説明

Fターム[5H026BB08]の内容

燃料電池(本体) (95,789) | 製造方法、処理方法 (13,294) | 混合、混練、ペースト化 (1,505)

Fターム[5H026BB08]に分類される特許

61 - 80 / 1,505


【課題】SOFCに用いられるCrを含有する合金等の表面に、製造工程中にたとえば、もっとも膜厚の厚くなる基材の圧延面ともっとも薄くなる角部との膜厚比が増加しにくく、均一な保護膜を形成することができる技術を提供すること。
【解決手段】SOFC用セルCに用いられるCrを含有する基材の表面に、保護膜を形成する保護膜形成方法であって、基材の表面に、金属酸化物微粒子と樹脂組成物との混合液を用いて、金属酸化物微粒子と樹脂からなる被膜を形成する被膜形成工程を行い、表面に被膜を形成してなる基材を樹脂が軟化流動化する上限温度よりも高く、樹脂を被膜から燃焼除去可能な樹脂焼失温度に保持された炉内に投入して被膜を焼成する焼成工程を行い、さらに焼成工程で得られた被膜を焼結させて金属酸化物からなる保護膜を形成する焼結工程を行う保護膜形成方法。 (もっと読む)


【課題】イオン液体を用い、優れたイオン伝導性を示すとともに、所望の形状・寸法の電解質等を形成することが容易であり、しかも、イオン液体を化学的ないし物理的に安定化し得るイオン伝導体を得る。
【解決手段】イオン液体12を、該イオン液体12の融点以上の温度で分散媒中に分散してエマルジョンを調製する。次に、エマルジョンを凝固させることにより、イオン液体12の固化物を粒子として得る。次に、該粒子の表面に、第1の高分子からなる被包材14を形成する。さらに、被包材14を構成する第1の高分子と、第2の高分子とを反応させることで、被包材14の表面に、反応生成物として高分子皮膜16を形成する。 (もっと読む)


【課題】優れたイオン伝導性を示すとともに、イオン液体を化学的ないし物理的に安定化し得るイオン伝導体を得る。
【解決手段】イオン液体16を、該イオン液体16の融点以上の温度で分散媒中に分散して第1のエマルジョンを調製する。次に、前記第1のエマルジョンから前記イオン液体16の固化物を粒子として得、さらに、前記粒子の表面に第1の被包材18を形成する。同様にして、イオン液体20から第2のエマルジョンを調製した後、前記第1のエマルジョンから前記イオン液体20の固化物を粒子として得、さらに、前記粒子の表面に第2の被包材22を形成する。そして、第1の被包材18の第1の高分子と、第2の被包材22の第2の高分子とを相互反応させる。 (もっと読む)


【課題】触媒層と導電性多孔質層との密着性が高い膜−電極接合体を提供することを目的とする。
【解決手段】本発明の膜−電極接合体は、触媒層、電解質膜及び触媒層が順次積層された触媒層−電解質膜積層体の片面又は両面に、燃料電池用ガス拡散層が積層されている燃料電池用膜−電極接合体であって、前記燃料電池用ガス拡散層は、導電性多孔質層を有し、且つ、前記触媒層と前記導電性多孔質層とが接するように前記触媒層−電解質膜積層体上に積層されており、前記導電性多孔質層は、少なくとも導電性炭素粒子、並びにガラス転移温度が、触媒層中に含まれる電解質のガラス転移温度以下、及び電解質膜を構成する水素イオン伝導性樹脂のガラス転移温度以下の少なくとも1つを満たす高分子重合体を含み、前記導電性多孔質層中の前記高分子重合体は、触媒層と接しない表面よりも触媒層と接する表面に密に存在するものである。 (もっと読む)


【課題】本発明は、カーボン粒子と樹脂とを含む撥水層が形成されたガス拡散層を製造するに際し、不具合の発生を抑制しつつ、比較的短時間で、ガス拡散層基材の表面に撥水層を形成する技術を提供することを目的とする。
【解決手段】燃料電池に用いられるガス拡散層の製造方法は、ガス拡散層基材を準備する準備工程と、ガス拡散層基材の一方の面に、撥水性樹脂の粒子と導電性粒子とを含むペーストを塗工する塗工工程と、ペーストが塗工されたガス拡散層基材をペーストが塗工された塗工面を重力方向下向きにした状態で撥水性樹脂の融点以上の温度によって加熱する加熱工程と、を備える。 (もっと読む)


【課題】電極触媒層と固体高分子電解質膜の界面におけるプロトン伝導性を高め、さらに、複合触媒粒子の平均粒子径を制御することで、電極触媒層中のガス拡散性を確保しつつも、固体高分子電解質膜および電極触媒層のドライアップを防ぎ、出力性能が向上する膜電極接合体およびその製造方法並びに固体高分子形燃料電池を提供する。
【解決手段】固体高分子電解質膜と、それを挟持する一対の電極触媒層と、それを挟持する一対のガス拡散層を含み、前記電極触媒層は、高分子電解質と触媒物質と電子伝導性物質とを有する複合触媒粒子からなる層が少なくとも3層積層された積層構造を有し、前記積層構造のうち、前記固体高分子電解質膜に接する第一の層と前記ガス拡散層に接する第二の層とに含まれる前記高分子電解質の含有割合が、前記第一の層と第二の層とに挟持された第三の層と比べて多いことを特徴とする膜電極接合体。 (もっと読む)


【課題】触媒層がガス拡散層の孔を塞いでしまうことを回避するとともに、触媒層と電解質膜の界面抵抗を軽減する、ガス拡散電極およびその製造方法を提供することを目的とする。
【解決手段】剥離基材に塗布した触媒層を剥離して、ガス拡散層3に設置することで、ガス拡散層3の孔に触媒インクが入り込むのを防ぐことができる。さらに、電解質膜側に接する触媒層の表面を、ガス拡散層に接する表面よりもアイオノマー成分が多い面2aとすることで、触媒層2と電解質膜の界面抵抗を軽減することができる。 (もっと読む)


【課題】使用済みの発電セルから固体電解質層を構成する金属を高い純度で回収する。
【解決手段】使用済み固体酸化物形燃料電池セルを所定の粒径で最大ピークとなる粒度分布を有する微粉末に粉砕し、この微粉末と水とを混合して所定のパルプ濃度のスラリーを作製し、このスラリーに酸を加えて所定のpHに調整する。このスラリーに所定の濃度の捕収剤を添加し、このスラリーを起泡させて金属微粒子を泡に付着させるとともに残りの金属微粒子を沈殿させ、この沈殿させた金属微粒子をろ過して沈殿物を得る。この沈殿物を硝酸で処理して所定の金属を浸出させ、この処理液から浮遊固形分を除去し、この浮遊固形分が除去された処理液を固液分離して所定の金属を含む浸出残渣を得る。この浸出残渣を洗浄し乾燥して所定の金属を主成分とする固形物を得た後に、この固形物を微粉末に粉砕する。 (もっと読む)


【課題】均質で高品質なプレペーストを効率良く製造可能なプレペーストの製造装置を提供する。
【解決手段】プレペーストの製造装置としての湿式ジェットミル1は、触媒に対して所定量の水を添加する給水器28を有している。また、湿式ジェットミル1は、第1混合物を粉砕可能な粉砕ユニット9と、粉砕ユニット9まで第1混合物を移送可能な上流流路19と、粉砕ユニットを経た第1混合物を上流流路19まで移送可能な第1、2下流流路20、22と、接続流路23とを有している。さらに、湿式ジェットミル1は、粉砕中の第1粉砕物の粒子径及び粒度分布を検出する粒度分布計24と、粘度を検出する粘度計16と、制御装置5とを有している。制御装置5は、粒度分布計24が検出した値と粘度計16が検出した値とに基づき、第1粉砕物が所定粘度のプレペーストになるまで第1粉砕物を粉砕させる。 (もっと読む)


【課題】イオン伝導性、耐熱性、機械的強度に優れ、乾湿寸法変化が低減された複合化高分子電解質膜を提供する。
【解決手段】耐炎化ポリアクリロニトリルを有する複合化高分子電解質膜であって、前記複合高分子電解質膜の製造方法は、下記工程を有する。(1)電解紡糸法でポリアクリロニトリルの不織布を得る工程。(2)ポリアクリロニトリルの不織布をポリアクリロニトリルの軟化点以上で加圧プレスした後に、酸素を有するガス中で200℃以上、300℃以下で加熱処理する工程。(4)高分子電解質を該不織布の空隙に充填する工程。 (もっと読む)


【課題】固体高分子膜型燃料電池用の、ポリプロピレン系等の撥水性の熱可塑性樹脂をバインダとして使用した、表面が親水性のセパレータとその製造方法を提供する。
【解決手段】 セパレータの金型の、セパレータのガス流路を設けた片側表面に対応する表面に水溶性物質を塗布する工程(S101)と、導電性カーボンと、疎水性のバインダ樹脂とを混合してなる成型材料を金型に投入する工程(S102)と、金型を加熱加圧プレス成型してバインダ樹脂を溶融させ、成型材料を金型に充填する工程(S103)と、金型を冷却して金型に充填された成型材料を固化してセパレータとする工程(S104)と、セパレータを金型から取り出す工程(S105)と、金型から取り出したセパレータを加熱水で洗浄する工程(S106)と、セパレータを乾燥、拭取る工程(S107)と、を順に含むセパレータの製造方法。 (もっと読む)


【課題】IPガス透過性で評価される高いガス透過性と断面加圧抵抗値で評価される高い導電性とを同時に備える固体高分子形燃料電池のガス拡散層を提供する。
【解決手段】加熱により相互に熱融着させられた熱融着性有機繊維OFにより構成される多孔質骨材構造30を有し、その多孔質骨材構造30内において、炭素繊維CFが導電性微粒子と共に結合剤樹脂Rによって相互に結着されて成ることから、比較的少ない熱融着性有機繊維OFの相互融着によって比較的高い剛性を有する多孔質骨材構造30がガス拡散層18(20)内に形成されるので、高いガス透過性および加圧時の導電性とが同時に具備するガス拡散層18(20)が得られる。 (もっと読む)


【課題】高温での焼成を必要とせず、金属基板の酸化や変形を防止することができると共に、工程の短縮化、簡略化が可能な固体酸化物形燃料電池の製造方法を提供する。
【解決手段】多孔質金属基板上に、蓚酸ニッケル、望ましくは針状の蓚酸ニッケルを分散させた状態、あるいはこのような蓚酸ニッケルを含むペーストを塗布した状態で加熱することによって蓚酸ニッケルを金属ニッケルに熱分解し、これを含む燃料極を形成したのち、電解質及び空気極を順次積層する。 (もっと読む)


【課題】ミクロン形状を有する交互嵌合構造を実現するための共押し出し装置を提供する。
【解決手段】第1の材料を受け入れるための入口ポート40を有し、第2の材料を受け入れるための第2の入口ポート42を有し、第1の材料と第2の材料とを受け入れて結合し、第1の方向に流れる第1の結合された流れを作る第1の結合流路46を有し、第1の結合された流れを受け入れて第1の結合された流れを分割し、第1の方向に対して少なくとも部分的に直角な第2の方向の2つの分割された流れを作る分割流路48,50を有し、分割された流れを受け入れて分割された流れを結合し、第1の方向の第2の結合された流れを作る第2の結合流路52を有し、材料が単一の流れとして装置を出ることを可能にした1つの出口穴を有している共押し出し装置。 (もっと読む)


【課題】燃料電池システムにおいて、バイポーラプレートによる電解質のウィッキングを防止することに関する実施形態を開示する。
【解決手段】一例においては、燃料電池システムは第1の膜・電極接合体と第2の膜・電極接合体とを備える。該燃料電池システムはさらに、前記第1の膜・電極接合体と第2の膜・電極接合体の間に配されたバイポーラプレートを備え、該バイポーラプレートはグラファイト層と表面エネルギー調節層とを備える。 (もっと読む)


【課題】単一種の分子構造を持つ材料のみを用いて、機能の異なる層を設けることができ、微小な孔径を有し、数十nmサイズの微粒子を効率良く捕捉することができ、高流量である結晶性ポリマー微孔性膜及びその製造方法、並びに、濾過用フィルタの提供。
【解決手段】未加熱の結晶性ポリマーを含む第1のペーストを調製する第1のペースト調製工程と、前記未加熱の結晶性ポリマーのDSCチャートにおける吸熱ピークの極大値(M)と、加熱処理済の結晶性ポリマーのDSCチャートにおける吸熱ピークの極大値(M)との比(M/M)が0.5〜0.95となる条件で加熱された結晶性ポリマーを含む第2のペーストを調製する第2のペースト調製工程と、積層予備成形体作製工程と、積層体形成工程と、対称加熱工程と、延伸工程とをこの順に含む結晶性ポリマー微孔性膜の製造方法である。 (もっと読む)


【課題】燃料電池に用いるプレートアセンブリ及びそれを用いた燃料電池を提供する。
【解決手段】燃料電池に用いるプレートは、第一反応表面と第一冷却表面を含むプレートであり、第一反応表面は、第一流体を受け入れる第一流体入口と、ほぼ第一方向に延伸し、第一流体を輸送する複数の第一流路と、第一流体を排出する第一流体出口とを有しており、第一冷却表面は、第一冷却液を受け入れる第一冷却液入口と、ほぼ第一方向に延伸し、第一冷却液を輸送する複数の第二流路と、第一冷却液を排出する第一冷却液出口とを有している。第一流体入口と第一冷却液出口は、プレートの第一側辺近くに位置し、第一流体出口と第一冷却液入口は、プレートの第二側辺近くに位置する。プレートの第二側辺は、第一側辺と反対側にある。第一及び第二の流路のそれぞれは、ほぼ同一長さである。 (もっと読む)


【課題】高性能であり、かつ性能の個体差が小さい燃料電池用触媒ペーストの製造方法を提供する。
【解決手段】製造装置は、湿式ジェットミル1と、溶液供給ユニット3と、制御装置5を備えている。湿式ジェットミル1は、触媒と水との第1混合物を粉砕して第1粉砕物とする。また、湿式ジェットミル1は、第1粉砕物と、溶液供給ユニット3より供給された高分子電解質の溶液と混合して第2混合物とする。制御装置5は、湿式ジェットミル1に対し、第2混合物の粘度を調整しつつ、第2混合物を混練させる。これらにより、この製造装置では触媒ペーストを得ることができる。 (もっと読む)


【課題】発電性能が高く、かつ個体毎のバラツキが小さな電極を容易に製造可能にする燃料電池用電極の製造装置を提供する。
【解決手段】製造装置は、貯留タンク3と、第1ノズル5と、N2ガスが充填されたボンベ7と、第1電気ヒータ9と、作業テーブル11と、制御装置13とを備えている。第1電気ヒータ9は加圧ガス加熱手段である。また、この製造装置は、第1電動ポンプP1、第1圧力調整弁V1及び配管15、29を供給手段として有している。貯留タンク3には、触媒層を構成するペースト30が貯留されている。制御装置13は、第1電動ポンプP1、第1圧力調整弁V1及び第1電気ヒータ9を制御することで、第1ノズル5から噴霧されるペースト30の粒子径、ペースト30の噴霧量及び第1ノズル5に供給されるN2ガスの温度を調整する。 (もっと読む)


【課題】個体毎のバラツキが小さく、かつ特性に所望の傾斜構造を有する触媒層を容易に製造可能にする。
【解決手段】実施例の製造装置は、触媒ペースト30と保水材ペースト50と、第1、2貯留タンク3、5と、第1、2ノズル7、9と、ボンベ11と、作業テーブル13と、制御装置15とを備えている。第1、2貯留タンク3、5にはそれぞれ触媒ペースト30及び保水材ペースト50が貯留されている。第1、2ノズル7、9は、それぞれ第1、2貯留タンク3、5と接続され、加圧されたN2ガスによって触媒ペースト30及び保水材ペースト50を噴霧可能である。作業テーブル13には基材70が設置される。この製造装置では、制御手段15により、第1、2ノズル7、9から触媒ペースト30及び保水材ペースト50がそれぞれ調整された噴霧量で同時に基材70に対して噴霧することで触媒層71を製造する。 (もっと読む)


61 - 80 / 1,505