説明

エチレン−α−オレフィン共重合体の製造方法

【課題】成形性が良好なエチレン−α−オレフィン共重合体であって、ちらつき感が低減した成形体が得られるエチレン−α−オレフィン共重合体の製造方法を提供すること。
【解決手段】下記成分(A)と下記成分(B)との接触処理物に下記成分(C)を接触処理してなる接触処理物の存在下、オレフィンを予備重合してなる予備重合固体触媒成分であって、該予備重合固体触媒成分中の予備重合体の含有量が、成分(A)1g当り0.1〜500gであり、該予備重合体の結晶融解熱量が160J/g以上であり、極限粘度が2〜4dl/g以上の予備重合体成分を、予備重合の開始から成分(A)1g当り0.1〜5g製造してなる予備重合固体触媒成分の存在下、エチレンと炭素原子数3〜20のα−オレフィンとを共重合するエチレン−α−オレフィン共重合体の製造方法。
成分(A):メタロセン系錯体をイオン化してイオン性の錯体を形成する化合物が、微粒子状担体に担持されてなる固体助触媒成分
成分(B):メタロセン系錯体
成分(C):アルキル化剤

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、エチレン−α−オレフィン共重合体、該共重合体の成形体、および、エチレン−α−オレフィン共重合体の製造方法に関するものである。
【背景技術】
【0002】
食品、医薬品、日用雑貨などの包装に用いられるフィルムやシートなどには、エチレン−α−オレフィン共重合体を押出成形してなる成形体が多く用いられている。このような成形体に用いられるエチレン−α−オレフィン共重合体には、押出負荷が低い、加工安定性が良いなど、成形性に優れることが求められている。このようなエチレン−α−オレフィン共重合体としては、例えば、シリカにトリイソブチルアルミニウムを添加した後、有機アルミニウムオキシ化合物を添加し、次に、ビス(インデニル)エタンとノルマルブチルリチウムと四塩化ジルコニウムとを反応させてなる触媒成分を添加してなる触媒を用いてエチレンと1−ブテンとを共重合してなるエチレン−1−ブテン共重合体(例えば、特許文献1参照。)が提案されている。
【0003】
【特許文献1】特開平4−213309号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかしながら、上記のエチレン−α−オレフィン共重合体からなる成形体は、ちらつき感により成形体の外観が低下することがあり、十分満足のいくものではなかった。
かかる状況のもと、本発明が解決しようとする課題は、成形性が良好なエチレン−α−オレフィン共重合体であって、ちらつき感が低減した成形体が得られるエチレン−α−オレフィン共重合体、該共重合体の成形体、および、該共重合体の製造方法を提供することにある。
【発明の効果】
【0005】
本発明により、成形性が良好なエチレン−α−オレフィン共重合体であって、ちらつき感が低減した成形体が得られるエチレン−α−オレフィン共重合体の製造方法を提供することができる。
【課題を解決するための手段】
【0006】
すなわち、本発明は、下記成分(A)と下記成分(B)との接触処理物に下記成分(C)を接触処理してなる接触処理物の存在下、オレフィンを予備重合してなる予備重合固体触媒成分であって、該予備重合固体触媒成分中の予備重合体の含有量が、成分(A)1g当り0.1〜500gであり、該予備重合体の結晶融解熱量が160J/g以上であり、極限粘度が2〜4dl/g以上の予備重合体成分を、予備重合の開始から成分(A)1g当り0.1〜5g製造してなる予備重合固体触媒成分の存在下、エチレンと炭素原子数3〜20のα−オレフィンとを共重合するエチレン−α−オレフィン共重合体の製造方法にかかるものである。
成分(A):メタロセン系錯体をイオン化してイオン性の錯体を形成する化合物が、微粒子状担体に担持されてなる固体助触媒成分
成分(B):メタロセン系錯体
成分(C):アルキル化剤
【発明を実施するための最良の形態】
【0007】
本発明のエチレン−α−オレフィン共重合体は、エチレンに基づく単量体単位と炭素原子数3〜20のα−オレフィンに基づく単量体単位とを含むエチレン−α−オレフィン共重合体である。該α−オレフィンとしては、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、1−ドデセン、4−メチル−1−ペンテン、4−メチル−1−ヘキセン等があげられ、これらは単独で用いられていてもよく、2種以上を併用されていてもよい。α−オレフィンとしては、好ましくは1−ヘキセン、4−メチル−1−ペンテンである。
【0008】
本発明のエチレン−α−オレフィン共重合体中のエチレンに基づく単量体単位の含有量は、エチレン−α−オレフィン共重合体の全重量(100重量%)に対して、通常50〜99.5重量%である。またα−オレフィンに基づく単量体単位の含有量は、エチレン−α−オレフィン共重合体の全重量(100重量%)に対して、通常0.5〜50重量%である。
【0009】
本発明のエチレン−α−オレフィン共重合体は、上記のエチレンに基づく単量体単位および炭素原子数3〜20のα−オレフィンに基づく単量体単位に加え、本発明の効果を損なわない範囲において、他の単量体に基づく単量体単位を有していてもよい。他の単量体としては、例えば、共役ジエン(例えばブタジエンやイソプレン)、非共役ジエン(例えば1,4−ペンタジエン)、アクリル酸、アクリル酸エステル(例えばアクリル酸メチルやアクリル酸エチル)、メタクリル酸、メタクリル酸エステル(例えばメタクリル酸メチルやメタクリル酸エチル)、酢酸ビニル等があげられる。
【0010】
本発明のエチレン−α−オレフィン共重合体として、好ましくは、エチレンに基づく単量体単位および炭素原子数4〜20のα−オレフィンに基づく単量体単位を有する共重合体であり、より好ましくは、エチレンに基づく単量体単位および炭素原子数5〜20のα−オレフィンに基づく単量体単位を有する共重合体であり、さらに好ましくは、エチレンに基づく単量体単位および炭素原子数6〜20のα−オレフィンに基づく単量体単位を有する共重合体である。
【0011】
本発明のエチレン−α−オレフィン共重合体としては、例えば、エチレン−1−ヘキセン共重合体、エチレン−4−メチル−1−ペンテン共重合体、エチレン−1−オクテン共重合体、エチレン−1−ブテン−1−ヘキセン共重合体、エチレン−1−ブテン−4−メチル−1−ペンテン共重合体、エチレン−1−ブテン−1−オクテン共重合体等があげられ、好ましくはエチレン−1−ヘキセン共重合体、エチレン−4−メチル−1−ペンテン共重合体、エチレン−1−ブテン−1−ヘキセン共重合体、エチレン−1−ブテン−4−メチル−1−ペンテン共重合体であり、より好ましくはエチレン−1−ヘキセン共重合体、エチレン−1−ブテン−1−ヘキセン共重合体である。
【0012】
本発明のエチレン−α−オレフィン共重合体のメルトフローレート(MFR;単位はg/10分である。)は、通常0.01〜100g/10分である。該メルトフローレートは、成形性を高める観点、特に押出負荷を低減する観点から、好ましくは0.05g/10分以上であり、より好ましくは0.1g/10分以上である。また、溶融張力、得られる成形体の機械的強度を高める観点から、好ましくは20g/10分以下であり、より好ましくは10g/10分以下であり、さらに好ましくは6g/10分以下である。該メルトフローレートは、JIS K7210−1995に規定された方法において、温度190℃、荷重21.18Nの条件で、A法により測定される値である。なお、該メルトフローレートの測定では、通常、エチレン−α−オレフィン共重合体に予め酸化防止剤を1000ppm程度配合したものを用いる。
【0013】
本発明のエチレン−α−オレフィン共重合体の密度(d;単位はkg/m3である。)は、通常、890〜970kg/m3であり、得られる成形体の剛性を高める観点から、好ましくは900kg/m3以上であり、より好ましくは905kg/m3以上であり、更に好ましくは910kg/m3以上であり、得られる成形体の耐衝撃強度を高める観点から、好ましくは940kg/m3以下であり、より好ましくは930kg/m3以下である。該密度は、JIS K6760−1995に記載のアニーリングを行った後、JIS K7112−1980のうち、A法に規定された方法に従って測定される。
【0014】
本発明のエチレン−α−オレフィン共重合体は、長鎖分岐を有する成形性に優れたエチレン−α−オレフィン共重合体であり、このようなエチレン−α−オレフィン共重合体は従来知られた通常の直鎖状のエチレン−α−オレフィン共重合体に比して、流動の活性化エネルギー(Ea;単位はkJ/molである。)が高い。従来から知られている通常の直鎖状のエチレン−α−オレフィン共重合体のEaは50kJ/molよりも低く、十分満足のいく成形性が得られないこと、特に押出負荷において十分満足が得られないことがあった。
【0015】
本発明のエチレン−α−オレフィン共重合体のEaは、成形性を高める観点、特に溶融張力を過度に低下させずに押出負荷を低減する観点から、好ましくは55kJ/mol以上であり、より好ましくは60kJ/mol以上である。また、得られる成形体の光沢を高める観点から、Eaは、好ましくは100kJ/mol以下であり、より好ましくは90kJ/mol以下である。
【0016】
流動の活性化エネルギー(Ea)は、温度−時間重ね合わせ原理に基づいて、190℃での溶融複素粘度(単位はPa・secである。)の角周波数(単位:rad/sec)依存性を示すマスターカーブを作成する際のシフトファクター(aT)からアレニウス型方程式により算出される数値であって、以下に示す方法で求められる値である。すなわち、130℃、150℃、170℃および190℃夫々の温度(T、単位:℃)におけるエチレン−α−オレフィン共重合体の溶融複素粘度−角周波数曲線(溶融複素粘度の単位はPa・sec、角周波数の単位はrad/secである。)を、温度−時間重ね合わせ原理に基づいて、各温度(T)での溶融複素粘度−角周波数曲線毎に、190℃でのエチレン系共重合体の溶融複素粘度−角周波数曲線に重ね合わせた際に得られる各温度(T)でのシフトファクター(aT)を求め、夫々の温度(T)と、各温度(T)でのシフトファクター(aT)とから、最小自乗法により[ln(aT)]と[1/(T+273.16)]との一次近似式(下記(I)式)を算出する。次に、該一次式の傾きmと下記式(II)とからEaを求める。
ln(aT) = m(1/(T+273.16))+n (I)
Ea = |0.008314×m| (II)
T :シフトファクター
Ea:流動の活性化エネルギー(単位:kJ/mol)
T :温度(単位:℃)
上記計算は、市販の計算ソフトウェアを用いてもよく、該計算ソフトウェアとしては、Rheometrics社製 Rhios V.4.4.4などがあげられる。
なお、シフトファクター(aT)は、夫々の温度(T)における溶融複素粘度−角周波数の両対数曲線を、log(Y)=−log(X)軸方向に移動させて(但し、Y軸を溶融複素粘度、X軸を角周波数とする。)、190℃での溶融複素粘度−角周波数曲線に重ね合わせた際の移動量であり、該重ね合わせでは、夫々の温度(T)における溶融複素粘度−角周波数の両対数曲線は、各曲線ごとに、角周波数をaT倍に、溶融複素粘度を1/aT倍に移動させる。また、130℃、150℃、170℃および190℃の4点の値から(I)式を最小自乗法で求めるときの相関係数は、通常、0.99以上である。
【0017】
溶融複素粘度−角周波数曲線の測定は、粘弾性測定装置(例えば、Rheometrics社製Rheometrics Mechanical Spectrometer RMS−800など。)を用い、通常、ジオメトリー:パラレルプレート、プレート直径:25mm、プレート間隔:1.5〜2mm、ストレイン:5%、角周波数:0.1〜100rad/秒の条件で行われる。なお、測定は窒素雰囲気下で行われ、また、測定試料には予め酸化防止剤を適量(例えば1000ppm。)を配合することが好ましい。
【0018】
本発明のエチレン−α−オレフィン共重合体の分子量分布(Mw/Mn)は、成形性を高める観点、特に押出負荷を低減する観点から、好ましくは3以上であり、より好ましくは5以上であり、更に好ましくは6以上である。また、得られる成形体の機械強度を高める観点から、好ましくは25以下であり、より好ましくは20以下であり、更に好ましくは15以下である。該分子量分布(Mw/Mn)は、ゲル・パーミエイション・クロマトグラフ(GPC)法により、重量平均分子量(Mw)と数平均分子量(Mn)を測定し、MwをMnで除した値(Mw/Mn)である。また、GPC法での測定条件としては、例えば、次の条件をあげることができる。
(1)装置:Water製Waters150C
(2)分離カラム:TOSOH TSKgelGMH6−HT
(3)測定温度:140℃
(4)キャリア:オルトジクロロベンゼン
(5)流量:1.0mL/分
(6)注入量:500μL
(7)検出器:示差屈折
(8)分子量標準物質:標準ポリスチレン
【0019】
本発明のエチレン−α−オレフィン共重合体は、厚み30μmのインフレーションフィルムでの微小欠陥数(単位は個/m2である。)が2000個/m2以下である共重合体である。該値が大きすぎると、成形体のちらつき感が高くなることがあり、該値は、好ましくは1500個/m2以下であり、より好ましくは1000個/m2以下である。なお、エチレン−α−オレフィン共重合体が、微粒子状担体に触媒成分が担持されてなる固体触媒成分を用いて、エチレンとα−オレフィンとを共重合してなる重合体である場合には、該微小欠陥数は、主に微粒子状担体の粉砕片であり、微粒子状担体が重合により粉砕され、充分に微細化されれば、該微小欠陥数は小さくなると考えられる。
【0020】
微小欠陥数は、本発明のエチレン−α−オレフィン共重合体を厚み30μmのインフレーションフィルムに成形したものを用いて、フィルムの75μm×70μmから225μm×214μmまでの大きさの暗欠陥の数を測定し、該暗欠陥の数をフィルム単位面積あたりの数として表したものである。該インフレーションフィルムは、加工温度170℃、押出量12.5kg/hr、ダイ径75mmφ、リップギャップ1mm、ブロー比1.8の成形条件で、インフレーション成形機(サーキュラーダイス付きフルフライトタイプスクリューの単軸押出機(径40mmφ、L/D=26))により成形される。また、暗欠陥の数は、デジタル欠陥検査装置(例えば、マミヤオーピー社製GX70LT)により、例えば、次の条件で測定される。
(1)検出閾値 :30以上
(2)検出禁止閾値 :24以上
(3)光源ゲイン :1.0
(4)読み取り速度 :30m/分
(5)検出下限サイズ:縦4画素、横2画素
(6)平均透過光量 :100
【0021】
本発明のエチレン−α−オレフィン共重合体のメルトフローレート比(MFRR)は、成形性を高める観点、特に押出負荷を低減する観点から、60以上が好ましい。該MFRRは、JIS K7210−1995に規定された方法において、試験荷重211.82N、測定温度190℃の条件で測定されるメルトフローレート(MFR−H、単位:g/10分)を、JIS K7210−1995に規定された方法において、荷重21.18Nおよび温度190℃の条件で測定されるメルトフローレート(MFR)で除した値である。なお、上記のメルトフローレート測定には、通常、予め酸化防止剤を1000ppm程度配合した重合体を用いる。
【0022】
本発明のエチレン−α−オレフィン共重合体の製造方法としては、好適には、微粒子状担体に触媒成分が担持されてなる固体触媒成分を用いて、エチレンとα−オレフィンとを共重合する方法があげられる。例えば、触媒成分にメタロセン系錯体を用いる場合は、メタロセン系錯体をイオン化してイオン性の錯体を形成する化合物(以下、助触媒成分(I)と称する。)が微粒子状担体に担持されてなる固体助触媒成分を用いて、エチレンとα−オレフィンとを共重合する方法があげられる。該助触媒成分(I)としては、例えば、ホウ素化合物、亜鉛化合物、有機アルミニウムオキシ化合物などをあげることができる。
【0023】
助触媒成分(I)のホウ素化合物としては、トリス(ペンタフルオロフェニル)ボラン、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、トリ(n−ブチル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート等があげられる。
【0024】
助触媒成分(I)の亜鉛化合物としては、ジエチル亜鉛とフッ素化フェノールと水とを接触処理してなる接触処理物等があげられる。
【0025】
助触媒成分(I)の有機アルミニウムオキシ化合物は、従来、有機アルミニウムオキシ化合物として取り扱われてきた有機アルミニウム化合物を少量含んだものではなく、有機アルミニウム化合物を実質的に含有しない、いわゆる乾燥有機アルミニウムオキシ化合物であり、例えば、乾燥メチルアルミノサン、乾燥メチルイソブチルアルミノサンなどをあげることができる。
該乾燥有機アルミニウムオキシ化合物の調製方法としては、例えば、特開2003−128718に記載の方法等、市販の有機アルミニウムオキシ化合物を減圧乾燥する方法や、減圧により得られる固体を炭化水素溶媒で洗浄する方法などをあげることができる。
【0026】
助触媒成分(I)としては、ホウ素化合物または亜鉛化合物が好ましい。
【0027】
微粒子状担体としては、多孔性の物質が好ましく、SiO2、Al23、MgO、ZrO2、TiO2、B23、CaO、ZnO、BaO、ThO2等の無機酸化物;スメクタイト、モンモリロナイト、ヘクトライト、ラポナイト、サポナイト等の粘土や粘土鉱物;ポリエチレン、ポリプロピレン、スチレン−ジビニルベンゼン共重合体などの有機ポリマーなどが使用される。該微粒子状担体の50%体積平均粒子径は、通常、10〜500μmであり、該50%体積平均粒子径は、光散乱式レーザー回折法などで測定される。また、該微粒子状担体の細孔容量は、通常0.3〜10ml/gであり、該微粒子状担体の比表面積は、通常、10〜1000m2/gである。該細孔容量と該比表面積は、ガス吸着法により測定され、細孔容量はガス脱着量をBJH法で、比表面積はガス吸着量をBET法で解析することにより求められる。
【0028】
また、上述のメタロセン系錯体としては、下記一般式[1]で表される遷移金属化合物またはそのμ−オキソタイプの遷移金属化合物二量体が好ましい。
2a21b [1]
(式中、M2は周期律表第3〜11族もしくはランタノイド系列の遷移金属原子である。
2はシクロペンタジエン形アニオン骨格を有する基であり、複数のL2は互いに直接連結されているか、または、炭素原子、ケイ素原子、窒素原子、酸素原子、硫黄原子もしくはリン原子を含有する残基を介して連結されていてもよい。X1はハロゲン原子、炭化水素基(但し、シクロペンタジエン形アニオン骨格を有する基を除く)、または炭化水素オキシ基である。aは0<a≦8を満足する数を、bは0<b≦8を満足する数を表す。)
【0029】
一般式[1]において、M2は周期律表(IUPAC1989年)第3〜11族もしくはランタノイド系列の遷移金属原子である。その具体例としては、スカンジウム原子、イットリウム原子、チタン原子、ジルコニウム原子、ハフニウム原子、バナジウム原子、ニオビウム原子、タンタル原子、クロム原子、鉄原子、ルテニウム原子、コバルト原子、ロジウム原子、ニッケル原子、パラジウム原子、サマリウム原子、イッテルビウム原子等が挙げられる。一般式[4]におけるM2として好ましくは、チタン原子、ジルコニウム原子、ハフニウム原子、バナジウム原子、クロム原子、鉄原子、コバルト原子またはニッケル原子であり、特に好ましくはチタン原子、ジルコニウム原子またはハフニウム原子であり、最も好ましくはジルコニウム原子である。
【0030】
一般式[1]において、L2はシクロペンタジエン形アニオン骨格を有する基であり、複数のL2は同じであっても異なっていてもよい。また複数のL2は互いに直接連結されているか、または、炭素原子、ケイ素原子、窒素原子、酸素原子、硫黄原子もしくはリン原子を含有する架橋基を介して連結されていてもよい。
【0031】
2におけるシクロペンタジエン形アニオン骨格を有する基としてはη5−(置換)シクロペンタジエニル基、η5−(置換)インデニル基、η5−(置換)フルオレニル基などが挙げられる。具体的に例示すれば、η5−シクロペンタジエニル基、η5−メチルシクロペンタジエニル基、η5−エチルシクロペンタジエニル基、η5−n−ブチルシクロペンタジエニル基、η5−tert−ブチルシクロペンタジエニル基、η5−1,2−ジメチルシクロペンタジエニル基、η5−1,3−ジメチルシクロペンタジエニル基、η5−1−メチル−2−エチルシクロペンタジエニル基、η5−1−メチル−3−エチルシクロペンタジエニル基、η5−1−tert−ブチル−2−メチルシクロペンタジエニル基、η5−1−tert−ブチル−3−メチルシクロペンタジエニル基、η5−1−メチル−2−イソプロピルシクロペンタジエニル基、η5−1−メチル−3−イソプロピルシクロペンタジエニル基、η5−1−メチル−2−n−ブチルシクロペンタジエニル基、η5−1−メチル−3−n−ブチルシクロペンタジエニル基、η5−1,2,3−トリメチルシクロペンタジエニル基、η5−1,2,4−トリメチルシクロペンタジエニル基、η5−テトラメチルシクロペンタジエニル基、η5−ペンタメチルシクロペンタジエニル基、η5−インデニル基、η5−4,5,6,7−テトラヒドロインデニル基、η5−2−メチルインデニル基、η5−3−メチルインデニル基、η5−4−メチルインデニル基、η5−5−メチルインデニル基、η5−6−メチルインデニル基、η5−7−メチルインデニル基、η5−2−tert−ブチルインデニル基、η5−3−tert−ブチルインデニル基、η5−4−tert−ブチルインデニル基、η5−5−tert−ブチルインデニル基、η5−6−tert−ブチルインデニル基、η5−7−tert−ブチルインデニル基、η5−2,3−ジメチルインデニル基、η5−4,7−ジメチルインデニル基、η5−2,4,7−トリメチルインデニル基、η5−2−メチル−4−イソプロピルインデニル基、η5−4,5−ベンズインデニル基、η5−2−メチル−4,5−ベンズインデニル基、η5−4−フェニルインデニル基、η5−2−メチル−5−フェニルインデニル基、η5−2−メチル−4−フェニルインデニル基、η5−2−メチル−4−ナフチルインデニル基、η5−フルオレニル基、η5−2,7−ジメチルフルオレニル基、η5−2,7−ジ−tert−ブチルフルオレニル基、およびこれらの置換体等が挙げられる。なお、本明細書においては、遷移金属化合物の名称については「η5−」を省略することがある。
【0032】
シクロペンタジエン形アニオン骨格を有する基同士は、それぞれ、直接連結されていてもよく、炭素原子、ケイ素原子、窒素原子、酸素原子、硫黄原子もしくはリン原子を含有する架橋基を介して連結されていてもよい。かかる架橋基としては、エチレン基、プロピレン基等のアルキレン基;ジメチルメチレン基、ジフェニルメチレン基などの置換アルキレン基;またはシリレン基、ジメチルシリレン基、ジフェニルシリレン基、テトラメチルジシリレン基などの置換シリレン基;窒素原子、酸素原子、硫黄原子、リン原子などのヘテロ原子などが挙げられる。
【0033】
一般式[1]におけるX1は、ハロゲン原子、炭化水素基(但し、シクロペンタジエン形アニオン骨格を有する基を除く)、または炭化水素オキシ基である。ハロゲン原子の具体例としてフッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。ここでいう炭化水素基としてはシクロペンタジエン形アニオン骨格を有する基を含まない。ここでいう炭化水素基としてはアルキル基、アラルキル基、アリール基、アルケニル基等が挙げられ、炭化水素オキシ基としては、アルコキシ基、アラルキルオキシ基やアリールオキシ基等が挙げられる。
【0034】
アルキル基としては、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、イソブチル基、n−ペンチル基、ネオペンチル基、アミル基、n−ヘキシル基、n−オクチル基、n−デシル基、n−ドデシル基、n−ペンタデシル基、n−エイコシル基などが挙げられ、これらのアルキル基はいずれも、フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子で置換されていてもよい。ハロゲン原子で置換されたのアルキル基としては、例えばフルオロメチル基、トリフルオロメチル基、クロロメチル基、トリクロロメチル基、フルオロエチル基、ペンタフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基、パークロロプロピル基、パークロロブチル基、パーブロモプロピル基などが挙げられる。またこれらのアルキル基はいずれも、メトキシ基、エトキシ基等のアルコキシ基;フェノキシ基などのアリールオキシ基またはベンジルオキシ基などのアラルキルオキシ基などで一部が置換されていてもよい。
【0035】
アラルキル基としては、例えばベンジル基、(2−メチルフェニル)メチル基、(3−メチルフェニル)メチル基、(4−メチルフェニル)メチル基、(2,3−ジメチルフェニル)メチル基、(2,4−ジメチルフェニル)メチル基、(2,5−ジメチルフェニル)メチル基、(2,6−ジメチルフェニル)メチル基、(3,4−ジメチルフェニル)メチル基、(3,5−ジメチルフェニル)メチル基、(2,3,4−トリメチルフェニル)メチル基、(2,3,5−トリメチルフェニル)メチル基、(2,3,6−トリメチルフェニル)メチル基、(3,4,5−トリメチルフェニル)メチル基、(2,4,6−トリメチルフェニル)メチル基、(2,3,4,5−テトラメチルフェニル)メチル基、(2,3,4,6−テトラメチルフェニル)メチル基、(2,3,5,6−テトラメチルフェニル)メチル基、(ペンタメチルフェニル)メチル基、(エチルフェニル)メチル基、(n−プロピルフェニル)メチル基、(イソプロピルフェニル)メチル基、(n−ブチルフェニル)メチル基、(sec−ブチルフェニル)メチル基、(tert−ブチルフェニル)メチル基、(n−ペンチルフェニル)メチル基、(ネオペンチルフェニル)メチル基、(n−ヘキシルフェニル)メチル基、(n−オクチルフェニル)メチル基、(n−デシルフェニル)メチル基、(n−ドデシルフェニル)メチル基、ナフチルメチル基、アントラセニルメチル基などが挙げられ、これらのアラルキル基はいずれも、フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;フェノキシ基などのアリールオキシ基またはベンジルオキシ基などのアラルキルオキシ基などで一部が置換されていてもよい。
【0036】
アリール基としては、例えばフェニル基、2−トリル基、3−トリル基、4−トリル基、2,3−キシリル基、2,4−キシリル基、2,5−キシリル基、2,6−キシリル基、3,4−キシリル基、3,5−キシリル基、2,3,4−トリメチルフェニル基、2,3,5−トリメチルフェニル基、2,3,6−トリメチルフェニル基、2,4,6−トリメチルフェニル基、3,4,5−トリメチルフェニル基、2,3,4,5−テトラメチルフェニル基、2,3,4,6−テトラメチルフェニル基、2,3,5,6−テトラメチルフェニル基、ペンタメチルフェニル基、エチルフェニル基、n−プロピルフェニル基、イソプロピルフェニル基、n−ブチルフェニル基、sec−ブチルフェニル基、tert−ブチルフェニル基、n−ペンチルフェニル基、ネオペンチルフェニル基、n−ヘキシルフェニル基、n−オクチルフェニル基、n−デシルフェニル基、n−ドデシルフェニル基、n−テトラデシルフェニル基、ナフチル基、アントラセニル基などが挙げられ、これらのアリール基はいずれも、フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;フェノキシ基などのアリールオキシ基またはベンジルオキシ基などのアラルキルオキシ基などで一部が置換されていてもよい。
【0037】
アルケニル基としては、例えばアリル基、メタリル基、クロチル基、1,3−ジフェニル−2−プロペニル基などが挙げられる。
【0038】
アルコキシ基としては、例えばメトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、sec−ブトキシ基、tert−ブトキシ基、n−ペントキシ基、ネオペントキシ基、n−ヘキソキシ基、n−オクトキシ基、n−ドデソキシ基、n−ペンタデソキシ基、n−イコソキシ基などが挙げられ、これらのアルコキシ基はいずれも、フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;フェノキシ基などのアリールオキシ基またはベンジルオキシ基などのアラルキルオキシ基などで一部が置換されていてもよい。
【0039】
アルコキシ基としては、例えばメトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、sec−ブトキシ基、tert−ブトキシ基、n−ペントキシ基、ネオペントキシ基、n−ヘキソキシ基、n−オクトキシ基、n−ドデソキシ基、n−ペンタデソキシ基、n−イコソキシ基などが挙げられ、これらのアルコキシ基はいずれも、フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;フェノキシ基などのアリールオキシ基またはベンジルオキシ基などのアラルキルオキシ基などで一部が置換されていてもよい。
【0040】
アラルキルオキシ基としては、例えばベンジルオキシ基、(2−メチルフェニル)メトキシ基、(3−メチルフェニル)メトキシ基、(4−メチルフェニル)メトキシ基、(2、3−ジメチルフェニル)メトキシ基、(2、4−ジメチルフェニル)メトキシ基、(2、5−ジメチルフェニル)メトキシ基、(2、6−ジメチルフェニル)メトキシ基、(3,4−ジメチルフェニル)メトキシ基、(3,5−ジメチルフェニル)メトキシ基、(2,3,4−トリメチルフェニル)メトキシ基、(2,3,5−トリメチルフェニル)メトキシ基、(2,3,6−トリメチルフェニル)メトキシ基、(2,4,5−トリメチルフェニル)メトキシ基、(2,4,6−トリメチルフェニル)メトキシ基、(3,4,5−トリメチルフェニル)メトキシ基、(2,3,4,5−テトラメチルフェニル)メトキシ基、(2,3,4,6−テトラメチルフェニル)メトキシ基、(2,3,5,6−テトラメチルフェニル)メトキシ基、(ペンタメチルフェニル)メトキシ基、(エチルフェニル)メトキシ基、(n−プロピルフェニル)メトキシ基、(イソプロピルフェニル)メトキシ基、(n−ブチルフェニル)メトキシ基、(sec−ブチルフェニル)メトキシ基、(tert−ブチルフェニル)メトキシ基、(n−ヘキシルフェニル)メトキシ基、(n−オクチルフェニル)メトキシ基、(n−デシルフェニル)メトキシ基、ナフチルメトキシ基、アントラセニルメトキシ基などが挙げられ、これらのアラルキルオキシ基はいずれも、フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;フェノキシ基などのアリールオキシ基またはベンジルオキシ基などのアラルキルオキシ基などで一部が置換されていてもよい。
【0041】
アリールオキシ基としては、例えばフェノキシ基、2−メチルフェノキシ基、3−メチルフェノキシ基、4−メチルフェノキシ基、2、3−ジメチルフェノキシ基、2、4−ジメチルフェノキシ基、2、5−ジメチルフェノキシ基、2、6−ジメチルフェノキシ基、3,4−ジメチルフェノキシ基、3,5−ジメチルフェノキシ基、2−tert−ブチル−3−メチルフェノキシ基、2−tert−ブチル−4−メチルフェノキシ基、2−tert−ブチル−5−メチルフェノキシ基、2−tert−ブチル−6−メチルフェノキシ基、2,3,4−トリメチルフェノキシ基、2,3,5−トリメチルフェノキシ基、2,3,6−トリメチルフェノキシ基、2,4,5−トリメチルフェノキシ基、2,4,6−トリメチルフェノキシ基、2−tert−ブチル−3,4−ジメチルフェノキシ基、2−tert−ブチル−3,5−ジメチルフェノキシ基、2−tert−ブチル−3,6−ジメチルフェノキシ基、2,6−ジ−tert−ブチル−3−メチルフェノキシ基、2−tert−ブチル−4,5−ジメチルフェノキシ基、2,6−ジ−tert−ブチル−4−メチルフェノキシ基、3,4,5−トリメチルフェノキシ基、2,3,4,5−テトラメチルフェノキシ基、2−tert−ブチル−3,4,5−トリメチルフェノキシ基、2,3,4,6−テトラメチルフェノキシ基、2−tert−ブチル−3,4,6−トリメチルフェノキシ基、2,6−ジ−tert−ブチル−3,4−ジメチルフェノキシ基、2,3,5,6−テトラメチルフェノキシ基、2−tert−ブチル−3,5,6−トリメチルフェノキシ基、2,6−ジ−tert−ブチル−3,5−ジメチルフェノキシ基、ペンタメチルフェノキシ基、エチルフェノキシ基、n−プロピルフェノキシ基、イソプロピルフェノキシ基、n−ブチルフェノキシ基、sec−ブチルフェノキシ基、tert−ブチルフェノキシ基、n−ヘキシルフェノキシ基、n−オクチルフェノキシ基、n−デシルフェノキシ基、n−テトラデシルフェノキシ基、ナフトキシ基、アントラセノキシ基などが挙げられ、これらのアリールオキシ基はいずれも、フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;フェノキシ基などのアリールオキシ基またはベンジルオキシ基などのアラルキルオキシ基などで一部が置換されていてもよい。
【0042】
一般式[1]におけるaは0<a≦8を満足する数を、bは0<b≦8を満足する数を表し、M2の価数に応じて適宜選択される。M2がチタン原子、ジルコニウム原子またはハフニウム原子である場合、aは2であることが好ましく、bも2であることが好ましい。
【0043】
メタロセン系錯体の具体例としては、
ビス(シクロペンタジエニル)チタンジクロライド、ビス(メチルシクロペンタジエニル)チタンジクロライド、ビス(エチルシクロペンタジエニル)チタンジクロライド、ビス(n−ブチルシクロペンタジエニル)チタンジクロライド、ビス(tert−ブチルシクロペンタジエニル)チタンジクロライド、ビス(1,2−ジメチルシクロペンタジエニル)チタンジクロライド、ビス(1,3−ジメチルシクロペンタジエニル)チタンジクロライド、ビス(1−メチル−2−エチルシクロペンタジエニル)チタンジクロライド、ビス(1−メチル−3−エチルシクロペンタジエニル)チタンジクロライド、ビス(1−メチル−2−n−ブチルシクロペンタジエニル)チタンジクロライド、ビス(1−メチル−3−n−ブチルシクロペンタジエニル)チタンジクロライド、ビス(1−メチル−2−イソプロピルシクロペンタジエニル)チタンジクロライド、ビス(1−メチル−3−イソプロピルシクロペンタジエニル)チタンジクロライド、ビス(1−tert−ブチル−2−メチルシクロペンタジエニル)チタンジクロライド、ビス(1−tert−ブチル−3−メチルシクロペンタジエニル)チタンジクロライド、ビス(1,2,3−トリメチルシクロペンタジエニル)チタンジクロライド、ビス(1,2,4−トリメチルシクロペンタジエニル)チタンジクロライド、ビス(テトラメチルシクロペンタジエニル)チタンジクロライド、ビス(ペンタメチルシクロペンタジエニル)チタンジクロライド、ビス(インデニル)チタンジクロライド、ビス(4,5,6,7−テトラヒドロインデニル)チタンジクロライド、ビス(フルオレニル)チタンジクロライド、ビス(2−フェニルインデニル)チタンジクロライド、
【0044】
ビス[2−(ビス−3,5−トリフルオロメチルフェニル)インデニル]チタンジクロライド、ビス[2−(4−tert−ブチルフェニル)インデニル]チタンジクロライド、ビス[2−(4−トリフルオロメチルフェニル)インデニル]チタンジクロライド、ビス[2−(4−メチルフェニル)インデニル]チタンジクロライド、ビス[2−(3,5−ジメチルフェニル)インデニル]チタンジクロライド、ビス[2−(ペンタフルオロフェニル)インデニル]チタンジクロライド、シクロペンタジエニル(ペンタメチルシクロペンタジエニル)チタンジクロライド、シクロペンタジエニル(インデニル)チタンジクロライド、シクロペンタジエニル(フルオレニル)チタンジクロライド、インデニル(フルオレニル)チタンジクロライド、ペンタメチルシクロペンタジエニル(インデニル)チタンジクロライド、ペンタメチルシクロペンタジエニル(フルオレニル)チタンジクロライド、シクロペンタジエニル(2−フェニルインデニル)チタンジクロライド、ペンタメチルシクロペンタジエニル(2−フェニルインデニル)チタンジクロライド、
【0045】
ジメチルシリレンビス(シクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2−メチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(3−メチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2−n−ブチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(3−n−ブチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2,3−ジメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2,4−ジメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2,5−ジメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(3,4−ジメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2,3−エチルメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2,4−エチルメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2,5−エチルメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(3,5−エチルメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2,3,4−トリメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2,3,5−トリメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(テトラメチルシクロペンタジエニル)チタンジクロライド、
【0046】
ジメチルシリレンビス(インデニル)チタンジクロライド、ジメチルシリレンビス(2−メチルインデニル)チタンジクロライド、ジメチルシリレンビス(2−tert−ブチルインデニル)チタンジクロライド、ジメチルシリレンビス(2,3−ジメチルインデニル)チタンジクロライド、ジメチルシリレンビス(2,4,7−トリメチルインデニル)チタンジクロライド、ジメチルシリレンビス(2−メチル−4−イソプロピルインデニル)チタンジクロライド、ジメチルシリレンビス(4,5−ベンズインデニル)チタンジクロライド、ジメチルシリレンビス(2−メチル−4,5−ベンズインデニル)チタンジクロライド、ジメチルシリレンビス(2−フェニルインデニル)チタンジクロライド、ジメチルシリレンビス(4−フェニルインデニル)チタンジクロライド、ジメチルシリレンビス(2−メチル−4−フェニルインデニル)チタンジクロライド、ジメチルシリレンビス(2−メチル−5−フェニルインデニル)チタンジクロライド、ジメチルシリレンビス(2−メチル−4−ナフチルインデニル)チタンジクロライド、ジメチルシリレンビス(4,5,6,7−テトラヒドロインデニル)チタンジクロライド、
【0047】
ジメチルシリレン(シクロペンタジエニル)(インデニル)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(インデニル)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(インデニル)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(インデニル)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(フルオレニル)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(フルオレニル)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(フルオレニル)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(インデニル)チタンジクロライド、ジメチルシリレン(インデニル)(フルオレニル)チタンジクロライド、ジメチルシリレンビス(フルオレニル)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(テトラメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(フルオレニル)チタンジクロライド、
【0048】
シクロペンタジエニルチタントリクロライド、ペンタメチルシクロペンタジエニルチタントリクロライド、シクロペンタジエニル(ジメチルアミド)チタンジクロライド、シクロペンタジエニル(フェノキシ)チタンジクロライド、シクロペンタジエニル(2,6−ジメチルフェニル)チタンジクロライド、シクロペンタジエニル(2,6−ジイソプロピルフェニル)チタンジクロライド、シクロペンタジエニル(2,6−ジ−tert−ブチルフェニル)チタンジクロライド、ペンタメチルシクロペンタジエニル(2,6−ジメチルフェニル)チタンジクロライド、ペンタメチルシクロペンタジエニル(2,6−ジイソプロピルフェニル)チタンジクロライド、ペンタメチルシクロペンタジエニル(2,6−tert−ブチルフェニル)チタンジクロライド、インデニル(2,6−ジイソプロピルフェニル)チタンジクロライド、フルオレニル(2,6−ジイソプロピルフェニル)チタンジクロライド、
【0049】
ジメチルシリレン(シクロペンタジエニル)(2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3,5−ジメチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3,5−ジ−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(5−メチル−3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3−tert−ブチルジメチルシリル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(5−メチル−3−トリメチルシリル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3−tert−ブチル−5−メトキシ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3−tert−ブチル−5−クロロ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3,5−ジアミル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(1−ナフトキシ−2−イル)チタンジクロライド、
【0050】
ジメチルシリレン(メチルシクロペンタジエニル)(2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3,5−ジメチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3,5−ジ−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(5−メチル−3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3−tert−ブチルジメチルシリル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(5−メチル−3−トリメチルシリル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3−tert−ブチル−5−メトキシ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3−tert−ブチル−5−クロロ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3,5−ジアミル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(1−ナフトキシ−2−イル)チタンジクロライド、
【0051】
ジメチルシリレン(n−ブチルシクロペンタジエニル)(2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3,5−ジメチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3,5−ジ−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(5−メチル−3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3−tert−ブチルジメチルシリル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(5−メチル−3−トリメチルシリル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3−tert−ブチル−5−メトキシ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3−tert−ブチル−5−クロロ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3,5−ジアミル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(1−ナフトキシ−2−イル)チタンジクロライド、
【0052】
ジメチルシリレン(tert−ブチルシクロペンタジエニル)(2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3,5−ジメチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3,5−ジ−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(5−メチル−3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3−tert−ブチルジメチルシリル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(5−メチル−3−トリメチルシリル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3−tert−ブチル−5−メトキシ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3−tert−ブチル−5−クロロ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3,5−ジアミル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(1−ナフトキシ−2−イル)チタンジクロライド、
【0053】
ジメチルシリレン(テトラメチルシクロペンタジエニル)(2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3,5−ジメチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3,5−ジ−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(5−メチル−3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3−tert−ブチルジメチルシリル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(5−メチル−3−トリメチルシリル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3−tert−ブチル−5−メトキシ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3−tert−ブチル−5−クロロ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3,5−ジアミル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(1−ナフトキシ−2−イル)チタンジクロライド、
【0054】
ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3,5−ジメチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3,5−ジ−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(5−メチル−3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3−tert−ブチルジメチルシリル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(5−メチル−3−トリメチルシリル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3−tert−ブチル−5−メトキシ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3−tert−ブチル−5−クロロ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3,5−ジアミル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(1−ナフトキシ−2−イル)チタンジクロライド、
【0055】
ジメチルシリレン(インデニル)(2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3,5−ジメチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3,5−ジ−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(5−メチル−3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3−tert−ブチルジメチルシリル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(5−メチル−3−トリメチルシリル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3−tert−ブチル−5−メトキシ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3−tert−ブチル−5−クロロ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3,5−ジアミル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(1−ナフトキシ−2−イル)チタンジクロライド、
【0056】
ジメチルシリレン(フルオレニル)(2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3,5−ジメチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3,5−ジ−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(5−メチル−3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3−tert−ブチルジメチルシリル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(5−メチル−3−トリメチルシリル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3−tert−ブチル−5−メトキシ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3−tert−ブチル−5−クロロ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3,5−ジアミル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(1−ナフトキシ−2−イル)チタンジクロライド、
【0057】
(tert−ブチルアミド)テトラメチルシクロペンタジエニル−1,2−エタンジイルチタンジクロライド、(メチルアミド)テトラメチルシクロペンタジエニル−1,2−エタンジイルチタンジクロライド、(エチルアミド)テトラメチルシクロペンタジエニル−1,2−エタンジイルチタンジクロライド、(tert−ブチルアミド)テトラメチルシクロペンタジエニルジメチルシランチタンジクロライド、(ベンジルアミド)テトラメチルシクロペンタジエニルジメチルシランチタンジクロライド、(フェニルフォスファイド)テトラメチルシクロペンタジエニルジメチルシランチタンジクロライド、(tert−ブチルアミド)インデニル−1,2−エタンジイルチタンジクロライド、(tert−ブチルアミド)テトラヒドロインデニル−1,2−エタンジイルチタンジクロライド、(tert−ブチルアミド)フルオレニル−1,2−エタンジイルチタンジクロライド、(tert−ブチルアミド)インデニルジメチルシランチタンジクロライド、(tert−ブチルアミド)テトラヒドロインデニルジメチルシランチタンジクロライド、(tert−ブチルアミド)フルオレニルジメチルシランチタンジクロライド、
【0058】
(ジメチルアミノメチル)テトラメチルシクロペンタジエニルチタン(III)ジクロライド、(ジメチルアミノエチル)テトラメチルシクロペンタジエニルチタン(III)ジクロライド、(ジメチルアミノプロピル)テトラメチルシクロペンタジエニルチタン(III)ジクロライド、(N−ピロリジニルエチル)テトラメチルシクロペンタジエニルチタンジクロライド、(B−ジメチルアミノボラベンゼン)シクロペンタジエニルチタンジクロライド、シクロペンタジエニル(9−メシチルボラアントラセニル)チタンジクロライド、などや、これらの化合物のチタンをジルコニウムまたはハフニウムに変更した化合物、(2−フェノキシ)を(3−フェニル−2−フェノキシ)、(3−トリメチルシリル−2−フェノキシ)、または(3−tert−ブチルジメチルシリル−2−フェノキシ)に変更した化合物、ジメチルシリレンをメチレン、エチレン、ジメチルメチレン(イソプロピリデン)、ジフェニルメチレン、ジエチルシリレン、ジフェニルシリレン、またはジメトキシシリレンに変更した化合物、ジクロライドをジフルオライド、ジブロマイド、ジアイオダイド、ジメチル、ジエチル、ジイソプロピル、ジフェニル、ジベンジル、ジメトキシド、ジエトキシド、ジ(n−プロポキシド)、ジ(イソプロポキシド)、ジフェノキシド、またはジ(ペンタフルオロフェノキシド)に変更した化合物、トリクロライドをトリフルオライド、トリブロマイド、トリアイオダイド、トリメチル、トリエチル、トリイソプロピル、トリフェニル、トリベンジル、トリメトキシド、トリエトキシド、トリ(n−プロポキシド)、トリ(イソプロポキシド)、トリフェノキシド、またはトリ(ペンタフルオロフェノキシド)に変更した化合物などを例示することができる。
【0059】
また一般式[1]で表される遷移金属化合物のμ−オキソタイプの遷移金属化合物の具体例としては、μ−オキソビス[イソプロピリデン(シクロペンタジエニル)(2−フェノキシ)チタンクロライド]、μ−オキソビス[イソプロピリデン(シクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンクロライド]、μ−オキソビス[イソプロピリデン(メチルシクロペンタジエニル)(2−フェノキシ)チタンクロライド]、μ−オキソビス[イソプロピリデン(メチルシクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンクロライド]、μ−オキソビス[イソプロピリデン(テトラメチルシクロペンタジエニル)(2−フェノキシ)チタンクロライド]、μ−オキソビス[イソプロピリデン(テトラメチルシクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンクロライド]、μ−オキソビス[ジメチルシリレン(シクロペンタジエニル)(2−フェノキシ)チタンクロライド]、μ−オキソビス[ジメチルシリレン(シクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンクロライド]、μ−オキソビス[ジメチルシリレン(メチルシクロペンタジエニル)(2−フェノキシ)チタンクロライド]、μ−オキソビス[ジメチルシリレン(メチルシクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンクロライド]、μ−オキソビス[ジメチルシリレン(テトラメチルシクロペンタジエニル)(2−フェノキシ)チタンクロライド]、μ−オキソビス[ジメチルシリレン(テトラメチルシクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンクロライド]などが挙げられる。また、これらの化合物のクロライドをフルオライド、ブロマイド、アイオダイド、メチル、エチル、イソプロピル、フェニル、ベンジル、メトキシド、エトキシド、n−プロポキシド、イソプロポキシド、フェノキシド、またはペンタフルオロフェノキシドに変更した化合物などを例示することができる。
【0060】
本発明のエチレン−α−オレフィン共重合体の製造方法としては、特に好適には、下記の助触媒成分(I)が担持されてなる助触媒担体(A)と、アルキレン基やシリレン基等の架橋基で2つのシクロペンタジエニル型アニオン骨格が結合した構造を持つ配位子を有するメタロセン系錯体(B)と、有機アルミニウム化合物(C)とを接触させてなる重合触媒の存在下、エチレンとα−オレフィンとを共重合する方法をあげることができる。
【0061】
[助触媒担体(A)]
成分(a)ジエチル亜鉛、成分(b)2種類のフッ素化フェノール、成分(c)水、成分(d)無機微粒子状担体および成分(e)トリメチルジシラザン(((CH33Si)2NH)を接触させて得られる担体。
【0062】
成分(b)のフッ素化フェノールとしては、ペンタフルオロフェノール、3,5−ジフルオロフェノール、3,4,5−トリフルオロフェノール、2,4,6−トリフルオロフェノール等をあげることができる。エチレン−α−オレフィン共重合体の流動活性化エネルギー(Ea)を高める観点から、フッ素数の異なる2種類のフッ素化フェノールを用いることが好ましく、例えば、ペンタフルオロフェノール/3,4,5−トリフルオロフェノール、ペンタフルオロフェノール/2,4,6−トリフルオロフェノール、ペンタフルオロフェノール/3,5−ジフルオロフェノールなどの組み合せがあげられ、好ましくはペンタフルオロフェノール/3,4,5−トリフルオロフェノールの組み合せである。フッ素数が多いフッ素化フェノールとフッ素数が少ないフッ素化フェノールとのモル比としては、通常、10/90〜90/10である。得られるエチレン−α−オレフィン共重合体の分子量分布を大きくする観点からは、該モル比は大きい方が好ましく、50/50以上が好ましい。
【0063】
成分(d)の無機微粒子状担体としては、好ましくはシリカゲルである。
【0064】
成分(a)ジエチル亜鉛、成分(b)2種類のフッ素化フェノール、成分(c)水の各成分の使用量は特に制限はないが、各成分の使用量のモル比率を成分(a)ジエチル亜鉛:成分(b)2種類のフッ素化フェノール:成分(c)水=1:x:yのモル比率とすると、xおよびyが下記式を満足することが好ましい。
|2−x−2y|≦1
上記式のxとしては、好ましくは0.01〜1.99の数であり、より好ましくは0.10〜1.80の数であり、さらに好ましくは0.20〜1.50の数であり、最も好ましくは0.30〜1.00の数である。
【0065】
また、成分(a)ジエチル亜鉛に対して使用する成分(d)無機微粒子状担体の量としては、成分(a)ジエチル亜鉛と成分(d)無機微粒子状担体との接触により得られる粒子に含まれる成分(a)ジエチル亜鉛に由来する亜鉛原子が、得られる粒子1gに含まれる亜鉛原子のモル数にして、0.1mmol以上となる量であることが好ましく、0.5〜20mmolとなる量であることがより好ましい。成分(d)無機微粒子状担体に対して使用する成分(e)トリメチルジシラザンの量としては、成分(d)無機微粒子状担体1gにつき成分(e)トリメチルジシラザン0.1mmol以上となる量であることが好ましく、0.5〜20mmolとなる量であることがより好ましい。
【0066】
アルキレン基やシリレン基等の架橋基で2つのシクロペンタジエニル型アニオン骨格が結合した構造を持つ配位子を有するメタロセン系錯体(B)の金属原子としては、周期律表第IV属原子が好ましく、ジルコニウム、ハフニウムがより好ましい。また、配位子としては、インデニル基、メチルインデニル基、メチルシクロペンタジエニル基、ジメチルシクロペンタジエニル基が好ましく、架橋基としては、エチレン基、ジメチルメチレン基、ジメチルシリレン基が好ましい。更には、金属原子が有する残りの置換基としては、ジフェノキシ基やジアルコキシ基が好ましい。メタロセン系錯体(B)として好ましくは、エチレンビス(1−インデニル)ジルコニウムジフェノキシドをあげることができる。
【0067】
有機アルミニウム化合物(C)としては、トリメチルアルミニウム、トリエチルアルミニウム、トリブチルアルミニウムトリイソブチルアルミニウム、トリノルマルオクチルアルミニウムなどがあげられ、好ましくはトリイソブチルアルミニウム、トリノルマルオクチルアルミニウムである。
【0068】
メタロセン系錯体(B)の使用量は、助触媒担体(A)1gに対し、好ましくは5×10-6〜5×10-4molである。また有機アルミニウム化合物(C)の使用量として、好ましくは、メタロセン系錯体(B)の金属原子モル数に対する有機アルミニウム化合物(C)のアルミニウム原子のモル数の比(Al/M)で表して、1〜2000である。
【0069】
上記の助触媒担体(A)とメタロセン系錯体(B)と有機アルミニウム化合物(C)とを接触させてなる重合触媒においては、必要に応じて、助触媒担体(A)とメタロセン系錯体(B)と有機アルミニウム化合物(C)とに、電子供与性化合物(D)を接触させてなる重合触媒としてもよい。該電子供与性化合物(D)として、好ましくはトリエチルアミン、トリノルマルオクチルアミンをあげることができる。
【0070】
得られるエチレン−α−オレフィン共重合体の分子量分布を大きくする観点からは、電子供与性化合物(D)を使用することが好ましく、電子供与性化合物(D)の使用量としては、有機アルミニウム化合物(C)のアルミニウム原子のモル数に対して、0.1mol%以上であることがより好ましく、1mol%以上であることが更に好ましい。なお、該使用量は、重合活性を高める観点から、好ましくは10mol%以下であり、より好ましくは5mol%以下である。
【0071】
本発明のエチレン−α−オレフィン共重合体の製造方法としては、微粒子状担体に助触媒成分(I)が担持されてなる固体助触媒成分を用いて、少量のオレフィンを重合(以下、予備重合と称する。)して得られた予備重合固体触媒成分、例えば、固体助触媒成分とメタロセン系錯体とアルキル化剤(有機アルミニウム化合物など。)とを用いて少量のオレフィンを重合して得られた予備重合固体触媒成分を、触媒成分または触媒として用いて、エチレンとα−オレフィンとを共重合する方法が好ましい。
【0072】
該アルキル化剤に用いられる有機アルミニウム化合物としては、トリメチルアルミニウム、トリエチルアルミニウム、トリブチルアルミニウムトリイソブチルアルミニウム、トリノルマルオクチルアルミニウムなどがあげられ、好ましくはトリイソブチルアルミニウム、トリノルマルオクチルアルミニウムである。
【0073】
予備重合で用いられるオレフィンとしては、エチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、4−メチル−1−ペンテン、シクロペンテン、シクロヘキセンなどをあげることができる。これらは1種または2種以上組み合わせて用いることができ、得られるエチレン−α−オレフィン共重合体の微小欠陥数を小さくする観点から、好ましくは、エチレンを単独で、あるいはエチレン以外のオレフィンとエチレンとを組み合わせて、より好ましくは、エチレンを単独で用いられる。
【0074】
予備重合固体触媒成分中の予備重合された重合体の極限粘度([η];単位はdl/gである。)は、得られるエチレン−α−オレフィン共重合体の微小欠陥数を小さくする観点から、好ましくは1.2dl/g以上であり、より好ましくは1.4dl/g以上であり、さらに好ましくは1.6dl/g以上であり、最も好ましくは1.7dl/g以上である。また、該極限粘度は、得られるエチレン−α−オレフィン共重合体のフィッシュアイを低減する観点から、好ましくは2dl/g以下である。該極限粘度を特定の範囲にする方法としては、予備重合において、水素等の分子量調節剤の濃度を調節する方法があげられ、(1)多段階の予備重合を行い、第一段階目の予備重合で、水素濃度ゼロないし低水素濃度で予備重合を開始し、第一段階目で目的とする極限粘度よりも高い極限粘度の重合体を製造した後、高水素濃度で予備重合の第二段階目以降を実施して、第二段階目以降で目的とする極限粘度よりも低い極限粘度の重合体を製造し、予備重合された重合体全体としては、目的とする値の極限粘度を有する重合体となるように、水素濃度を調節する方法、(2)目的とする値の極限粘度を有する重合体となるように、予備重合中の水素濃度を所定の濃度に保つ方法、などがあげられる。得られるエチレン−α−オレフィン共重合体の微小欠陥数を小さくする観点から、(1)の方法が好ましい。
【0075】
予備重合固体触媒成分中の予備重合された重合体すなわち予備重合体の量は、固体助触媒成分1g当り、好ましくは0.1g以上であり、より好ましくは0.5g以上であり、更に好ましくは1g以上である。また、該予備重合体の量は、好ましくは1000g以下であり、より好ましくは500g以下であり、更に好ましくは200g以下である。
【0076】
予備重合体の結晶融解熱量は、好ましくは160J/g以上であり、より好ましくは180J/g以上である。このような重合体としては、たとえはエチレンに基づく単量体単位を主単位とする重合体(エチレン系重合体)では、通常、エチレンに基づく単量体単位の含有量が96重量%以上であるエチレン系重合体があげられる。
【0077】
得られるエチレン−α−オレフィン共重合体の微小欠陥数を小さくする観点から、予備重合では、極限粘度が2dl/g以上の予備重合体成分を、固体助触媒成分1g当り、予備重合の開始から0.1g以上製造することが好ましく、0.5g以上製造することがより好ましい。また、該予備重合体成分の製造量は、好ましくは5g以下であり、より好ましくは2g以下であり、更に好ましくは1g以下である。
【0078】
該予備重合体成分の極限粘度は、得られるエチレン−α−オレフィン共重合体の微小欠陥数を小さくする観点から、好ましくは2dl/g以上でる。また、該予備重合体成分の極限粘度は、得られるエチレン−α−オレフィン共重合体のフィッシュアイを低減する観点から、好ましくは4dl/g以下であり、より好ましくは3.5dl/g以下である。
【0079】
予備重合方法としては、連続重合法でもバッチ重合法でもよく、例えば、バッチ式スラリー重合法、連続式スラリー重合法、連続気相重合法である。予備重合を行う重合反応槽に、固体助触媒成分、メタロセン系錯体、アルキル化剤(有機アルミニウム化合物など。
)などの各触媒成分を投入する方法としては、通常、窒素、アルゴン等の不活性ガス、水素、エチレン等を用いて、水分のない状態で投入する方法、各成分を溶媒に溶解または稀釈して、溶液またはスラリー状態で投入する方法が用いられる。また、各触媒成分を重合反応槽に投入する方法としては、得られるエチレン−α−オレフィン共重合体の微小欠陥数を小さくする観点から、固体助触媒成分とメタロセン系錯体との接触処理物にアルキル化剤を接触処理してなる接触処理物が予備重合触媒となるように各触媒成分を投入することが好ましく、例えば、(1)固体助触媒成分とメタロセン系錯体とを重合反応槽に投入した後、アルキル化剤を重合反応槽に投入する方法、(2)固体助触媒成分とメタロセン系錯体とを予め接触させ、該接触により得られた接触処理物を重合反応槽に投入し、次いで、アルキル化剤を重合反応槽に投入する方法、(3)固体助触媒成分とメタロセン系錯体とを予め接触させ、該接触により得られた接触処理物を、既にアルキル化剤が投入されている重合反応槽に投入する方法、(4)固体助触媒成分とメタロセン系錯体とを接触させた後に、該接触により得られた接触処理物にアルキル化剤を接触させて、固体助触媒成分とメタロセン系錯体とアルキル化剤との接触処理物を予め調製し、次に、該接触処理物を重合反応槽に投入する方法、などがあげられる。また、予備重合での重合温度は、通常、予備重合された重合体の融点よりも低い温度であり、好ましくは0〜100℃であり、より好ましくは10〜70℃である。
【0080】
予備重合をスラリー重合法で行う場合、溶媒としては、炭素原子数20以下の炭化水素があげられる。例えば、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ノルマルヘキサン、シクロヘキサン、ヘプタン、オクタン、デカン等の飽和脂肪族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素があげられ、これらは単独あるいは2種以上組み合わせて用いられる。
【0081】
エチレン−α−オレフィン共重合体の製造方法としては、エチレン−α−オレフィン共重合体の粒子の形成を伴う連続重合方法が好ましく、例えば、連続気相重合法、連続スラリー重合法、連続バルク重合法であり、好ましくは、連続気相重合法である。該重合法に用いられる気相重合反応装置としては、通常、流動層型反応槽を有する装置であり、好ましくは、拡大部を有する流動層型反応槽を有する装置である。反応槽内に撹拌翼が設置されていてもよい。
【0082】
予備重合された予備重合固体触媒成分をエチレン−α−オレフィン共重合体の粒子の形成を伴う連続重合反応槽に供給する方法としては、通常、窒素、アルゴン等の不活性ガス、水素、エチレン等を用いて、水分のない状態で供給する方法、各成分を溶媒に溶解または稀釈して、溶液またはスラリー状態で供給する方法が用いられる。
【0083】
エチレン−α−オレフィン共重合体の粒子の形成を伴う連続重合の重合温度としては、通常、エチレン−α−オレフィン共重合体が溶融する温度未満であり、好ましくは0〜150℃であり、より好ましくは30〜100℃である。得られる成形体の光沢をより高める観点からは90℃よりも低温の具体的には70℃〜87℃の範囲が好ましい。また、エチレン−α−オレフィン共重合体の溶融流動性を調節する目的で、水素を分子量調節剤として添加してもよい。そして、混合ガス中に不活性ガスを共存させてもよい。なお、予備重合固体触媒成分を用いる場合、適宜、有機アルミニウム化合物等の助触媒成分を用いてもよい。
【0084】
本発明のエチレン−α−オレフィン共重合体は、必要に応じて、公知の添加剤を含有させてもよい。添加剤としては、例えば、酸化防止剤、耐候剤、滑剤、抗ブロッキング剤、帯電防止剤、防曇剤、無滴剤、顔料、フィラー等があげられる。
【0085】
本発明でのエチレン−α−オレフィン共重合体は、公知の成形方法、例えば、インフレーションフィルム成形加工法やTダイフィルム成形加工法などの押出成形法、射出成形法、圧縮成形法などにより、各種成形体(フィルム、シート、ボトル、トレー等)に成形される。成形加工方法としては、押出成形法が好適に用いられ、得られる押出成形体は、食品包装や表面保護などの種々の用途に用いられる。
【実施例】
【0086】
以下、実施例および比較例により本発明を説明する。
実施例および比較例での物性は、次の方法に従って測定した。
【0087】
[重合体の物性]
(1)メルトフローレート(MFR、単位:g/10分)
JIS K7210−1995に規定された方法において、荷重21.18N、温度190℃の条件で、A法により測定した。
【0088】
(2)メルトフローレート比(MFRR)
JIS K7210−1995に規定された方法において、試験荷重211.82N、測定温度190℃の条件で測定されるメルトフローレート(MFR−H、単位:g/10分)を、JIS K7210−1995に規定された方法において、荷重21.18Nおよび温度190℃の条件で測定されるメルトフローレート(MFR)で除した値を、MFRRとした。
【0089】
(3)密度(単位:Kg/m3
JIS K7112−1980のうち、A法に規定された方法に従って測定した。なお、試料には、JIS K6760−1995に記載のアニーリングを行った。
【0090】
(4)流動の活性化エネルギー(Ea、単位:kJ/mol)
粘弾性測定装置(Rheometrics社製Rheometrics Mechanical Spectrometer RMS−800)を用いて、下記測定条件で130℃、150℃、170℃および190℃での溶融複素粘度−角周波数曲線を測定し、次に、得られた溶融複素粘度−角周波数曲線から、Rheometrics社製計算ソフトウェア Rhios V.4.4.4を用いて、190℃での溶融複素粘度−角周波数曲線のマスターカーブを作成し、活性化エネルギー(Ea)を求めた。
<測定条件>
ジオメトリー:パラレルプレート
プレート直径:25mm
プレート間隔:1.5〜2mm
ストレイン :5%
角周波数 :0.1〜100rad/秒
測定雰囲気 :窒素
【0091】
(5)分子量分布(Mw/Mn)
ゲル・パーミエイション・クロマトグラフ(GPC)法を用いて、下記の条件(1)〜(8)により、重量平均分子量(Mw)と数平均分子量(Mn)を測定し、分子量分布(Mw/Mn)を求めた。クロマトグラム上のベースラインは、試料溶出ピークが出現するよりも十分に保持時間が短い安定した水平な領域の点と、溶媒溶出ピークが観測されたよりも十分に保持時間が長い安定した水平な領域の点とを結んでできる直線とした。
(1)装置:Water製Waters150C
(2)分離カラム:TOSOH TSKgelGMH6−HT
(3)測定温度:140℃
(4)キャリア:オルトジクロロベンゼン
(5)流量:1.0mL/分
(6)注入量:500μL
(7)検出器:示差屈折
(8)分子量標準物質:標準ポリスチレン
【0092】
(6)極限粘度([η]、単位:dl/g)
2,6−ジ−t−ブチル−p−クレゾール(BHT)を0.5g/Lの濃度で溶解したテトラリン溶液(以下、ブランク溶液と称する。)と、エチレン−α−オレフィン共重合体を濃度が1mg/mlとなるようにブランク溶液に溶解した溶液(以下、サンプル溶液と称する。)とを調整し、ウベローデ型粘度計により、ブランク溶液とサンプル溶液の135℃での降下時間を測定し、該降下時間から135℃での相対粘度(ηrel)を求めた後、下記式から算出した。
[η]=23.3×log(ηrel)
【0093】
(7)結晶融解熱量(単位:J/g)
示差走査型熱量計(入力補償型 PERKIN−ELMER社製 PYRIS Diamond DSC)を用いて、サンプル8〜10mgを150℃まで昇温して融解させた後に、1分間に5℃の速度で40℃まで降温して、状態調整を行い、その後、1分間に5℃の速度で150℃まで昇温し、この昇温でのサーモグラフから、単位質量あたりの結晶融解熱量を測定した。
【0094】
(8)第2段階の予備重合工程で生成した重合体成分の極限粘度(単位:dl/g)
第2段階の予備重合工程で生成した重合体成分の極限粘度は、下記式より算出した。
[η]2=([η]T−[η]1×W1/(W1+W2))×(W1+W2)/W2
[η]1:第1段階の予備重合工程で生成した重合体の極限粘度(dl/g)
[η]2:第2段階の予備重合工程で生成した重合体の極限粘度(dl/g)
[η]T:第1および2段階の予備重合工程で生成した重合体の極限粘度
(dl/g)
W1 :第1段階の予備重合工程で生成した重合体成分量(重量%)
W2 :第2段階の予備重合工程で生成した重合体成分量(重量%)
【0095】
(9)微小欠陥数(単位:個/m2
住友重機モダン株式会社製インフレーションフィルム成形機(フルフライトタイプスクリューの単軸押出機(径40mmφ、L/D=26)、サーキュラーダイス(ダイ径75mmφ、リップギャップ1mm))を用い、加工温度170℃、押出量12.5kg/hr、ブロー比1.8の加工条件で厚み30μのインフレーションフィルムを成形した。次に、得られたインフレーションフィルムから、縦30cm×横20cmの大きさの試験片を5枚サンプリングし、試験片それぞれについて、デジタル欠陥検査装置(マミヤオーピー社製GX70LT)を用いて、75μm×70μmから225μm×214μmまでの大きさの暗欠陥の数を下記条件で測定し、試験片1m2あたりの暗欠陥の数として表した。
(1)検出閾値 :30以上
(2)検出禁止閾値 :24以上
(3)光源ゲイン :1.0
(4)読み取り速度 :30m/分
(5)検出下限サイズ:縦4画素、横2画素
(6)平均透過光量 :100
(7)測定範囲 :縦12cm×横16.35cm
【0096】
[成形性]
(10)樹脂圧力(単位:MPa)
プラコー社製インフレーションフィルム成形機(フルフライトタイプスクリューの単軸押出機(径30mmφ、L/D=28)、ダイス(ダイ径50mmφ、リップギャップ0.8mm)、二重スリットエアリング)を用い、加工温度170℃、押出量5.5kg/hr、フロストラインディスタンス(FLD)200mm、ブロー比1.8の加工条件で厚み50μのインフレーションフィルムを成形する際の押出機の樹脂圧力を測定した。該樹脂圧力が低いほど、成形性に優れる。
【0097】
[フィルムの物性]
(11)ちらつき感
上記で得た厚み50μのインフレーションフィルムを蛍光灯にかざし、蛍光灯の光によるフィルムのちらつきの状態を、目視にて次の通り評価した。
○:ちらつき感が極めて少ない。
×:ちらつき感が多い。
【0098】
実施例1
(1)助触媒担体の調製
窒素置換した撹拌機を備えた反応器に、窒素流通下で300℃において加熱処理したシリカ(デビソン社製 Sylopol948;50%体積平均粒子径=55μm;細孔容量=1.67ml/g;比表面積=325m2/g)2.8kgとトルエン24kgとを入れて、撹拌した。その後、5℃に冷却した後、1,1,1,3,3,3−ヘキサメチルジシラザン0.91kgとトルエン1.43kgとの混合溶液を反応器の温度を5℃に保ちながら33分間で滴下した。滴下終了後、5℃で1時間撹拌し、次に95℃に昇温し、95℃で3時間撹拌し、ろ過した。得られた固体生成物をトルエン21kgで6回、洗浄を行った。その後、トルエン6.9kgを加えスラリーとし、一晩静置した。
【0099】
上記で得られたスラリーに、ジエチル亜鉛のヘキサン溶液(ジエチル亜鉛濃度:50重量%)2.05kgとヘキサン1.3kgとを投入し、撹拌した。その後、5℃に冷却した後、ペンタフルオロフェノール0.77kgとトルエン1.17kgとの混合溶液を、反応器の温度を5℃に保ちながら61分間で滴下した。滴下終了後、5℃で1時間撹拌し、次に40℃に昇温し、40℃で1時間撹拌した。その後、5℃に冷却し、H2O0.11kgを反応器の温度を5℃に保ちながら1.5時間で滴下した。滴下終了後、5℃で1.5時間撹拌し、次に55℃に昇温し、55℃で2時間撹拌した。その後、室温にてジエチル亜鉛のヘキサン溶液(ジエチル亜鉛濃度:50重量%)1.4kgとヘキサン0.8kgとを投入した。5℃に冷却した後、3,4,5−トリフルオロフェノール0.42kgとトルエン0.77kgとの混合溶液を、反応器の温度を5℃に保ちながら60分間で滴下した。滴下終了後、5℃で1時間撹拌し、次に40℃に昇温し、40℃で1時間撹拌した。その後、5℃に冷却し、H2O0.077kgを反応器の温度を5℃に保ちながら1.5時間で滴下した。滴下終了後、5℃で1.5時間撹拌し、次に40℃に昇温し、40℃で2時間撹拌し、更に80℃に昇温し、80℃で2時間撹拌した。撹拌後、室温にて、残量16Lまで上澄み液を抜き出し、トルエン11.6kgを投入し、次に、95℃に昇温し、4時間撹拌した。撹拌後、室温にて、上澄み液を抜き出し、固体生成物を得た。
得られた固体生成物をトルエン20.8kgで4回、ヘキサン24リットルで3回、洗浄を行った。その後、乾燥することにより、固体成分(以下、助触媒担体(a)と称する。
)を得た。
【0100】
(2)予備重合触媒成分の調製
予め窒素置換した内容積210リットルの撹拌機付きオートクレーブに、ブタン80リットルを投入した後、ラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド106mmolを投入し、オートクレーブを50℃まで昇温して撹拌を2時間行った。次に上記助触媒担体(a)0.7kgを投入し、オートクレーブを30℃まで降温して系内が安定した後、エチレンをオートクレーブ内のガス相圧力で0.03MPa分仕込み、続いてトリイソブチルアルミニウム158mmolを投入して重合を開始した。エチレンを0.7kg/Hrで連続供給しながら30分経過した後、51℃へ昇温するとともに、エチレンと水素をそれぞれ3.5kg/Hrと5.5リットル(常温常圧体積)/Hrで連続供給することによって合計4時間の予備重合を実施した。重合終了後、エチレン、ブタン、水素などをパージして残った固体を室温にて真空乾燥し、助触媒担体(a)1g当り15gのポリエチレンを含有する予備重合触媒成分を得た。該ポリエチレンの[η]は1.75dl/gであり、融解熱量は190J/gであった。
また、予備重合において、トリイソブチルアルミニウム投入後、30分経過した時点で反応器底部から少量のサンプリングを行った。サンプリングした予備重合触媒成分中のポリエチレンの予備重合量は、助触媒担体(a)1g当り0.6gであり、該ポリエチレンの[η]は3.0dl/gであった。トリイソブチルアルミニウム投入後、30分経過した時点以降に生成したポリエチレンの[η]を算出したところ、1.7dl/gであった。
【0101】
(3)エチレン−α−オレフィン共重合体の製造
上記で得た予備重合触媒成分を用い、連続式流動床気相重合装置でエチレンと1−ヘキセンの共重合を実施し、重合体パウダーを得た。重合条件としては、重合温度を87℃、重合圧力を2MPa、エチレンに対する水素モル比を1.4%、エチレンと1−ヘキセンとの合計に対する1−ヘキセンモル比を0.7%とした。重合中はガス組成を一定に維持するためにエチレン、1−ヘキセン、水素を連続的に供給した。また、上記予備重合触媒成分とトリイソブチルアルミニウム、およびトリエチルアミン(トリイソブチルアルミニウムに対するモル比3%)を連続的に供給し、流動床の総パウダー重量80kgを一定に維持した。平均重合時間4hrであった。得られた重合体パウダーに酸化防止剤(住友化学社製 スミライザーGP)750ppmをブレンドし、押出機(神戸製鋼所社製 LCM50)を用いて、フィード速度50kg/hr、スクリュー回転数450rpm、ゲート開度50%、サクション圧力0.1MPa、樹脂温度200〜230℃の条件で造粒することによりエチレン−1−ヘキセン共重合体を得た。得られたエチレン−1−ヘキセン共重合体の物性評価の結果を表1に示した。
【0102】
実施例2
(1)予備重合触媒成分の調製
予め窒素置換した内容積210リットルの撹拌機付きオートクレーブに、ブタン80リットルを投入した後、ラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド108mmolを投入し、オートクレーブを50℃まで昇温して撹拌を2時間行った。次にオートクレーブを30℃まで降温して系内が安定した後、エチレンをオートクレーブ内のガス相圧力で0.03MPa分仕込み、実施例1の(1)助触媒担体の調製で得た助触媒担体(a)0.7kgを投入し、続いてトリイソブチルアルミニウム158mmolを投入して重合を開始した。エチレンを0.7kg/Hrで連続供給しながら30分経過した後、50℃へ昇温するとともに、エチレンと水素をそれぞれ3.5kg/Hrと7リットル(常温常圧体積)/Hrで連続供給することによって合計4時間の予備重合を実施した。重合終了後、エチレン、ブタン、水素ガスなどをパージして残った固体を室温にて真空乾燥し、助触媒担体(a)1g当り16gのポリエチレンを含有する予備重合触媒成分を得た。ポリエチレンの[η]は1.64dl/gであった。
【0103】
(2)エチレン−α−オレフィン共重合体の製造
上記で得た予備重合触媒成分を用い、エチレンに対する水素モル比を1.5%、エチレンと1−ヘキセンとの合計に対する1−ヘキセンモル比を1.1%に変更した以外は実施例1と同様にして、連続式流動床気相重合装置でエチレンと1−ヘキセンの共重合を実施し、実施例1と同様にして造粒してエチレン−1−ヘキセン共重合体を得た。得られたエチレン−1−ヘキセン共重合体の物性評価の結果を表1に示した。
【0104】
実施例3
(1)予備重合触媒成分の調製
ラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシドを73mmol、トリイソブチルアルミニウムを210mmolに変更した以外は、実施例2の(1)予備重合触媒成分の調製と同様にして予備重合を行い、助触媒担体(a)1g当り14gのポリエチレンを含有する予備重合触媒成分を得た。ポリエチレンの[η]は1.53dl/gであった。
【0105】
(2)エチレン−α−オレフィン共重合体の製造
上記で得た予備重合触媒成分を用い、エチレンに対する水素モル比を1.2%、エチレンと1−ヘキセンとの合計に対する1−ヘキセンモル比を1%に変更した以外は実施例1と同様にして、連続式流動床気相重合装置でエチレンと1−ヘキセンの共重合を実施し、実施例1と同様にして造粒してエチレン−1−ヘキセン共重合体を得た。得られたエチレン−1−ヘキセン共重合体の物性評価の結果を表1に示した。
【0106】
比較例1
(1)予備重合触媒成分の調製
予め窒素置換した内容積210リットルの撹拌機付きオートクレーブに、実施例1の(1)助触媒担体の調製で得た助触媒担体(a)0.7kgを投入し、水素3リットル(常温常圧体積)と、ブタン80リットルとを仕込んだ後、オートクレーブを30℃まで昇温した。さらにエチレンをオートクレーブ内のガス相圧力で0.03MPa分仕込み、系内が安定した後、トリイソブチルアルミニウム210mmolとラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド70mmolを投入して重合を開始した。31℃へ昇温するとともに、エチレンと水素をそれぞれ0.4kg/Hrと3.2リットル(常温常圧体積)/Hrで連続供給しながら30分経過した後、さらに51℃へ昇温するとともに、エチレンと水素をそれぞれ2.8kg/Hrと28リットル(常温常圧体積)/Hrで連続供給することによって合計4時間の予備重合を実施した。重合終了後、エチレン、ブタン、水素などをパージして残った固体を室温にて真空乾燥し、助触媒担体(a)1g当り13gのポリエチレンを含有する予備重合触媒成分を得た。ポリエチレンの[η]は0.83dl/gであった。
【0107】
(2)エチレン−α−オレフィン共重合体の製造
上記で得た予備重合触媒成分を用い、重合温度を75℃、エチレンに対する水素モル比を0.6%、エチレンと1−ヘキセンとの合計に対する1−ヘキセンモル比を1.5%に変更した以外は実施例1と同様にして、連続式流動床気相重合装置でエチレンと1−ヘキセンの共重合を実施し、実施例1と同様にして造粒してエチレン−1−ヘキセン共重合体を得た。得られたエチレン−1−ヘキセン共重合体の物性評価の結果を表1に示した。
【0108】
比較例2
(1)予備重合触媒成分の調製
予め窒素置換した内容積210リットルの撹拌機付きオートクレーブに、実施例1の(1)助触媒担体の調製で得た助触媒担体(a)0.7kgを投入し、ブタン80リットルとを仕込んだ後、オートクレーブを30℃まで昇温した。さらにエチレンをオートクレーブ内のガス相圧力で0.03MPa分仕込み、系内が安定した後、トリイソブチルアルミニウム210mmolとラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド70mmolを投入して重合を開始した。31℃へ昇温するとともに、エチレンと水素をそれぞれ0.5kg/Hrと0.5リットル(常温常圧体積)/Hrで連続供給しながら30分経過した後、さらに51℃へ昇温するとともに、エチレンと水素をそれぞれ2.8kg/Hrと4.1リットル(常温常圧体積)/Hrで連続供給することによって合計4時間の予備重合を実施した。重合終了後、エチレン、ブタン、水素などをパージして残った固体を室温にて真空乾燥し、助触媒担体(a)1g当り10gのポリエチレンを含有する予備重合触媒成分を得た。ポリエチレンの[η]は1.53dl/gであった。
【0109】
(2)エチレン−α−オレフィン共重合体の製造
上記で得た予備重合触媒成分を用い、エチレンに対する水素モル比を1%、エチレンと1−ヘキセンとの合計に対する1−ヘキセンモル比を1.5%に変更した以外は比較例1と同様にして、連続式流動床気相重合装置でエチレンと1−ヘキセンの共重合を実施し、実施例1と同様にして造粒してエチレン−1−ヘキセン共重合体を得た。得られたエチレン−1−ヘキセン共重合体を用いた物性評価の結果を表1に示した。
【0110】
比較例3
(1)助触媒担体の調製
撹拌機およびジャケットを有する内容積180リットルのSUS製反応機を窒素置換した後、窒素流通下で300℃において加熱処理したシリカ(デビソン社製 Sylopol948;50%体積平均粒子径=58μm;細孔容量=1.65ml/g;比表面積=298m2/g)9.7kgおよびトルエン100リットルを投入した。2℃に冷却後、メチルアルミノキサンのトルエン溶液(東ソー・ファインケム社製 PMAO−s)を23.3kg(Al原子として75.9mol)を62分間で滴下した。滴下終了後、5℃にて30分間撹拌し、95℃まで2時間かけて昇温を行い、95℃にて4時間撹拌を行った。その後、40℃まで温度を下げ、窒素置換した撹拌機およびジャケットを有する内容積180リットルのSUS製反応機へ移送した。シリカ由来成分を50分間かけて沈降させ、液層成分を取り除いた。その後、洗浄操作として、トルエン100リットルを加えて10分間撹拌した後、約45分間かけてシリカ由来成分を沈降させ、スラリーの上層成分を取り除いた。上記洗浄操作を計3回繰り返した。次いで、窒素置換した内容積430リットルのSUS製のろ過機(フィルター、撹拌機およびジャケットを有するろ過機)へ、トルエン120リットルにてスラリーを移送した。10分間撹拌しろ過を行い、トルエン100リットルを加えて再度10分間撹拌し、ろ過を行った。更に、洗浄操作として、ヘキサン100リットルを加えて10分間撹拌し、ろ過を行った。この洗浄操作を計2回繰り返した。ヘキサン70リットルにて、窒素置換した内容積210リットルのSUS製乾燥器(撹拌機およびジャケットを有する乾燥器)にシリカ由来成分を移送した。次いで、ジャケット温度80℃にて窒素流通乾燥を7.5時間行うことにより、固体成分(以下、助触媒担体(S)と称する。)12.6kgを得た。
【0111】
(2)予備重合触媒成分の調製
予め窒素置換した内容積210リットルの撹拌機付きオートクレーブにトリイソブチルアルミニウムを濃度2.5mmol/リットルで含んだブタン120リットルと、水素40リットル(常温常圧体積)とを仕込んだ後、オートクレーブを47℃まで昇温した。さらにエチレンをオートクレーブ内のガス相圧力で0.3MPa分仕込み、系内が安定した後、トリイソブチルアルミニウム300mmol、ラセミ−エチレンビス(1−インデニル)ジルコニウムジクロリド15mmol、続いて、助触媒担体(S)0.25kgを投入して重合を開始し、エチレンと水素を連続で供給しながら、合計4時間の予備重合を実施した。重合終了後、エチレン、ブタン、水素などをパージし、生成した固体を室温にて真空乾燥し、助触媒担体(S)1g当り33gのポリエチレンを含有する予備重合触媒成分を得た。ポリエチレンの[η]は0.85dl/gであった。
【0112】
(3)エチレン−α−オレフィン共重合体の製造
上記で得た予備重合触媒成分を用い、重合温度を85℃、エチレンに対する水素モル比を0.15%、エチレンと1−ヘキセンとの合計に対する1−ヘキセンモル比を1.8%に変更し、トリエチルアミンを供給しなかった以外は比較例1と同様にして、連続式流動床気相重合装置でエチレンと1−ヘキセンの共重合を実施し、重合体パウダーを単軸スクリュー押出機にて造粒することによってエチレン−1−ヘキセン共重合体を得た。得られたエチレン−1−ヘキセン共重合体の物性評価の結果を表1に示した。


















【0113】
【表1】


【特許請求の範囲】
【請求項1】
下記成分(A)と下記成分(B)との接触処理物に下記成分(C)を接触処理してなる接触処理物の存在下、オレフィンを予備重合してなる予備重合固体触媒成分であって、該予備重合固体触媒成分中の予備重合体の含有量が、成分(A)1g当り0.1〜500gであり、該予備重合体の結晶融解熱量が160J/g以上であり、極限粘度が2〜4dl/g以上の予備重合体成分を、予備重合の開始から成分(A)1g当り0.1〜5g製造してなる予備重合固体触媒成分の存在下、エチレンと炭素原子数3〜20のα−オレフィンとを共重合するエチレン−α−オレフィン共重合体の製造方法。
成分(A):メタロセン系錯体をイオン化してイオン性の錯体を形成する化合物が、微粒子状担体に担持されてなる固体助触媒成分
成分(B):メタロセン系錯体
成分(C):アルキル化剤

【公開番号】特開2012−158762(P2012−158762A)
【公開日】平成24年8月23日(2012.8.23)
【国際特許分類】
【出願番号】特願2012−96309(P2012−96309)
【出願日】平成24年4月20日(2012.4.20)
【分割の表示】特願2006−217971(P2006−217971)の分割
【原出願日】平成18年8月10日(2006.8.10)
【出願人】(000002093)住友化学株式会社 (8,981)
【Fターム(参考)】