説明

Fターム[5H031EE03]の内容

二次電池の保守(温度調整、ガス除去) (8,369) | 材料・材質 (829) | 無機化合物 (123)

Fターム[5H031EE03]に分類される特許

41 - 60 / 123


【課題】デンドライトの発生又は成長を抑制、或いは一旦発生したデンドライトを縮小又は消失することができる電池システム、電池の使用方法及び電池の再生方法を提供する。
【解決手段】正極と、アルカリ金属及びアルカリ土類金属の少なくとも一方を含む負極と、これら両電極間に介在される電解質とを有する二次電池10で充放電を行う電池の使用方法である。この使用方法は、負極が固相状態となる温度域にて二次電池10の充放電を行う定常運転過程と、この定常運転過程よりも高温で、かつ前記負極が固相を含む状態となる温度以下に二次電池10を加熱して、定常運転過程において両電極間に生成したデンドライトを溶解させる回復過程とを含む。 (もっと読む)


【課題】リチウムイオンの伝導率が高く、かつ割れにくい固体電解質をセパレータとして用いるリチウム−空気電池を提供する。
【解決手段】負極、負極用の有機電解液、陽イオン交換膜、電解液で満たされたセパレータ空間、陰イオン交換膜、空気極用の水溶性電解液および空気極がその順に設けられたリチウム−空気電池であって、負極にはリチウム金属、リチウムカーボン、リチウムシリコン、リチウムシリコン、リチウムアルミニウム、リチウムインジウム、リチウム錫、窒化リチウムの中から選ばれた負極材料を用いる。 (もっと読む)


【課題】長手方向の両端に端子を有する電池セルを用いた組電池において、複数の電池セルの冷却効率のばらつきを解消する。
【解決手段】長手方向の両端に端子を有する電池セルと、電池セルの外周表面に被覆され電気絶縁性と熱伝導性を備えた樹脂カバー層とからなり、樹脂カバー層は、隣接する他の電池モジュールの樹脂カバー層と面接触して当接する当接面と、当接面に連続して延びる凹溝と、を有し、組電池とされたときに複数の凹溝からトンネル状の冷却通路が形成される。 (もっと読む)


【課題】気体状の溶質を溶媒に溶解させる際に生じる溶解熱を利用することにより、発熱量が大きく、また、昇温した溶媒を利用して、種々の部位を暖機できる自動車用暖機装置及び自動車用暖機方法を提供する。
【解決手段】気体状の溶質を溶媒に溶解させることにより発生する溶解熱を、始動時に自動車の所定の暖機部位に作用させて加熱する自動車用暖機装置1であって、液化又は圧縮された上記溶質を保持する溶質保持タンク3と、上記溶質保持タンクから流出させた上記溶質を吸熱膨張させる溶質膨張手段9,4と、上記溶媒を保持する溶媒保持タンク6と、上記溶媒保持タンクに保持された上記溶媒に、上記溶質を溶解させる溶解手段13と、上記溶質が溶解されて昇温した溶媒を、暖機部位に作用させて加熱する加熱手段11と、上記溶媒に溶解された溶質を上記溶媒から気化させるとともに圧縮して、上記溶質保持タンクに回収する溶質回収手段7,8と、上記溶質を上記各手段に流動させる溶質循環回路2とを備えて構成される。 (もっと読む)


【課題】過酸化水素、排水処理の必要な鉱酸を必要とせず、また、作業環境が悪く、安全管理が困難な溶媒抽出法を用いることなく、リチウムイオン二次電池の正極材料であるマンガン酸リチウムから、リチウムを効率よく回収することができ、リチウムイオン二次電池の再利用を行うことができるリチウムの回収方法を提供する。
【解決手段】マンガン酸リチウム100質量部に対し、1質量部以上の炭素を混合した混合物を、大気雰囲気下、酸化雰囲気下、不活性雰囲気下、及び還元性雰囲気下のいずれかで焙焼してなる焙焼物を水で浸出する。マンガン酸リチウム100質量部に1質量部〜50質量部の炭素を混合する態様などが好ましい。 (もっと読む)


【課題】リチウムイオン二次電池の正極材料であるコバルト酸リチウムから、リチウムを効率よく回収することができ、リチウムイオン二次電池の再利用を行うことができるリチウムの回収方法の提供。
【解決手段】コバルト酸リチウム100質量部に対し、1質量部以上の炭素を混合した混合物を、大気雰囲気下、酸化雰囲気下、及び還元性雰囲気下のいずれかで焙焼してなる酸化リチウムを含有する焙焼物を水で浸出するリチウムの回収方法、及びコバルト酸リチウム100質量部に対し、1質量部以上の炭素を混合した混合物を、不活性雰囲気下、500℃以上700℃未満の温度で焙焼してなる酸化リチウムを含有する焙焼物を水で浸出するリチウムの回収方法である。 (もっと読む)


【課題】 電気化学エネルギー貯蔵ユニット用の改善された絶縁装置および電気化学エネルギー貯蔵ユニット用絶縁装置を製造するための改善された方法を提示する。
【解決手段】 電気化学エネルギー貯蔵ユニット用絶縁装置が、前記電気化学エネルギー貯蔵ユニットとの熱的接触を行えるように構成された冷却板(2)と、熱を放出できるように構成された接触レール(4)と、前記冷却板(2)と前記接触レール(4)との間の配置を固定するための保持要素を有し、前記冷却板(2)の前記開口部を通って軸部(1)が延在し、前記開口部の壁部と前記軸部(1)との間の間隙によって第1の中間スペースが画定されており、および/または前記接触レール(4)の縁部と前記軸部(1)との間の間隙によって第2の中間スペースが画定されており、電気絶縁性材料を有する表面を備えた結合要素が、前記冷却板(2)の主表面と前記接触レール(4)の面との間に配置されており、かつ、前記第1および/または前記第2の中間スペース内へ突出した部分領域(5)を有している。 (もっと読む)


エネルギー蓄積装置が、電流を放出し受容するために設けられた、少なくとも1つの第1のエネルギー蓄積デバイスおよび第2のエネルギー蓄積デバイスを有する。少なくとも第2のエネルギー蓄積デバイスは、電気化学式である。エネルギー蓄積装置は、少なくとも1つのエネルギー蓄積装置による少なくとも電流の放出を制御する制御装置も有している。制御装置は、少なくとも1つのエネルギー蓄積装置による電流の受容も制御する。エネルギー蓄積装置は、第2のエネルギー蓄積デバイスのエネルギー密度が第1のエネルギー蓄積デバイスのエネルギー密度よりも高い。ここで、エネルギー密度は、エネルギー蓄積装置で充電状態のときに蓄えられるエネルギーと、エネルギー蓄積装置の重量との比率として規定される。制御装置は、電流が予め設定された電流の強さの限界値を上回っているとき、電流の放出のために好ましくは第1のエネルギー蓄積デバイスを制御する。
(もっと読む)


【課題】リチウムイオン濃度が比較的高くかつ不純物含有量が比較的少ないというリチウム塩製造に適した溶液を見出し、且つその溶液からリチウム塩を製造するにあたりオンラインでリチウムイオン濃度を容易に測定することができる方法、およびそれを利用したリチウム塩の製造方法を提供すること。
【解決手段】リチウムイオン濃度が比較的高くかつ不純物含有量が比較的少ない溶液としてリチウムが溶解した活物質製造排水を採用する。活物質製造排水の電気伝導度を電気伝導度計11からの信号に基づき測定し、当該電気伝導度から活物質製造排水中のリチウムイオン濃度を算出する。すなわち、電気伝導度を利用してリチウムイオン濃度を測定する。この電気伝導度から算出したリチウムイオン濃度に基づき濃縮工程および析出工程を制御してリチウム塩を製造する。 (もっと読む)


【課題】長期保存が利かず、海外生産されている水酸化リチウムを国内備蓄の可能なリチウム源から安定に必要時に確保するのに有効な経済性の高い製造方法が求められていた。
【解決手段】陽極と陰極との間にカチオン交換膜とアニオン交換膜とが交互に配列され、陽極とカチオン膜とで区画した陽極室に続いて酸室、塩室、アルカリ室、水電解室からなる組がひとつ以上配列されていて最も陰極側のアニオン膜とで構成される水電解室をカチオン膜の代わりに陰極で区画して陰極室とする構造の電気透析装置を使用して塩室に炭酸リチウム溶液を供給して酸室から繰り返して炭酸リチウムの溶解のために使用できる炭酸水を取り出し、アルカリ室から水酸化リチウム水溶液を取り出すことを特徴とする水酸化リチウムの製造方法。更には高純度化する精製工程を付与した製造方法とする。日本国内に備蓄しておける炭酸リチウムから必要時に水酸化リチウムをクリーンに簡便に製造できて利便性と汎用性の高い水酸化リチウムの製造方法を提供する。 (もっと読む)


【課題】本願発明の目的は、熱暴走の影響を制限し、単一の熱暴走事象が、バッテリパック内のセル全体に伝播する危険を制限する手段を提供することである。
【解決手段】複数のバッテリ内での熱暴走の伝播を阻止する手段が提供され、この手段は、バッテリケーシング、または少なくともその一部分を被覆する1対の膨張性材料層からなる。 (もっと読む)


【課題】 新規な鉛再生方法を提供する。
【解決手段】 (a)酢酸ナトリウム、酢酸カリウム又は酢酸アンモニウム水溶液に不純鉛含有材料を懸濁させ、(b)この懸濁液に、全鉛酸化物をアセテート塩溶液に可溶性の硫酸鉛に変換させるのに十分な量の硫酸を添加し、かつ、この懸濁液に、全二酸化鉛を、硫酸により最終的に可溶性硫酸鉛に変換される酸化鉛に変換するのに適合する、過酸化水素又は亜硫酸塩の何れかを徐々に添加するか、又はこの懸濁液中に無水亜硫酸を吹き込み、(c)溶解された硫酸鉛を含有する明澄なアセテート塩溶液を、全ての未溶解化合物及び不純物を含有する固相残留物から分離し、(d)高純度の炭酸鉛/オキシ炭酸鉛又は酸化鉛若しくは水酸化鉛をそれぞれ沈殿させ、一方、アセテート塩溶液に可溶性のカチオンの硫酸塩を生成させるために、硫酸鉛の分離溶液に、硫酸鉛溶解性溶液のアセテート塩と同じカチオンの炭酸塩又は水酸化物の何れかを添加し、(e)アセテート塩と同じカチオンの硫酸塩も含有するアセテート塩溶液から、沈殿高純度鉛化合物を分離することからなる鉛再生方法。 (もっと読む)


【課題】複数のバッテリ内における熱暴走の伝搬を抑制する手段を提供する。
【解決手段】セルケース101の側壁部及び底面の双方は、熱膨張性材料層301によって被覆されている。あるいは、セルケース101の側壁部のみが熱膨張性材料層301によって被覆されている。熱暴走中において、バッテリの外面は、加熱し、熱膨張性材料層301は、吸熱化学反応によって過剰な熱を吸収する。熱膨張性材料の膨張開始温度に達すると、熱膨張性材料層301は、膨張し始める。膨張後、熱膨張性材料層301は、一般的に炭化物と称される層に硬化する。 (もっと読む)


【課題】抽出後液のように酸性が強い、マンガン水溶液を原料として、ナトリウム等の不純物の少ない高純度な炭酸マンガンを容易に得ることを目的とする。
【解決手段】 酸性マンガン溶液をアンモニア水でpHを7-8に調整し、該液に炭酸ガスを吹き込み、不純物の少ない炭酸マンガン得る炭酸マンガンの製造方法。 (もっと読む)


【課題】Na等の不純物の少ない高純度の炭酸リチウムを製造することを目的とする。
【解決手段】 リチウムイオン電池の有価物回収において、
溶媒抽出によりニッケルとリチウムを含有した有機相を、ニッケルを含む硫酸溶液によって洗浄し、洗浄液中にリチウムを濃縮する第1工程と、
前記リチウムを濃縮した洗浄後液から、有機溶媒を用いて残留ニッケルのみを抽出する第2工程と、
前記リチウムを含む抽出後液から、アンモニア水でpH調整を行う第3工程からなる前処理工程を有する炭酸リチウムの不純物を低減する炭酸リチウムの製造方法。 (もっと読む)


【課題】積層体内部で熱暴走が生じても速やかに冷却することができ、外部へ噴出するガスの温度を低下させるとともにガス量を抑えることができる二次電池を提供すること。
【解決手段】二次電池10は、内部に電解液を貯蔵する容器11と、交互に積層されたシート状の正極板18及び負極板20と、正極板18及び負極板20との間に配されたセパレータ21と、を有して容器11内に配された積層体と、積層体の正極板18と負極板20との何れかの間に介装されるとともに、縁部が容器11と伝熱可能に接触した放熱板13と、放熱板13に配され、消火剤を内部に収容して所定温度で破壊する消火剤収容構造体22と、を備えている。 (もっと読む)


【課題】使用済みリチウム電池の放電を容易かつ安価に行い、リチウム電池を不活性化する、リチウム電池の処理方法を提供すること。
【解決手段】リチウム電池3を溶液1中に侵漬して、放電させて不活性化することを特徴とするリチウム電池の処理方法を用いる。塩化ナトリウム、塩化マグネシウム、硫酸マグネシウム、硫酸カルシウム、塩化カリウムの中から選択される少なくとも1つを電解質とする水溶液を用いること、水溶液の濃度が0.5〜5mass%であること、溶液1として海水を用いることが好ましい。 (もっと読む)


【課題】 二次電池特にマンガン系リチウムイオン二次電池を乾式法のみにより金属材料系資源とマンガン資源とに分別回収する方法及び装置を提供する。
【解決手段】 マンガン系リチウムイオン二次電池を600〜1000℃に10〜60min滞留させ、該滞留時間中に該マンガン系リチウムイオン二次電池を燃焼・分解させ、分解生成物を直ちに金属小片と酸化マンガン粗粉に篩分けし、金属小片及び酸化マンガン粗粉を別個に回収することからなる。 (もっと読む)


導体(407、408)およびそれに取り付けられた冷却体(103、104、105、106、403、404、405、406)を備えたガルバニ電池(101、401)。この冷却体は、導体が電池内へのまたは電池からの電気エネルギーの移送のために役立つと同時に、電池からの排熱にも役立ち得るように形成されている。ガルバニ電池を冷却するための冷却体は、導体が電池へのまたは電池からの電気エネルギーの移送のために役立つと同時に、電池からの排熱にも役立ち得るように、力結合、形状結合、または物質結合によりガルバニ電池の導体に取り付けることができるように形成されている。
(もっと読む)


【課題】 ニッケル、リチウムを含む溶液からニッケル、リチウムをそれぞれ分離し、電気ニッケル、炭酸ニッケル、炭酸リチウムとして回収する。
【解決手段】 少なくともリチウム、ニッケルを含む溶液を
第1工程として溶媒抽出によって、有機相中へニッケルとともにリチウム抽出し、
第2工程として、ニッケルとリチウムを含有する有機相を硫酸溶液によって洗浄し、洗浄液中にリチウムを濃縮するニッケルとリチウムの分離回収方法。 (もっと読む)


41 - 60 / 123