説明

Fターム[5J084EA04]の内容

光レーダ方式及びその細部 (24,468) | 目的 (2,756) | 分解能向上 (227)

Fターム[5J084EA04]に分類される特許

41 - 60 / 227


【課題】同軸系タイプのビーム光投受光装置のコンパクト化及び組立て調整作業の容易化を図る。
【解決手段】光源210からスキャンミラー240に向かう投光ビームの光路と、対象領域内の物体から反射しスキャンミラー240から受光素子260に向かう戻り光の光路を分離する投受光分離部材を、1つのプリズム230で形成し、プリズム230は、投光ビームをスキャンミラー240方向に反射する反射領域231(外側反射面)と、スキャンミラー240からの戻り光を透過する透過領域232と、この透過領域232を透過した戻り光をプリズム内部で受光素子260方向に反射する内側反射面Dと有する構成である。 (もっと読む)


【課題】複数の走査角および空間分解能を設定することができる光走査装置を、小型かつ簡便な構成で実現する。
【解決手段】光走査装置12は、複数の光源で構成される光源装置20と、光源数に対応した数の光偏向素子から構成される光偏向素子22と、各光偏向素子に個別に対応した、異なる拡大率を有する走査角およびビーム広がり角の複数の拡大レンズ系26とから構成されている。いずれかの拡大レンズ系と、これに対応した光偏向素子及び光源を選択することにより、複数の走査角および空間分解能を設定することができる。 (もっと読む)


【課題】ゴーストのない高精度な光干渉観測を可能にする。
【解決手段】第1の台形プリズム131、第1の直角プリズム132、第2の直角プリズム133、第3の直角プリズム134、第2の台形プリズム135、第4の直角プリズム136を貼り合わせて一体化した構造のプリズムユニットを用いる。上記第1の台形プリズムの互いに平行な二つの面の一方の面にビームスプリッタ膜が形成され、上記ビームスプリッタ膜を挟んで上記面が上記第1の直角プリズムの斜面に貼り合わされ、上記第2の台形プリズムの互いに平行な二つの面の一方の面にビームスプリッタ膜が形成され、上記ビームスプリッタ膜を挟んで上記面が上記第4の直角プリズムの斜面に貼り合わされている。また、上記第2の直角プリズム及び第3の直角プリズムは、各斜面の一方の面に偏光ビームスプリッタ膜が形成され、上記偏光ビームスプリッタ膜を挟んで各斜面が貼り合わされている。 (もっと読む)


【課題】監視領域がレーザレーダの近辺から遠方まで広く分布する場合であっても、監視領域の物体を正確に検出すること。
【解決手段】走査光LB1の主走査方向Xにおけるレーザレーダヘッド5からの距離が遠い監視領域では、反射光LB2の拡散の度合いが大きいので、反射光LB2の強度が弱くなる。そこで、主走査方向Xにおけるレーザレーダヘッド5からの距離が遠い監視領域では、レーザ投光器1のドライバ回路1aのパルス信号周期を長くする。すると、光ファイバ増幅器1bの光ファイバ1dに励起原子が蓄積される周期が長くなる。これにより、種光がレーザダイオード1cから入射されることにより光ファイバ1dのコアの電子が励起されて蓄積される励起エネルギが大きくなり、種光の増幅のゲインが大きくなって、光ファイバ1dから出力されるレーザ光LBの強度が強くなる。よって、走査光LB1の強度が強くなり、反射光LB2の強度も強くなる。 (もっと読む)


【課題】光源から投射された光を利用して被写体までの距離を取得する距離画像センサ、及び光源から投射された光により生体を検出する生体検出センサの機能を、RGB等の画像及び近赤外光画像を取得する1つの撮像デバイスを用いて実現する。
【解決手段】本発明の撮像デバイスは、光学フィルタ32、可視光センサ(2つの層38と39で形成される可視光センサ)と近赤外光センサ(2つの層36と37で形成される非可視光センサ)を光の進入方向に配置し、可視光画像と近赤外光画像を分離して出力する出力部40を有する。そのため、各画像間の画像ズレがなく、かつ解像度の欠損もなく、距離測定や生体検出の機能を高解像度撮像が可能な1つの撮像デバイスを用いて実現することが可能となる。 (もっと読む)



【課題】移動体にレーザレーダを搭載して地面や壁面に照射し、移動しながら目標物の位置を計測しようとする場合、複数のレーザレーダを用いることは多いが、レーザレーダを単に平行に並べて設置すると、移動速度によって計測点の密度にムラが発生したり、走行に平行な方向と垂直な方向とで計測点の密度差が大きい、という問題があった。
【解決手段】レーザレーダ同士に角度を持たせて設置することにより、計測点の密度のムラや方向による密度差の大きさを軽減することができる。 (もっと読む)


【課題】測定範囲の拡大や分解能の向上が容易に行え、且つ、被測定物の傾斜角度の検出が可能な、自由度の高い構成の距離測定装置を提供することを目的とする
【解決手段】被測定物7の基準表面に対してその鉛直方向から、予め設定する間隔で2つのレーザビームを照射する光源部1aと、被測定物の表面で反射した2つのレーザビームの反射光を予め定める受光角度で受光するカメラ1cと、光源部とカメラとを固定するベースとを備える距離検出部1と、基準表面の鉛直方向の位置と、カメラで検出した当該2つのレーザビームの位置とを予め対応付けした校正テーブルを記憶し、カメラで検出した2つのレーザビームの位置から、基準表面と被測定物の表面との距離を求める距離演算部2とを備え、距離演算部は、2つのレーザビームの数と夫々のレーザビームに対応する校正テーブルを参照して異なる分解能で夫々の距離を求めるようにしたことを特徴とする距離測定装置。 (もっと読む)


【課題】水中浮遊物がレーザー光である伝送路上に存在しても、これの影響を最小限にすることにより、計測可能な距離を長くとることができ、更に安定して距離計測することができる水中距離計測システムを提供する。
【解決手段】第一の水中機器103と第二の水中機器123間の距離を計測する水中距離計測システムであって、第一の水中機器103は、送信レーザー光を送信する第一のレーザー送信機A104、送信レーザー光が水中浮遊物により反射された反射送信レーザー光を受ける第一のレーザー受信機C109、及び反射送信レーザー光の光量により送信レーザー光のビーム口径を変化させる第一のビーム口径可変部A105を備え、第二の水中機器123は、送信レーザー光を受信し、送信レーザー光を受信したことを示すタイミング情報を発生する第二のレーザー受信機A126を備えている。 (もっと読む)


【課題】測距光の変調周波数を上げることなく測定精度を上げることができる光波距離計を提供する。
【解決手段】変調された可視測距光(L1)を出射する可視発光素子(108)と、可視測距光を受光して電気信号を発生する可視受光素子(109)と、可視受光素子からの電気信号で変調された赤外線等の非可視測距光(l2)を出射する非可視発光素子(114)と、非可視測距光を受光して電気信号を発生する非可視受光素子(115)とを備える。 (もっと読む)


【課題】ターゲットに照射して戻ってくる散乱光の偏波成分によらず異物の3次元形状を高精度に検出できる異物検出装置を得る。
【解決手段】連続波信号で変調されたレーザ光を出力する光源6と、レーザ光を用いてターゲットの捜索範囲を走査するスキャナ10と、ターゲット表面で散乱される散乱光を偏波成分ごとに分離する偏波ビームスプリッタ12と、散乱光の各偏波成分をそれぞれ受光する受信レンズ13a、13b、及び光受信機14a、14bで構成される受光手段と、レーザ光と散乱光の各偏波成分との位相差及び散乱光の各偏波成分の受信強度を検出する位相検波器15a、15bと、これらの検出結果に基づいて散乱光の偏波解消度を算出すると共に、偏波解消度の算出結果に応じて異物との離間距離を算出し異物の3次元形状を出力するパソコン3と、を備えたものである。 (もっと読む)


【課題】同一捜索時間における異物の3次元形状の検出精度を向上できる異物検出装置を得る。
【解決手段】捜索対象にレーザ光を照射したときの散乱光を用いて異物を検出する異物検出装置であって、レーザ光を出力する光出力手段と、レーザ光を用いて捜索対象の捜索範囲を走査するスキャナ11と、捜索対象からの散乱光を受光する光受信機13と、レーザ光と散乱光の位相差及び散乱光の受信強度を検出する位相検波器14と、これらの検出結果に基づいて捜索範囲を絞り込んで着目領域23を抽出し、スキャンする走査線間隔を狭くしてスキャナ11に着目領域23を再走査させる制御信号を出力し、この着目領域23における位相検波器14の検出結果に基づいて3次元画像を生成するパソコン3とを備える。 (もっと読む)


【課題】 正確で高分解能な距離画像を得ることが可能な距離画像撮像装置を提供する。
【解決手段】 この装置は、画素内の転送電極に与える転送信号の基準クロックを発生する発振器14と、基準クロックに同期して、出射光を発生する光源を駆動する光源駆動回路11と、撮像領域IMR内において所定の大きさの領域を指定し、指定された領域とセンサ駆動回路DRVとを電気的に接続し、且つ、指定された領域以外の撮像用の領域とセンサ駆動回路DRVとを電気的に切断する制御装置12及びデコーダ21,22と、これらによって指定される領域が狭くなる場合には、発振器14の基準クロックの周波数を高く設定する周波数制御回路13を備えている。 (もっと読む)


【課題】 正確な距離画像を得ることが可能な距離画像センサを提供することを目的とする。
【解決手段】 蓄積領域fd1、fd2は単一のキャパシタC1にしか接続されていないため、画素の大きさを小さくして空間分解能を向上させ、蓄積領域内fd1、fd2に転送された電荷を一旦蓄積するため、信号雑音比が向上する。駆動回路DRVは、一周期内におけるリセット期間終了時以後の第1及び第2のスイッチΦ1、Φ2のスイッチング回数が等しくなるように、ダミースイッチングを行うことで、オフセットが相殺され、更に正確な距離画像を得ることができる。 (もっと読む)


【課題】小型,高性能,低消費電力,高速応答および安価な光学式測距センサを提供する。
【解決手段】発光素子12と受光素子13を同一リードフレーム11に搭載して、透光性樹脂14a,14bと遮光性樹脂15で一体成形することにより、受光素子13を発光素子12と同一平面に形成し、発光素子12と受光素子13を同一パッケージに形成し、位置検出受光部,処理回路部および駆動回路部が搭載された受光素子13を1チップで形成する。こうして、光学式測距センサのサイズを小さくして製造コストを低減する。さらに、上記位置検出受光部の有効受光部のサイズを、光スポットの設計上のサイズ以下に設定する。こうして、受光素子13のチップを小さくして製造コストの更なる低減を図る。さらに、上記位置検出受光部の無効受光部と無効受光部からの不要な信号とを無くして、応答時間を短縮し、消費電力を低減し、信号処理時のS/Nを大きくし、性能の向上を図る。 (もっと読む)


TOFシステムの光パワーが、ワイヤレスとすることができる補助光放出器(WOE)ユニット、またはプラグ有線接続とすることができる補助光放出器(PWOE)を使用して増大される。WOEユニットは、放出されたTOFシステムの光エネルギーSoutを感知し、周波数および同位相に関してWOEによって受け取られるときのSoutに好ましくは動的に同期された光エネルギーSout−nを放出する。各WOEは、Soutを検出するための少なくとも1つの光センサーと、WOEの放出したSout−n光エネルギーの周波数および位相がTOFの放出したSout光エネルギーの周波数および位相に動的に同期されることを保証する内部フィードバックとを含む。PWOEユニットは内部フィードバックを必要としないが、PWOE放出の光エネルギーの周波数および位相とTOFシステムの一次光源によって放出されるものとを精密に一致させるようにTOFシステムによって較正される。PWOEが別個に使用される場合、PWOEとTOF一次光エネルギー光源との間の遅延差はソフトウェア補償することができる。
(もっと読む)


【課題】 距離画像センサの設置位置を変更した場合でも、容易に背景画像を生成することができるとともに、環境温度や経年変化が生じた場合でも、常に正確な距離測定を行うことのできる距離画像処理システムを提供する。
【解決手段】 所定の被測定対象の距離値を検出する距離画像センサ1と、距離画像センサ1から入力される各画素の距離値に基づいて背景画像を生成するとともに、この背景画像の距離値の差分から距離画像を生成する画像処理回路46を備えた画像データ処理装置2と、を備え、画像処理回路46は、距離画像センサ1により取得された各画素の距離値が最大となる距離値を保存しておき、各画素の最大の距離値に基づいて背景画像を生成するように構成されている。 (もっと読む)


【課題】演算部に対する負荷を抑えながら高精度の測距が可能な測距方法及びレーザ測距装置を提供することを目的とする。
【解決手段】本発明に係る測距方法及びレーザ測距装置は、合成光の強度をモニタして、所定の強度以上のピーク位置の前後における強度データの対称性を確認することで、被測定物の測定点と対応する反射点の位置情報を取得する。そして、その位置情報に基づいて被測定物までの距離もしくは被測定物の2つの測定点間の厚み方向の距離を測距する。従って、強度データに基づく演算量を低減することが可能となり、演算部に対する負荷を抑えながら、レーザ光の可干渉性を利用した高精度な測距を行うことができる。 (もっと読む)


【課題】不要なノイズ成分の発生を抑制し、高精度な距離検出を行なうことが可能な距離センサ及び距離画像センサを提供すること。
【解決手段】距離画像センサ1は、光入射面1BK及び光入射面1BKとは逆側の表面1FTを有する半導体基板1A、フォトゲート電極PG、第1及び第2ゲート電極TX1,TX2、第1及び第2半導体領域FD1,FD2、並びに第3半導体領域SR1を備える。フォトゲート電極PGは、表面1FT上に設けられる。第1及び第2ゲート電極TX1,TX2は、フォトゲート電極PGに隣接して設けられる。第1及び第2半導体領域FD1,FD2は、各ゲート電極TX1,TX2の直下の領域に流れ込む電荷を蓄積する。第3半導体領域SR1は、第1及び第2半導体領域FD1,FD2から光入射面1BK側に離れて設けられ、第1及び第2半導体領域FD1,FD2と逆の導電型である。 (もっと読む)


【課題】物体の物理量を高い分解能で計測し、計測に要する時間を短縮する。
【解決手段】物理量センサは、少なくとも発振波長が連続的に単調増加する発振期間が繰り返し存在するように半導体レーザ1−1を動作させるレーザドライバ4−1と、レーザ1−1と発振波長の増減が逆になるように半導体レーザ1−2を動作させるレーザドライバ4−2と、レーザ1−1,1−2からのレーザ光とその戻り光との自己結合効果によって生じる干渉波形を含む電気信号を検出するフォトダイオード2−1,2−2および電流−電圧変換増幅部5−1,5−2と、電流−電圧変換増幅部5−1,5−2の出力信号に含まれる干渉波形の周期を計測する信号抽出部7−1,7−2と、信号抽出部7−1,7−2の計測結果に基づいて物体10との距離および物体10の速度を算出する演算部8とを有する。 (もっと読む)


41 - 60 / 227