説明

Fターム[5F140BG36]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | ゲート電極及び側壁の製造 (21,161) | ゲート電極の形成処理 (7,666) | ゲート電極の形状を形成する方法 (2,844)

Fターム[5F140BG36]の下位に属するFターム

Fターム[5F140BG36]に分類される特許

61 - 80 / 306


【課題】 チャネル部に対して効果的に応力を印加することが可能で、これによりキャリア移動度の向上を図ることが可能で高機能化が達成された半導体装置を提供する。
【解決手段】 半導体基板3の表面を掘り下げた凹部3a内にゲート絶縁膜5を介して設けられたゲート電極7と、ゲート電極7の両脇における半導体基板3の表面側に設けられたソース/ドレイン拡散層11と、ソース/ドレイン拡散層11の表面を覆う状態で半導体基板3の表面よりも深く設けられたシリサイド膜(応力印加層)13とを備えた半導体装置1-1である。半導体基板3の表面に対するチャネル部chの深さ位置d2は、シリサイド膜(応力印加層)13の深さd1位置よりも浅い。 (もっと読む)


【課題】高誘電率ゲート絶縁膜、及び、ゲート電極としてメタル膜を含む半導体装置において、逆短チャネル効果の発生を防止して高性能化を実現する。
【課題手段】半導体装置は、半導体基板101の上に形成されたランタンを含有する高誘電率ゲート絶縁膜102と、高誘電率ゲート絶縁膜102の上に形成されたキャップ膜103と、キャップ膜103の上に形成されたメタル膜104と、メタル膜104の上に形成されたポリシリコン膜105と、高誘電率ゲート絶縁膜102、キャップ膜103、メタル膜104、及びポリシリコン膜105それぞれの両側面に形成されたランタンを含有するゲート側壁絶縁膜106とを備えている。 (もっと読む)


【課題】シリコン基板にダメージを与えずに、ゲート下の不純物分布の正確な評価を安定して行うことのできる半導体ウェーハとその製造方法を提供する。
【解決手段】 半導体ウェーハは、半導体基板上の所定の箇所に設定されたモニター領域に、他と電気的接続を有しない断面形状がW字型のダミー充填部を有する。 (もっと読む)


【課題】CMPによるダミーゲート電極の頭出し工程およびCMPによるメタルゲート電極の形成工程を回避できる製造方法を提供する。
【解決手段】シリサイド膜24S,24D上に選択的に、シリコン膜25S,25Dを形成する工程と、側壁絶縁膜23WA,23WBの間にシリコン基板の表面を露出する凹部23Vを形成する工程と、側壁絶縁膜23WA,23WBの表面および露出されたシリコン基板表面を連続して覆うように、誘電体膜を形成する工程と、シリコン基板上に金属または導電性金属窒化物を含む導電膜を、凹部23Vに誘電体膜を介して充填するように形成する工程と、導電膜をエッチバックし、側壁絶縁膜23WA,23WBの間において凹部23Vを誘電体膜を介して充填するゲート電極を形成する工程と、を含む。 (もっと読む)


トランジスタは、基板と、基板上の一対のスペーサと、基板上且つスペーサ対間のゲート誘電体層と、ゲート誘電体層上且つスペーサ対間のゲート電極層と、ゲート電極層上且つスペーサ対間の絶縁キャップ層と、スペーサ対に隣接する一対の拡散領域とを有する。絶縁キャップ層は、ゲートにセルフアラインされるエッチング停止構造を形成し、コンタクトエッチングがゲート電極を露出させることを防止し、それにより、ゲートとコンタクトとの間の短絡を防止する。絶縁キャップ層は、セルフアラインコンタクトを実現し、パターニング限界に対して一層ロバストな、より幅広なコンタクトを最初にパターニングすることを可能にする。
(もっと読む)


低寄生抵抗であるチャネル歪みされたマルチゲートトランジスタとその製造方法に係る。ゲートを連結したチャネル側壁の高さがHsiである半導体フィンのチャネル領域の上にゲートスタックを形成されてよく、ゲートスタックに隣接する半導体フィンのソース/ドレイン領域内に、エッチングレートを制御するドーパントを注入してよい。ドーピングされたフィン領域をエッチングして、半導体フィンの、略Hsiに等しい厚みを除去して、ゲートスタックの一部の下にある半導体基板の部分を露呈させるソース/ドレイン延長キャビティを形成してよい。露呈した半導体基板の上に材料を成長させて、再成長したソース/ドレイン・フィン領域を形成して、ソース/ドレイン延長キャビティを充填して、ゲートスタックからの長さを、チャネルの長さに実質的に平行な方向に離れる方向に延ばしてよい。 (もっと読む)


【課題】半導体素子の特性を向上させると共に、半導体素子の微細化を容易に実現する。
【解決手段】半導体素子101にてゲート電極111gが設けられる部分の表面を凹凸面に形成する。ここでは、凹凸面のうち凸部CVでは、一対のソース・ドレイン領域112s,112dの表面と同一の面を覆うようにゲート絶縁膜111zを形成し、そのゲート絶縁膜111zの上面にゲート電極111gを設ける。これに対して、凹部TRでは、一対のソース・ドレイン領域112s,112dの表面から内部へ向けて設けられた溝Mの面を覆うようにゲート絶縁膜111zを形成し、その溝Mの内部を埋め込むようにゲート電極111gを設ける。 (もっと読む)


本発明の実施例として、半導体装置上のエピタキシャル領域を示した。ある実施例では、エピタキシャル領域は、成膜−エッチングプロセスを経て基板に成膜される。周期的な成膜−エッチングプロセスの間に、スペーサの下側に形成されるキャビティは、エピタキシャルキャップ層によって埋め戻される。エピタキシャル領域およびエピタキシャルキャップ層は、チャネル領域での電子移動度を改善し、短チャネル効果が抑制され、寄生抵抗が低下する。
(もっと読む)


【課題】電界効果トランジスタの電気抵抗の小さい金属ゲート構造を提供する。
【解決手段】本発明は、集積回路製造に関するものであって、特に、低抵抗の金属ゲート電極を有する電界効果トランジスタに関するものである。電界効果トランジスタのゲート電極の例は、凹部326aを有し、かつ、第一抵抗を有する第一金属材料からなる下側部分326と、突起328aを有し、かつ、第二抵抗を有する第二金属材料からなる上側部分328とからなり、突起が凹部に延伸し、第二抵抗は第一抵抗より小さい材料で形成される。 (もっと読む)


【課題】 スイッチング速度の低下やオン抵抗の増大を抑制しつつ、オフ耐圧を改善可能な半導体装置を提供する。
【解決手段】
半導体層11および12は、基板10上に形成され、第1の電極101、第2の電極102および絶縁膜14は、それぞれ、半導体層11および12上に形成され、絶縁膜14は、第1の電極101と第2の電極102との間に配置され、フィールドプレート電極17Aおよび17Bは、複数であり、かつ、絶縁膜14上に点在し、第1の電極101および第2の電極102は、半導体層11および12を介して電気的に接続されており、前記第1の電極と前記第2の電極との間の電圧印加時における電流の方向と垂直方向の各フィールドプレート電極の長さ、および、前記電流の方向と垂直方向に隣接する各フィールドプレート電極間の距離が、それぞれ、第1の電極101と第2の電極102との間の距離以下であることを特徴とする半導体装置。 (もっと読む)


【課題】本発明は、横方向拡散金属酸化物半導体(LDMOS)トランジスタと、これを製造する方法を提供する。
【解決手段】LDMOSトランジスタはp型基板上に形成されたn型エピタキシャル層と、LDMOSトランジスタのゲートとして機能する非対称導体スペーサとを備える。LDMOSトランジスタはまた、非対称導体スペーサの両側のソース領域及びドレイン領域と、イオン注入を非対称導体スペーサに行うことで形成されたチャネル領域とを備える。非対称導体スペーサの高さはソース領域からドレイン領域に向かって増加する。チャネル領域は、基本的に完全に非対称導体スペーサの下に存在し、従来技術のLDMOSトランジスタのチャネル領域の長さよりも短い長さを有する。本発明のLDMOSトランジスタはまた、当該トランジスタの活性領域を囲むフィールド酸化物層と、非対称導体スペーサをn型エピタキシャル層から絶縁する薄い誘電体層とを備える。 (もっと読む)


幅広い電子デバイスのアレイ及びシステムにおける電力消費を低減する一式の新たな構造及び方法が提供される。これらの構造及び方法のうちの一部は、大部分が既存のバルクCMOSのプロセスフロー及び製造技術を再利用することで実現され、半導体産業及びより広いエレクトロニクス産業がコスト及びリスクを伴って代替技術へ切り替わることを回避可能にする。これらの構造及び方法のうちの一部は、深空乏化チャネル(DDC)設計に関係し、CMOSベースのデバイスが従来のバルクCMOSと比較して低減されたσVTを有することと、チャネル領域にドーパントを有するFETの閾値電圧VTがより一層正確に設定されることとを可能にする。DDC設計はまた、従来のバルクCMOSトランジスタと比較して強いボディ効果を有することができ、それにより、DDCトランジスタにおける電力消費の有意義な動的制御が可能になる。
(もっと読む)


【課題】 高誘電体ゲート絶縁膜およびシリコン基板との界面を高品質化して、MISFETの特性向上を図る。
【解決手段】 シリコン基板11上にhigh−k膜21とゲート電極24を形成する半導体装置の製造方法において、high−k膜形成後にフッ素雰囲気でアニール処理23を施し、その後のプロセス温度を600℃以下で行う、半導体装置の製造方法。 (もっと読む)


【課題】
電子デバイスにおける電力消費を低減するシステム及び方法が開示される。この構造及び方法は、大部分が、バルクCMOSのプロセスフロー及び製造技術を再利用することによって実現され得る。この構造及び方法は、深空乏化チャネル(DDC)設計に関係し、CMOSベースのデバイスが従来のバルクCMOSと比較して低減されたσVTを有することを可能にするとともに、チャネル領域にドーパントを有するFETの閾値電圧VTがより正確に設定されることを可能にする。DDC設計はまた、従来のバルクCMOSトランジスタと比較して強いボディ効果を有し、それにより、電力制御の有意義な動的制御が可能になる。
(もっと読む)


【課題】同一の半導体基板上に、高性能な低電圧MISFET、高信頼なMONOS型不揮発性メモリおよび高電圧MISFETを形成する。
【解決手段】ロジック回路などに使用される低電圧MISFETの形成領域において、キャップ酸化膜をマスクにすることによってダミーゲート電極上にシリサイドが形成されるのを防ぎ、ダマシンプロセスを用いて低電圧MISFETのゲートをhigh−k膜18およびメタルゲート電極20で形成する際の形成工程を簡略化する。また、ダミーゲート電極除去時のRIEによりダメージを受けたゲート絶縁膜を一旦除去し、新たにゲート酸化膜17を形成することで素子の信頼性を確保する。 (もっと読む)


【課題】接合リークを抑制しながら、キャリアの移動度向上とチャネル中でのキャリア速度の増加を実現することができるトランジスタを提供する。
【解決手段】半導体基板10のチャネル形成領域にチャネル方向に第1の幅を有するSiGe層15が埋め込まれ、チャネル形成領域上にゲート絶縁膜28が形成され、ゲート絶縁膜上に、第1の幅より大きい第2の幅を有してSiGe層の形成領域からはみ出す領域を有するゲート電極29が形成され、チャネル形成領域を挟む半導体基板においてエクステンション領域12を有するソースドレイン領域13が形成されて、電界効果トランジスタが構成されており、エクステンション領域と半導体基板の接合面から伸びる空乏層がSiGe層に達しないようにエクステンション領域とSiGe層が離間されている。 (もっと読む)


【課題】配線の設計自由度が高く、ゲート電極及びソース/ドレイン領域に接続されるコンタクト部の形成に問題が生じ難く、微細化プロセスに適した半導体装置の製造方法を提供する。
【解決手段】半導体装置の製造方法は、(a)基体21上にゲート電極31を形成し、基体にソース/ドレイン領域37及びチャネル形成領域35を形成し、ソース/ドレイン領域37上にゲート電極31の頂面と同一平面内に頂面を有する第1層間絶縁層41を形成した後、(b)第1層間絶縁層41に溝状の第1コンタクト部43を形成し、(c)全面に第2層間絶縁層51を形成した後、(d)第1コンタクト部43の上の第2層間絶縁層51の部分に孔状の第2コンタクト部53を形成し、その後、(e)第2層間絶縁層51上に、第2コンタクト部53と接続された配線61を形成する各工程から成る。 (もっと読む)


【課題】 半導体装置及びその製造方法に関し、高誘電率膜を用いた相補型トランジスタの実効仕事関数を調整して適切なしきい値電圧を実現する際に、エッチング工程数を低減するとともに、エッチングダメージの発生を回避する。
【解決手段】 nチャネル絶縁ゲートトランジスタのSiOより誘電率の高い第1のゲート絶縁膜と第1金属ゲート電極との間にアルミニウム膜を設けるとともに、pチャネル絶縁ゲートトランジスタのSiOより誘電率の高い第2ゲート絶縁膜と第2金属ゲート電極との間に酸化アルミニウム膜を設ける。 (もっと読む)


【課題】デバイス特性の制御性に優れた半導体装置および半導体装置の製造方法を提供する。
【解決手段】本実施の形態の半導体装置は、シリコン基板101上にMOSトランジスタを備える半導体装置であって、MOSトランジスタは、シリコン基板101上にゲート絶縁膜203を介して設けられたゲート電極(メタル電極206)と、ゲート電極(メタル電極206)の両脇の前記シリコン基板の表面近傍に設けられソース領域106およびドレイン領域109と、ソース領域106およびドレイン領域109に接するように、ゲート電極直下のシリコン基板101中に設けられた、チャネル領域(ゲルマニウム・カーボン単結晶膜202)と、を備え、チャネル領域が、シリコンと異なる異種半導体(ゲルマニウム)を含むものである。 (もっと読む)


【課題】微細化されても、pチャネルトランジスタのチャネル領域には圧縮歪を、nチャネルトランジスタのチャネル領域には引っ張り歪をそれぞれ効果的に印加できる新しい歪技術を提供する。
【解決手段】pチャネルトランジスタ105のゲート電極は、引っ張り内部応力を持つpチャネルメタル電極110を有する。nチャネルトランジスタ106のゲート電極は、圧縮内部応力を持つnチャネルメタル電極116を有する。 (もっと読む)


61 - 80 / 306