説明

Fターム[5H307BB01]の内容

流量の制御 (3,234) | 流体の種類 (400) | 気体 (195)

Fターム[5H307BB01]の下位に属するFターム

Fターム[5H307BB01]に分類される特許

121 - 140 / 155


【課題】 流体の種別等に応じた各種の変更設定操作を簡単に行うことのできる取り扱い性に優れた汎用性の高い流量制御装置を提供する。
【解決手段】 熱式流量センサを備え、流量制御弁の開度を比例制御して流体の流量を制御する流量制御装置であって、流体の種別に対応付けて熱式流量センサにて計測可能な最大流量を登録したテーブルと、流量制御弁を介して制御する流体の種別を設定する種別設定手段と、設定された流体の種別に応じて前記テーブルを参照して求められる最大流量に従って最大制御レンジを自動設定するレンジ設定手段と、設定された最大制御レンジに対する相対値に従って運用制御レンジをマニュアル設定するレンジ変更手段とを備える。 (もっと読む)


【課題】 小型化を図りつつ、ロータ周面に対向した磁気受渡部の設定範囲を広げることができる空気流量制御弁を提供する。
【解決手段】 トルクモータ14を、ロータ41を有するシャフト15とロータ41の外周部に配設された円筒状のコイル42と、コイル42で励磁されるステータ43で構成する。ステータ43の第1構成部材61を、コイル42とロータ41間に配置される第1磁極部71と、コイル42の外周部に配置される第1磁気通路部72と、第1磁気通路部72の先端部を第1磁極部71に連設する第1連設部73で構成する。ステータ43の第2構成部材62を、コイル42とロータ41間に配置される第2磁極部81と、コイル42の外周部に配置される第2磁気通路部82と、第2磁気通路部82の基端部を第2磁極部81に連設する第2連設部83で構成する。 (もっと読む)


【課題】 締付けトルク管理等の取付作業者のスキルに左右されることなく、ネジ止め時に発生する応力歪の伝達を抑制して計測精度、質量流量制御精度の向上を図ることができ、かつ、全体の軽量化も図ることができるようにする。
【解決手段】 複数の凹部5内に静電容量型圧力計3を収容配置して固定し、肉厚部には各圧力計3に流体圧力を作用させるための流体流路10a〜10dが形成されている直方体形状のボディブロック2のうち、圧力計3の固定保持部分2A及び流体流路10a〜10d外周の取り囲み部分2Bを除く残りの肉厚部分2Dが切り落とし除去され、かつ、複数の圧力計3の固定保持部分2Aに対応させてマスフローコントローラの本体ボックスもしくはパネル11へのネジ止め固定用の複数の取付部12a〜12cを形成している。
(もっと読む)


【課題】 基板処理時に実際に生じ得るサーマルサイフォン現象に基づくゼロ点シフト量を正確に検出して的確な補正をする。
【解決手段】 熱処理部110内にガスを供給するガス供給路210と,ガス供給路のガス流量を検出する検出部からの出力電圧と予め設定された設定流量に対応する設定電圧とを比較して,ガス供給路のガス流量が設定流量になるように制御するMFC240と,制御部300とを備え,制御部は,基板処理を実行する前に予め,MFC内を少なくとも基板処理時に使用するガスで置換してMFCの上流側と下流側に設けられる遮断弁230,250を閉じた状態でMFCからの出力電圧を検出して記憶手段に記憶しておき,基板処理を実行する際には基板処理時に使用するガスのガス流量に対応する設定電圧を記憶手段に記憶されたMFCの出力電圧に基づいて補正し,補正した設定電圧をMFCに設定する。 (もっと読む)


【課題】 圧力式流量制御装置を分解、組立なしに、そのオリフィスを簡単に取り換えできるようにして、制御流量の切換を容易にする。
【解決手段】 コントロール弁2のバルブボディ23の流体入口側と前記入口側取付用ブロック39とを、並びに前記バルブボディ23の流体出口側と前記出口側取付用ブロック43とを、夫々解離可能に気密状に連結することにより、前記コントロール弁2を通して気体が流通する流路を形成すると共に、前記バルブボディ23の出口側に設けたガスケット型オリフィス挿入孔42cと出口側取付用ブロック43のガスケット型オリフィス挿入孔43bとの間に、圧力式流量制御装置Aのガスケット型オリフィス38を着脱自在に挿着する構成とする。 (もっと読む)


【課題】 真空容器内を排気し、その後ガスを導入して一定の流量とガス圧に制御するような場合に、容易に制御出来る圧力・流量コントロールシステムを提供する。
【解決手段】圧力と流量の両方をセンシングできるセンサチップと、センサチップからの信号を設定値と比較して設定圧力・流量に制御するためのコントローラと、コントローラからの制御信号により圧力・流量を制御するコンダクタンスバルブとニードルバルブとで圧力・流量自動制御システムを構成した。
センサチップは、シリコン基板を用いて製作される。基板から熱分離された薄膜上に、薄膜ヒータと1個以上の温度センサを集積化させる。温度センサを用いて圧力または流量変化による温度差を検出できる。時分割で測定すれば、圧力・流量を1個のセンサチップで測定出来る。 (もっと読む)


【課題】面倒な校正、調整作業を行うことなく、各種の供給気体の質量流量制御を高精度で行うことのできる気体供給装置を提案すること。
【解決手段】気体供給装置1では、重量計測部13によって材料の重量変化量ΔW、すなわち実際の材料消費量を測定し、これに基づき算出した実際の質量流量Qmが目標質量流量Qmreqに収束するように、流量制御部6に設定されている設定質量流量Qmsetを補正している。材料の実際の消費重量に基づき、流量制御部6を適宜、校正することができる。校正、調整作業を定期的に行うことなく、また、取り扱う供給気体の種類、使用する流量制御部6の制御精度に左右されることなく、再現性良く、質量流量制御を行うことができる。 (もっと読む)


【課題】 限られた占有スペース内で必要なコンダクタンスを精度よく求めて、所定のガス流量を安定よく、かつ、再現性よく設定することができるガス流量制御方法を提供する。
【解決手段】 ガス配管2の途中に設けられる流量制限部材8に、予め設定された径及び長さで、かつ、角部のない切り溝15を機械加工することによってコンダクタンスを所定の公式に基いて算出可能な単一の制限流路16を形成し、その単一制限流路16によるコンダクタンスCと圧力差(P1−P2)とにより、プロセスチャンバー1へ供給されるガス流量Qを設定する。
(もっと読む)


【課題】流量設定値の変化に対する追随速度を犠牲にすることなく、圧力変動が生じても流量変動を抑制でき、クロストークが生じ得るようなシステムにも採用できるコントローラの提供。
【解決手段】流体の流量を測定し、その測定値を示す流量測定信号を出力する流量センサ部2と、その流量センサ部2の上流側または下流側に設けた流量制御バルブ3と、前記流量測定信号から得られる流量測定値と目標値である流量設定値との偏差に少なくとも比例演算を施して流量制御バルブ3へのフィードバック制御値を算出する算出部6と、前記フィードバック制御値に基づいて開度制御信号を生成し、流量制御バルブ3に出力する開度制御信号出力部7と、を備えたものにおいて、前記比例演算におけるゲイン値を算出するための関数を、前記流量設定値を所定量以上変化させた時点からの所定期間である変化期間と、それ以外の期間である安定期間とにおいて異ならせた。 (もっと読む)


【課題】 1基の流量制御装置によってより広い流量域の流体の高精度な流量制御を可能とすることにより、流量制御装置の小型化と設備費の削減を図る。
【解決手段】 オリフィス上流側圧力P1及び又はオリフィス下流側圧力P2を用いて、オリフィス8を流通する流体の流量をQc=KP1(Kは比例定数)又はQc=KP2m(P1−P2n(Kは比例定数、mとnは定数)として演算するようにした圧力式流量制御装置において、当該圧力式流量制御装置のコントロール弁の下流側と流体供給用管路との間の流体通路少なくとも二つ以上の並列状の流体通路とすると共に、前記各並列状の流体通路へ流体流量特性の異なるオリフィスを夫々介在させ、小流量域の流体の流量制御には一方のオリフィスへ前記小流量域の流体を流通させ、また大流量域の流体の流量制御には他方のオリフィスへ前記大流量域の流体を切換え流通させる。 (もっと読む)


【課題】 窒素ガスに基づいて校正をした圧力式流量制御装置を用いて窒素以外の実ガスを簡単且つ正確に測定できるようにすると共に、熱式流量制御装置(マスフローコントローラ)とも容易に取り替えできるようにする。
【解決手段】 オリフィス上流側圧力P1とオリフィス下流側圧力P2を用いて、オリフィス8を流通する流体の流量をQc=KP1(Kは比例定数)又はQc=KP2m(P1−P2)n(Kは比例定数、mとnは定数)として演算するようにした圧力式流量制御装置において、入出力コンバータ25の設定流量信号Qerと設定入力信号Qe′との比である変換率(Qe′/Qer)及び流量出力信号Qorと制御流量出力Qo′との比である変換率(Qo′/Qor)を調整可能な構成とする。 (もっと読む)


単一の質量流量を少なくとも二つの流れライン(122a、122b)に分割するための流量比率制御装置(106)を含むガス送出システム用の反対称最適制御アルゴリズムを提供する。各流れラインは、流量計(124)及びバルブ(126)を含む。流量比率制御装置の両バルブは、単一の入力信号出力SISO制御装置と、インバーターと、二つの線型飽和器とを含む反対称最適制御装置によって、比率フィードバックループを通して制御される。SISO制御装置の出力を、二つのバルブに加えられる前に分割し変更する。二つのバルブ制御コマンドは、許容可能な最大バルブコンダクタンス位置に対し、実際上、反対称である。これらの二つのバルブコマンドが、夫々の線型飽和器を、許容可能な最大バルブコンダクタンス位置で二つの飽和限度の一方として通過するため、一方のバルブが、任意の時期に、許容可能な最大バルブコンダクタンス位置に保持されると同時に、他方のバルブが、流量比率を維持するように能動的に制御されるという正味の効果が得られる。
(もっと読む)


【課題】蒸発材料の移送管において、管内の流れをスムースにするとともに、弁開閉時においても、蒸発材料の濃度が変化するのを抑制し得る蒸発材料の流量制御装置を提供する。
【解決手段】蒸発材料移送管6内の途中に配置されて且つ連通用開口穴12が形成された中段鉛直部11bを有する仕切部材11と、上記中段鉛直部の連通用開口穴に対して水平方向で移動自在に設けられて当該連通用開口穴を開閉し得る円錐状部15bが先端に形成されたニードル弁体15と、このニードル弁体を上記連通用開口穴に対して移動させてその円錐状部により当該連通用開口穴を開閉させる開閉手段18と、上記ニードル弁体を挿通されて先端部が円錐状部の中心から外方に突出するように設けられるとともに先端部にガス放出穴16aが形成されたガス放出管16と、上記ニードル弁体側と蒸発材料移送管側との間に設けられた密封用のベローズ21とから構成したもの。 (もっと読む)


気体フローを調節して前記気体フローに関連する圧力変化率の測定を改善する装置が、内部体積に特長付けられた内部部分と前記気体フローを受け取る入口ポートとを有する測定チャンバ(102)を含む。この装置は、圧力センサ(104)と信号プロセッサとを含む。信号プロセッサは、前記センサ(104)から前記圧力信号を受け取り、サンプリングし、圧力信号の時間導関数を計算する。この装置は、更に、前記入口ポート配置された入口ダンパ(108)を含み、よって、前記気体フローは前記入口ポートを通過する前にこの入口ダンパ(108)を通過する。この入口ダンパは、気体フローをダンパ伝達関数に従って修正する。チャンバ体積とダンパ伝達関数とは、前記測定チャンバの中の圧力の変動に関連する周波数を前記サンプリング周波数の所定の分数に制限するように選択される。
(もっと読む)


【課題】 被検ガスの流量の変化を正確に測定することができるガス流量測定機構を備えることにより、ガスセンサに供給される被検ガスの流量を高い安定性をもって一定に維持することができ、信頼性の高い検知出力が得られるガス検知器を提供する。
【解決手段】 このガス検知器は、ガスセンサと、ガス流路を介して被検ガスをガスセンサに供給するガス供給ポンプと、ガス流路に設けられた超音波ガス流量測定機構と、この超音波ガス流量測定機構よりのガス流量信号により、ガスセンサに供給される被検ガスの流量が一定となるようガス供給ポンプを制御する制御機構とを有する。超音波ガス流量測定機構は、被検ガスの流通方向に互いに離間して位置された一対の超音波発信−受信素子により構成されており、各超音波発信−受信素子は、ガス流路の外部に配置することができる。 (もっと読む)


【課題】 所望の比率の流量で流体を分配することができるマイクロ流量分配コントロール装置を実現することにある。
【解決手段】 本発明は、入力側流路を流れる流体を、複数のマイクロ流路に分配するマイクロ流量分配コントロール装置に改良を加えたものである。本装置は、マイクロ流路に設けられ、流量を測定する流量センサと、この流量センサの上流側または下流側のマイクロ流路に設けられるバルブと、流量センサの測定結果によってバルブの調整を行う調整手段とを設けたことを特徴とするものである。 (もっと読む)


装置(100)は、流体の流量を制御するために用いられる。前記装置は、入口(106)と出口(108)との間に流量制限器(110)を有する。第1および第2のマルチセンサ(120,124)は、前記流体の流量の圧力および温度を感知する感知表面(122,126)を前記入口および出口に有す。回路(130)は、前記入口の圧力と前記出口の圧力との間の差に基づいて質量流量出力(155)を生成する。前記質量流量出力は、前記入口および前記出口の感知温度の少なくとも1つの関数としての温度補正を含む。
(もっと読む)


【課題】水素ガスを充填する際,充填開始時初期の急激な圧力上昇をおさえ,ノズルと充填口周辺に生じる衝撃を緩和したガス供給装置およびガス供給方法を提供すること。
【解決手段】本発明のガス供給装置は,蓄ガス器ユニット11と,蓄ガス器ユニット11に貯蔵されたガスを自動車タンク4へ供給する供給ライン35とを有するものであって,供給ライン35に設けられた流量制御弁31と,供給ライン35における流量制御弁31より下流の位置に設けられたガス開閉弁33と,供給ライン35における流量制御弁31より下流の位置と蓄ガス器ユニット11の上流側の位置とを結ぶ回収ライン42と,回収ライン42に設けられたガス開閉弁41と,ガス開閉弁33,41の開閉を制御する制御装置36とを有し,制御装置36は,供給ライン35による自動車タンク4へのガス供給の前または後に,ガス開閉弁33,41を開いて供給ライン35を掃気する。 (もっと読む)


本発明は時間ベース流量制御装置、より詳細には制御性及び制御精度に優れた機械的同期式流量制御装置に関する。本装置は、貯蔵槽1a、1b、流入路14、流出路24、開閉手段3及び制御部を含む。開閉手段3は流体が通過する通路3aを具備し、機械的サイクルをもって作動して、流出路24が閉鎖された状態で流入路14が開放され、また流入路14が閉鎖された状態で流出路24が開放されるように、機械的サイクルは通路3aの位置変化に従って、通路3aが流入路14と連通して流入路14を開放する流入路開放期間と、通路3aが流出路24と連通して流出路24を開放する流出路開放期間を、位相差を置いて含む。制御部は、開閉手段3の開閉サイクル速度及び/又は開閉手段3の単位開閉サイクル当たりの貯蔵槽1a、1bに貯蔵及び放出される流体の質量又は体積を制御することで、貯蔵槽1a、1bから流出する流体の質量流量又は体積流量を制御する。 (もっと読む)


【課題】 半導体製造装置内などへの設置、配管及び配線接続が容易であり、配管接続による圧力損失を低減し、各モジュールの配置変更を容易に行なえるもので、また流体に腐食性流体を使用しても腐食が起こることなく、配管後の流量の設定変更や、流路の遮断が可能であり、流入する流体が脈動していても流量の制御が可能な流体制御装置を提供する。
【解決手段】 本発明の流体制御装置は、超音波を流体中に発信する超音波振動子12と超音波振動子12から発信した超音波を受信し信号を流量計アンプ部82に出力する超音波振動子13とを有する流量計センサ部4と、操作圧により流体の圧力を制御する定流量弁5とを具備し、流量計センサ部4と定流量弁5とが、流体流入口3と流体流出口6を有する1つのケーシング2内に接続されて設置されてなる。 (もっと読む)


121 - 140 / 155