説明

Fターム[5H050CA05]の内容

電池の電極及び活物質 (183,817) | 正極活物質 (28,415) | 無機化合物(正極) (25,369) | 酸化物、水酸化物、オキシ水酸化物(正極) (20,311) | Mnを主体とするもの(正極) (1,160)

Fターム[5H050CA05]に分類される特許

281 - 300 / 1,160


【課題】よりサイクル特性に優れるリチウムイオン二次電池を提供する。
【解決手段】負極10は、負極集電体101上に、珪素および金属元素を負極活物質として各々含有する第1および第2の層1,2が交互に積層されてなる負極活物質層102を有する。ここで、第1の層1における負極活物質中の珪素含有率をAとし、第2の層2における負極活物質中の珪素含有率をBとすると、それらは下記の条件式(1)を満足する関係にある。
1.02≦A/B≦50 ……(1)
これにより、負極活物質層102での充放電時における膨張および収縮に伴う応力が緩和される。その結果、負極活物質層102と負極集電体101との密着性および集電性が向上する。 (もっと読む)


【課題】初期および高温保存後のハイレート放電に優れたリチウム一次電池を提供することを目的とする。
【解決手段】二酸化マンガンを正極活物質とした正極1と、リチウムまたはリチウム合金を負極活物質とした負極2とをセパレータ3を介して対向配置した発電要素を電解液とともにケース9に封入してなるリチウム一次電池において、上記正極1の正極活物質が、0.2質量%以上0.6質量%以下のナトリウムを含有し、比表面積が20m/g以上40m/g以下の二酸化マンガンであることと、電解液に環状カーボネートを20体積%以上40体積%以下含有させたことを特徴とするリチウム一次電池。 (もっと読む)


【課題】
室温における電池特性を損なうことなく、低温においても低抵抗且つ高容量を有する正極を提供する
【解決手段】
遷移金属酸化物及び導電材、バインダーから構成される非水系二次電池用正極に対し、電解重合法を用いて導電性高分子膜を簡便且つ正極活物質に対して1重量部以下の微量で正極活物質及び導電材の表面に膜状で複合化させることで、室温における電池性能を落とすこと無く、低温においても低抵抗且つ高容量を有する非水系二次電池の提供が可能な非水系二次電池用正極を提供する。 (もっと読む)


【課題】有機溶媒は使用しない系において、集電体や活物質との結着力に優れ、得られた電極の柔軟性と導電性に優れている二次電池電極用バインダーを提供する。
【解決手段】a)脂肪族共役ジエン系単量体5〜35重量部、b)不飽和カルボン酸アルキルエステル単量体9〜50重量部、c)シアン化ビニル単量体2〜40重量部、d)アルケニル芳香族単量体2〜60重量部及びe)その他共重合可能な単量体0.1〜20重量部から構成される単量体組成物(ここでa)〜e)の合計は100重量部)を共重合して得られる共重合体ラテックスであって、b)成分とc)成分の共重合体の固形分に対する含有量(B+C)が28重量%以上で、かつd)成分の共重合体の固形分に対する含有量D(重量%)との比率が、(B+C)/D=0.8〜3.5である共重合体ラテックスを二次電池電極用バインダーに含有させる。 (もっと読む)


【課題】 優れた負荷特性を有する扁平形酸化銀電池を提供する。
【解決手段】 シート状正極とシート状負極とがセパレータを介して巻回された電極巻回体を有する電池であって、前記シート状正極は、正極活物質、導電助剤およびバインダを含有する正極合剤シートが、金属製の集電体の片面または両面に圧着されて構成されており、前記シート状正極の集電体は、その表面に突起を有しており、前記突起がシート状正極合剤内に侵入していることを特徴とする電池により、前記課題を解決する。 (もっと読む)


【課題】酸化防止剤の含有量が少量でも、酸化防止剤による高温環境下での電池特性劣化を抑制できる効果を、得ることができる非水電解質および非水電解質電池を提供する。
【解決手段】セパレータ23には、電解液が含浸されている。電解液は、溶媒と、電解質塩と、酸化防止剤とを含み、溶媒は、ハロゲン化炭酸エステルを含み、ハロゲン化炭酸エステルの含有量は、0.1質量%以上50質量%以下であり、酸化防止剤の含有量は、0.01ppm以上5000ppm以下である。 (もっと読む)


【課題】チタン酸リチウムを負極に用いた、低温雰囲気においても高い出力性能を有する非水電解質二次電池を提供することを目的とする。
【解決手段】Mg置換チタン酸リチウムを負極に用いた非水電解質二次電池の低温出力性能を著しく向上させることができる。また、Mg置換チタン酸リチウムを正極に用いた非水電解質二次電池の低温入力特性を優れたものとすることができる。 (もっと読む)


【課題】超薄型固体電解質電池の製造方法を提供する。
【解決手段】金属リチウム又は金属ナトリウムのアノードと、このアノードのアルカリイオンに対して伝導性を有し、電極間の隔離体の役割も果たすポリマー電解と、リチウム又はナトリウムに還元可能な化合物、電子伝導性添加剤、及び、結着剤から成る複合カソードとを備える。マザー電池は、アノード(カソード)の外側面に設けられる電子伝導性の薄い被覆も備える。被膜は、電極材料に対して化学的に不活性であり、上記外側面に対する電気的接触を確立する役割も果す。大きな表面積を有し少なくとも部分的に充電された積層体は、その後、機械的な鋭利な切り取り作業を受けて、リチウムアノード又はナトリウムアノード(あるいはカソード)を有する薄層ポリマー電解質電池を形成する。切断電池は、機械的な切り取り作業の後に、自己回復メカニズムによってそれぞれの電圧を実質的に維持する。 (もっと読む)


【課題】本発明の目的は、電気特性および電気特性の安定性に優れる電気化学デバイスを与える酸化バナジウム電極の作製方法を提供することにある。また、この酸化バナジウム電極の作製方法により得られた電極およびこの酸化バナジウム電極を用いた電気化学デバイスを提供することにあり、特に繰り返し使用での安定性に優れる電気化学デバイスを与える電極の作製方法を提供することにある。
【解決手段】銀バナジウム酸化物を含んだ膜を基板上に形成する工程1と下記一般式(1)で表される化合物を含有した溶液に、該膜が形成された該基板を浸漬し、該膜中の銀を溶解する工程2とを有することを特徴とする酸化バナジウム電極の作製方法。
【化1】
(もっと読む)


【課題】 初回の充放電効率と体積当りの放電容量と充放電サイクル特性とに優れている非水電解質電池を実現することが可能な非水電解質電池用電極材料を提供する。
【解決手段】 R元素、Sn、M元素及びZ元素を必須成分とする金属間化合物相を主相とし、かつ下記一般式(2)で表される組成を有する合金を含むことを特徴とする非水電解質電池用電極材料。
aSnbcdefg (2) (もっと読む)


【課題】
金属材料を腐食することなく、ハイレート放電特性およびミドルレート放電特性に優れた電解二酸化マンガンおよびその製造方法を提供する。
【解決手段】
電解終了時の電解液中の硫酸濃度が電解開始時の電解液中の硫酸濃度より高い濃度の硫酸マンガン浴の電解析出による電解二酸化マンガンを粉砕後、スラリーpHを2.0以上5.0以下に中和した後に洗浄し、乾燥して電解二酸化マンガンを製造する。当該電解二酸化マンガンは、40%KOH水溶液中で水銀/酸化水銀参照電極を基準として測定したときの電位が280mV以上、JIS−pH(JISK1467)が1.5以上2.6未満、ナトリウム含有量が0.02重量%以上0.10重量%未満であり、硫酸根含有量を1.30重量%未満、メジアン径が30μm以上50μm以下、BET比表面積が20m2/g以上50m2/g以下であることが好ましい。 (もっと読む)


【課題】サイクル特性などの電池特性の低下を抑制できる非水電解質二次電池およびセパレータを提供する。
【解決手段】セパレータ23は、基材層23aと、基材層23aの両主面のうちの少なくとも一方に形成された表面層23bとを備える。表面層23bは、無機物粒子と、ポリフッ化ビニリデンとを含む。表面層23bは、基材層23aより高いクッション性を有している。 (もっと読む)


【課題】 未放電時および過放電時における内部でのガス発生を抑制でき、かつ重負荷放電特性が良好な扁平形アルカリ電池を提供する。
【解決手段】 正極合剤の成形体からなる正極、亜鉛合金粉末を含有する負極、セパレータおよびアルカリ水溶液からなる電解液を、外装缶、封口板および樹脂製ガスケットからなる電池容器内に収容してなる扁平形アルカリ電池であって、前記亜鉛合金が、Biを50〜125ppm、Alを100〜3000ppm、並びに、CaおよびMgの少なくとも一方を合計で1〜50ppm含有することを特徴とする扁平形アルカリ電池により、前記課題を解決する。 (もっと読む)


【課題】5V級の二次電池のサイクル特性及び高温動作の信頼性の向上。
【解決手段】下記一般式(1)で示される酸化物および一種以上の下記一般式(2)で示される酸化物と、を含む正極活物質を用いて二次電池を作製する。LiM1a22-a4(1)(ただし、M1はNi、Cr、Fe、Co、およびCuからなる群から選択される1または2以上の遷移金属。また、M2はMnを必須とする一以上の元素を示す。Mnの一部がTiまたはSiにより置換されていてもよい。また、0.4<a<1.1。)M3b2cO(2)(ただし、M2はMnを必須とする一以上の元素を示す。Mnの一部がTiまたはSiにより置換されていてもよい。また、M3は、Bi、La、Nd、SmおよびTaからなる群から選択される一または二以上の元素を必須とする一または二以上の元素である。ただし、M3はLiを含まない。また、b>0、c≧0である。) (もっと読む)


【課題】本発明の目的は、過充電による負極の表面上への金属リチウムの析出(電析)を防止するとともに、電解液の分解反応を抑制し、これにより過充電を速やかに防止し得るリチウムイオン電池を提供することにある。
【解決手段】リチウムイオンを吸蔵放出できる正極と、リチウムイオンを吸蔵放出可能な負極と、前記正極と前記負極との間に配置されたセパレータと、電解液とを有するリチウムイオン電池であって、負極が、負極活物質としてLi4Ti512を含み、電解液が添加剤を有し、前記添加剤が過充電時に還元重合し、前記負極の表面に抵抗皮膜を生成させ、前記負極の直流抵抗を増加させることを特徴とする。 (もっと読む)


【課題】本発明の目的は、製造安定性が良好であって、かつ充放電容量が大きく、サイクル特性の優れた二次電池を与える二次電池用電極を製造する、二次電池用電極の製造方法およびこの製造方法により得られた電極を用いた二次電池を提供することにある。
【解決手段】金属集電体をロールに接触させて搬送し、金属集電体の上に、電極塗布液を、吐出スリットから自由落下させて塗布する塗布工程であって、吐出スリットから金属集電体の表面の落下位置までの距離が10cm以上80cm以下であり、吐出されて落下する電極塗布液面と落下位置における金属集電体の下流側の面とのなす角度が45°〜100°であり、かつ落下位置で、金属集電体とローラとが接触しているか、または金属集電体とローラとが接触を開始する点または接触を終了する点のうち落下位置に近い点、から落下位置までの距離が10cm以内であることを特徴とする二次電池用電極の製造方法。 (もっと読む)


【課題】集電体、又は電極との密着性に優れ、充放電の繰り返しや、発熱による高温環境下にあっても高放電容量を保持した非水系二次電池を提供することが可能な非水系二次電池電極用樹脂微粒子の提供を目的とする。
【解決手段】共役ジエン構造を有しないエチレン性不飽和単量体(A)を、水中にて界面活性剤の存在下、ラジカル重合開始剤によって二段階乳化重合した非水系二次電池電極用樹脂微粒子であって、
一段目の重合生成物と二段目の重合生成物とのガラス転移温度(Tg)差が20〜100℃である非水系二次電池電極用樹脂微粒子。 (もっと読む)


【課題】集電体、又は電極との密着性に優れ、充放電の繰り返しや、発熱による高温環境下にあっても高放電容量を保持した非水系二次電池を製造することが可能な非水系二次電池電極用バインダー組成物の提供を目的とする。
【解決手段】官能基含有樹脂微粒子(A)と架橋剤(B)とを含む非水系二次電池用バインダー組成物であって、
官能基含有樹脂微粒子(A)が、ケト基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を水中にて界面活性剤の存在下、ラジカル重合開始剤によって乳化重合してなる樹脂微粒子であり、かつ、
架橋剤(B)が、多官能ヒドラジド化合物である非水系二次電池電極用バインダー組成物。 (もっと読む)


【課題】より信頼性に優れる二次電池を提供する。
【解決手段】帯状の正極集電体21A上に正極活物質層21Bが設けられた正極21と、帯状の負極集電体22A上に負極活物質層22Bを有する負極22とがセパレータを介して積層された電池素子を備える。負極活物質層22Bは、負極22における、正極集電体21A上に正極活物質層21Bが設けられた被覆領域21Cと重なり合う対向領域22C1およびその周辺領域22C2を占めるように設けられ、負極22における対向領域22C1と長手方向(X方向)に隣接する領域のうち、負極活物質層22Bが形成されずに負極集電体22Aが露出した露出領域22Dの幅W3は、対向領域22C1の幅W4よりも小さくなっている。 (もっと読む)


【課題】リチウムイオン電池の高性能化/高容量化に必要な薄膜化/大型化を実現し得ると共に、極材層の活物質が固体電解質層側に移動するのを防止し得る全固体リチウムイオン二次電池の製造方法を提供する。
【解決手段】それぞれ活物質1a,2a及びリチウムイオン伝導性固体電解質1b,2bからなる負極材層1と正極材層2との間に固体電解質層3が配置されると共にこれら各極材層の外面に負極集電体4及び正極集電体5が配置されてなる全固体リチウムイオン二次電池の製造方法であって、各集電体の表面に活物質及び固体電解質の混合粉末材料を搬送用ガスにて吹き付けることにより、各極材層を形成する際に、その混合粉末材料に電荷を帯電させて吹き付け、且つ各極材層を構成する活物質の固体電解質に対する混合比率を、集電体からの距離に応じて連続的に減少させる方法である。 (もっと読む)


281 - 300 / 1,160