は、回転軸37を所定の軸Axの回りに回転駆動する。シャッタ35は、開口31aの位置に合わせて設けられた窓35aを有する。粒子線生成器31からの粒子線は、窓35aを通して進み、或いは、シャッタ35の遮蔽部35bによって遮断される。矢印Arrowの一方向のみにシャッタ35を等角速度で回転させたとき、シャッタ35の移動と停止を成長中に繰り返すことなく、一定の周期で、粒子線が窓35aを介して軸Bxに沿って供給される。 (もっと読む)


【課題】大面積化が可能なn型II−VI族化合物半導体膜及びその製造方法を提供すること。
【解決手段】F元素を含むF元素含有II−VI族化合物半導体膜の熱処理によりF元素含有II−VI族化合物半導体膜からF元素を脱離させる工程を含み、F元素含有II−VI族化合物半導体膜を構成するII族元素がZnであり、F元素含有II−VI族化合物半導体膜を構成するVI族元素が、Se及びSからなる群より選ばれる少なくとも1種であり、F元素含有II−VI族化合物半導体膜中のF元素濃度が5〜20atm%であるn型II−VI族化合物半導体膜の製造方法。 (もっと読む)


【課題】陽イオンの組成比を任意に調節することができる半導体活性層製造方法、それを利用した薄膜トランジスターの製造方法及び半導体活性層を具備する薄膜トランジスターを提供する。
【解決手段】第1ターゲットからIn、Ga及びZnを含むイオンが蒸着されて基板上にIGZO層が形成されるようにして、第2ターゲットからInを含むイオンが蒸着されて前記IGZO層のInの組成比が45ないし80at%になるようにする。 (もっと読む)


【課題】窒素フラックスの調整が可能な、III−V族半導体層を作製する方法と、量子井戸構造を作製する方法と、窒素源装置とを提供すること。
【解決手段】アパーチャ26a等のうち開口されたアパーチャを介して窒素フラックスを供給し他の原料フラックスを供給して、第1のIII−V族半導体層を基板上に堆積する第1の工程と、開口されるアパーチャの数を変更する第2の工程と、第2の工程後に開口されているアパーチャを介して窒素フラックスを供給し他の原料フラックスを供給して、第2のIII−V族半導体層を第1のIII−V族半導体層上に堆積する第3の工程とを備え、第1のIII−V族半導体層の窒素組成は第2のIII−V族半導体層の窒素組成と異なる。 (もっと読む)


【課題】 ゲルマニウム錫混晶層の歪緩和を促進し、より大きな面内伸張歪を持つ伸張歪ゲルマニウム層を形成することができる多層膜構造体を提供する。
【解決手段】半導体装置に好適な多層膜構造体10の形成方法として、シリコン基板11の上方にゲルマニウム層12を形成する工程と、その上方にゲルマニウム錫混晶層13を形成する工程と、その上方に伸張歪ゲルマニウム層14を形成する工程とを含む。 (もっと読む)


【課題】放出されるプラズマ粒子の純度を高め、不純物の混入を防止し、イオン濃度の制御性を良くした薄膜形成装置とこれを用いたZnO系薄膜を提供する。
【解決手段】中空の放電管1の外側周囲を高周波コイル2で巻き回されており、高周波コイル2の端子は、高周波電源に接続されている。また、放電管1の上部には放出孔4が、下部にはガス導入孔5が形成されている。ガス導入孔5にはガス供給管12が接続され、ここから薄膜構成元素となる気体が供給される。放出孔4と所定の距離を隔てて阻止体3が、放出孔4を遮るように設けられている。薄膜形成時には、中空の放電管1内部からプラズマ粒子が放出されるが、気体元素以外の粒子が阻止体3に阻止され基板へ到達できない。 (もっと読む)


【課題】磁性元素を含む半導体中で、磁性元素を高濃度に含むナノ結晶の自律的形成を人為的に制御し、結晶中の磁性元素の平均の組成が20%以下の小さい範囲でも、室温以上で強磁性あるいは超常磁性状態となって磁化過程に履歴現象が生じるような薄膜結晶を実現する。
【解決手段】磁性元素を含む半導体において、n型またはp型のドーパントを添加するか、あるいは化合物半導体の場合は結晶成長時の原料供給量の調節により化合物における構成元素の組成割合における化学量論比からのずれを調整することにより、磁性元素イオンの結晶中での価数を変化させてイオン間の引力相互作用を調整することで、磁性元素を高濃度に含むナノ結晶の自律的な形成を人為的に制御することが可能となる。 (もっと読む)


【課題】キャリア密度を向上可能な、半導体膜を製造する方法を提供することを目的とする。
【解決手段】2種以上の同極のドーパントを添加しながら分子線エピタキシ装置13を用いて半導体膜15を基板11上に成長する。分子線エピタキシ装置13において、Gaセル、Mgセル、BeセルおよびRF−Nラジカルガンのシャッタを開き、半導体膜15としてGaN膜を基板11上に成長する。GaN膜は、p型ドーパントMgおよびBeを含む。Beドーパントは半導体の構成元素のうちのGaと置換され、Ga元素の原子半径R21は、Beドーパント17aの原子半径R17よりも大きいと共に、Mgドーパント19aの原子半径R19よりも小さいので、GaNホスト半導体において局所歪みの影響を低減可能である。 (もっと読む)


【課題】p型ドーパントがBeである場合において、再現良く、高いホール密度を有するp型半導体層を備えるIII−V族化合物半導体の製造方法およびIII−V族化合物半導体を提供する。
【解決手段】III−V族化合物半導体1の製造方法は、基板10を準備する工程と、基板10上にIII−V族化合物半導体1からなるp型半導体層11を成長させる成長工程とを備えている。成長工程は、p型不純物10としてのBeをp型半導体層11に供給する第1供給工程と、S、Se、およびTeの少なくともいずれか1種のVI族元素を、第1供給工程で供給されるBeよりも少ない量で、p型半導体層11に供給する第2供給工程とを含んでいる。第1供給工程と第2供給工程とを実質的に同時に行なっている。 (もっと読む)


【課題】ポートの数を増やすことなく,還元性ガスを分子線結晶成長装置の成長室内に導入することを可能にする分子線源を提供する。
【解決手段】本発明の分子線源は,結晶成長のための分子線を放出する分子線放出部と,前記分子線放出部に結合され,前記分子線を加熱して分解するクラッキングゾーンとを備え,前記分子線放出部と前記クラッキングゾーンの間に還元性ガスを導入するための還元性ガス導入部を有することを特徴とする。 (もっと読む)


【課題】p型の半導体酸化亜鉛(ZnO)膜と、この膜の製造方法を提供する。
【解決手段】パルスレーザ堆積法(PLD)を使用してp型ZnO材料を成膜させる。この方法では、LiとPの両方を含有する化合物とZnOとの混合物からなる固体ターゲット上にパルスレーザビームを集光させる。集光されたレーザパルスの高いパワー密度により、ターゲット表面上の材料が融除されてプラズマが形成され、これが基板表面上に堆積する。また、パルスレーザ源を含んだ透明な基板と、パルスレーザの波長に対し透明である基板と、マルチターゲットシステムとを使用するパルスレーザ成膜プロセスについて説明する。パルスレーザの光路は、パルスレーザが基板の裏から入射して基板を通過し、ターゲット上に集光するように配置されている。基板をターゲットに向かって並進運動させ、アブレーションプルームのルートを利用した微細パターンの付着が可能になる。 (もっと読む)


【課題】 1.1μmよりも短波長な発光波長を有する半導体発光素子を提供する。
【解決手段】 半導体レーザは、活性層6を備える。活性層6は、6個の量子ドット層61と、5個の間隙層62とを含む。6個の量子ドット層61および5個の間隙層62は、交互に積層される。5個の間隙層62の各々は、ノンドープのGaAsからなる。そして、5個の間隙層62の各々は、30〜50nmの膜厚を有する。6個の量子ドット層61の各々は、量子ドット611とキャップ層612とからなる。量子ドット611は、InAsからなり、キャップ層612は、AlGa1−yAs(y=0.05〜0.5)からなる。量子ドット611は、1.8〜2.4モノレイヤーのInAsをMBEにより結晶成長することにより形成される。 (もっと読む)


21 - 40 / 47