説明

エポキシ樹脂組成物、その硬化物、回路基板、ビルドアップ材料、及び半導体封止材料

【課題】UL94V−0クラスの難燃性と耐湿信頼性及び耐熱信頼性を兼備したエポキシ樹脂組成物、硬化物、該組成物を用いた回路基板、ビルドアップ材料、及び半導体封止材料、並びにこれらの性能を与える新規エポキシ樹脂を提供する。
【解決手段】
グリシジルオキシ基含有芳香族炭化水素基(E)、
アルコキシ基含有縮合多環式芳香族炭化水素基(X)、並びに、
メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(Y)の各構造部位を有しており、かつ、
前記(E)及び前記(X)が、前記(Y)を介して結合した構造を分子構造内に有するエポキシ樹脂(a1)と、活性水素原子含有芳香族系ホスフィン化合物(a2)とを反応させて得られる分子構造を有するエポキシ樹脂を主剤として用いる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は得られる硬化物は、難燃性と耐熱信頼性に優れ、回路基板(積層板、プリント配線板、ビルドアップ基材、フレキシブル配線板)、半導体封止材、レジストインキ材料、アンダーフィルなどの液状封止材、導電性ペーストなどの接着剤、液晶シール材、フレキシブル基板用カバーレイ、複合材料(炭素繊維強化プラスチック)、光学材料、塗料、注型用途等に好適に用いる事が出来るエポキシ樹脂組成物、及び新規エポキシ樹脂に関する。
【背景技術】
【0002】
エポキシ樹脂及びその硬化剤を必須成分とするエポキシ樹脂組成物は、電気絶縁性、高耐熱性、耐湿性、寸法安定性等の諸物性に優れる点から半導体封止材やプリント回路基板、ビルドアップ基板、レジストインキ等の電子部品、導電ペースト等の導電性接着剤やその他接着剤、アンダーフィルなどの液状封止材、液晶シール材、フレキシブル基板用カバーレイ、複合材料用マトリックス、塗料、フォトレジスト材料、顕色材料等で広く用いられている。これらの中でも半導体やプリント配線基板などのエレクトロニクス材料分野においては、封止材や基板材料等として用いられており、これらの分野における技術革新に伴って高性能化への要求が高まっている。
【0003】
例えば火災や発火を防止し、安全性を保つという観点から、電気・電子機器に使用される半導体封止材や、回路基板(積層板、プリント配線板、ビルドアップ基材、フレキシブル配線板)といった電子電気分野用には難燃性が要求される。この難燃性を確保するために一般には、ハロゲン元素を含む難燃剤、特に臭素系難燃剤が用いられてきた。しかし、最近の地球環境の保全・悪化防止の観点から、毒性の強いダイオキシン類、ベンゾフラン等を発生させる恐れのあるハロゲン元素を含有せず難燃化する技術が必須となっている。
【0004】
前述の電子電気材料用にはとしては、エポキシ樹脂が多く使用されているが、エポキシ樹脂は一般的に燃えやすいため、UL94V−0クラスの難燃性を実現することは難しく、トリフェニルフォスフェートやクレジルジフェニルフォスフェート等のリン酸エステル類を難燃剤として用いられてきた。
【0005】
しかしながら、これらのリン酸エステル類をエポキシ樹脂等に添加した場合、これらの化合物の可塑性によって、樹脂のガラス転移点が大幅に低下するという欠点が生じていた。また、該リン酸エステル類はエポキシ樹脂の骨格と共有結合を生じておらず、リン化合物同士の相互作用が、リン化合物と樹脂骨格との相互作用よりも大きいため、これらのリン酸エステルを樹脂に添加しプリプレグを作製した場合、一定時間経過後、リン酸エステル類が容易に結晶化し、プリプレグ表面に析出するため使用できなくなるという問題をも有していた。更に、リン化合物は加水分解しやすいため、多量に配合する場合、プリント配線板製造工程内で使用される薬液に溶解し易く(主にアルカリ溶液)、また、耐湿耐熱性の低下を招くものが多いという問題もあった。
【0006】
そこで、従来よりノボラック型エポキシ樹脂と9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシドを反応させたリン含有エポキシ樹脂をエポキシ樹脂組成物の主剤として用いる技術が知られている(下記特許文献1参照)。
【0007】
しかしながらこのリン含有エポキシ樹脂は、UL94V−0クラスの難燃性を示すものの耐湿信頼性及び耐熱信頼性の改良効果は十分ではなく、特に最近の鉛フリー半田には適用できるものではなかった。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特許第3613724号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
従って、本発明が解決しようとする課題は、UL94V−0クラスの難燃性と耐湿信頼性及び耐熱信頼性を兼備したエポキシ樹脂組成物、硬化物、該組成物を用いた回路基板、ビルドアップ材料、及び半導体封止材料、並びにこれらの性能を与える新規エポキシ樹脂を提供することにある。
【課題を解決するための手段】
【0010】
本発明者らは前記課題を解決するため鋭意検討した結果、アルコキシ基含有縮合多環構造を有する特定構造のエポキシ樹脂に活性水素原子含有芳香族系ホスフィン化合物を反応させて得られるエポキシ樹脂を主剤として用いることにより、難燃性と耐湿信頼性と耐熱信頼性とを兼備した硬化物が得られることを見出し、本発明を完成するに至った。
【0011】
即ち、本発明は、エポキシ樹脂(A)と硬化剤(B)を必須成分とするエポキシ樹脂組成物であって、
前記エポキシ樹脂(A)が、
グリシジルオキシ基含有芳香族炭化水素基(E)、
アルコキシ基含有縮合多環式芳香族炭化水素基(X)、並びに、
メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(Y)の各構造部位を有しており、かつ、
前記グリシジルオキシ基含有芳香族炭化水素基(E)及び前記アルコキシ基含有縮合多環式芳香族炭化水素基(X)が、前記メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(Y)を介して結合した構造を分子構造内に有するエポキシ樹脂(a1)と、
活性水素原子含有芳香族系ホスフィン化合物(a2)とを反応させて得られる分子構造を有するエポキシ樹脂であることを特徴とするエポキシ樹脂組成物に関する。
【0012】
本発明は、更に、前記エポキシ樹脂組成物を硬化させてなる硬化物に関する。
【0013】
本発明は、更に、前記エポキシ樹脂組成物を用いることを特徴とする回路基板に関する。
【0014】
本発明は、更に、前記エポキシ樹脂組成物を用いることを特徴とするビルドアップ材料に関する。
【0015】
本発明は、更に、前記エポキシ樹脂組成を用いることを特徴とする半導体封止材料に関する。
【0016】
本発明は、更に、グリシジルオキシ基含有芳香族炭化水素基(E)、
アルコキシ基含有縮合多環式芳香族炭化水素基(X)、並びに、
メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(Y)の各構造部位を有しており、かつ、
前記グリシジルオキシ基含有芳香族炭化水素基(E)及び前記アルコキシ基含有縮合多環式芳香族炭化水素基(X)が、前記メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(Y)を介して結合した構造を分子構造内に有するエポキシ樹脂(a1)と
活性水素原子含有芳香族系ホスフィン化合物(a2)とを反応させて得られる分子構造を有することを特徴とするエポキシ樹脂に関する。
【発明の効果】
【0017】
本発明によれば、UL94V−0クラスの難燃性と耐湿信頼性及び耐熱信頼性を兼備したエポキシ樹脂組成物、硬化物、該組成物を用いた回路基板、ビルドアップ材料、及び半導体封止材料、並びにこれらの性能を与える新規エポキシ樹脂を提供できる。
【図面の簡単な説明】
【0018】
【図1】図1は実施例1で得られたエポキシ樹脂(A−1)のGPCチャート図である。
【発明を実施するための形態】
【0019】
以下、本発明を詳細に説明する。
本発明で用いるエポキシ樹脂は、前記した通り、
前記エポキシ樹脂(A)が、
グリシジルオキシ基含有芳香族炭化水素基(E)、
アルコキシ基含有縮合多環式芳香族炭化水素基(X)、並びに、
メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(Y)の各構造部位を有しており、かつ、
前記グリシジルオキシ基含有芳香族炭化水素基(E)及び前記アルコキシ基含有縮合多環式芳香族炭化水素基(X)が、前記メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(Y)を介して結合した構造を分子構造内に有するエポキシ樹脂(a1)と
活性水素原子含有芳香族系ホスフィン化合物(a2)とを反応させて得られる分子構造を有するものである。
【0020】
ここで、用いるエポキシ樹脂(a1)は、具体的には、グリシジルオキシ基含有芳香族炭化水素基(E)、アルコキシ基含有縮合多環式芳香族炭化水素基(X)、およびメチレン基等(Y)の各構造単位をそれぞれ、「E」、「X」、「Y」で表した場合、下記構造部位A1
【0021】
【化1】

であらわされる構造部位を必須として分子構造内に含むものであるが、更に具体的には、下記構造式A2及びA3で表される構造、
【0022】
【化2】

【0023】
下記構造式A4又はA5


で表される構造を繰り返し単位とするノボラック構造の分子末端に、下記構造式A6
【0024】
【化3】

で表される構造を有する構造、その他下記構造式A7〜A8
【0025】
【化4】


で表される構造を繰り返し単位とする交互共重合体構造が挙げられる。
【0026】
本発明においては、前記エポキシ樹脂(A)は、上記のように各種の構造をとり得るが、その分子末端に前記構造式A6で表される構造を有することにより、エポキシ樹脂硬化物の誘電正接を著しく低減できることができる。よって、特に前記構造式A3の構造を有するエポキシ樹脂、或いは、前記A4又はA7を繰り返し単位とし、かつ、その分子末端に前記構造式A6で表される構造を有するエポキシ樹脂が好ましく、特に本発明の効果が顕著に現れる点から、前記構造式A3の構造を有するエポキシ樹脂、或いは、前記A4を繰り返し単位とし、かつ、その分子末端に前記構造式A6で表される構造を有するエポキシ樹脂が好ましい。
【0027】
ここで、グリシジルオキシ基含有芳香族炭化水素基(E)は、具体的には、以下のE1〜E16の構造式で表されるグリシジルオキシベンゼン類、グリシジルオキシナフタレン類、及びこれらの芳香核上の置換基としてアルキル基を有する化合物が難燃性に優れるという点で好ましい。
【0028】
【化5】

【0029】
ここで、前記各構造は、前記構造式A2のように該構造が分子末端に位置する場合には、1価の芳香族炭化水素基となる。また、上掲した構造のうちナフタレン骨格上に他の構造部位との結合位置を二つ以上有するものは、それらの結合位置は同一核上であってもよいし、或いは、それぞれ異核上にあってもよい。
【0030】
次に、エポキシ樹脂(A)構造中に含まれる前記アルコキシ基含有縮合多環式芳香族炭化水素基(X)は、縮合多環式芳香核上の置換基としてアルコキシ基を有する1価の芳香族炭化水素基であり、具体的には下記構造式X1〜X11で表されるアルコシキナフタレン構造、又は、下記構造式X12で表されるアルコキシアントラセン構造が挙げられる。
【0031】
【化6】

【0032】
ここで前記各構造は、該構造が分子末端に位置する場合には、1価の芳香族炭化水素基となる。また、上掲した構造のうちナフタレン骨格上に他の構造部位との結合位置を二つ以上有するものは、それらの結合位置は同一核上であってもよいし、或いは、それぞれ異核上にあってもよい。
【0033】
以上詳述した前記アルコキシ基含有縮合多環式芳香族炭化水素基(X)のうち、とりわけ、エポキシ樹脂硬化物の難燃性が良好なものとなる点からアルコキシナフタレン型の構造を有するものが好ましく、近年、電子部品分野において要求の高いハロゲンフリーの材料の設計が可能となる点から、前記構造式X1〜X10に代表される、メトキシ基又はエトキシ基を置換基として有するナフタレン構造、およびそれらに更にメチル基を置換基として有する構造から形成される芳香族炭化水素基であることが好ましい。
【0034】
次に、前記したメチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(Y)の各構造部位は、メチレン基の他、アルキリデン基としては、エチリデン基、1,1−プロピリデン基、2,2−プロピリデン基、ジメチレン基、プロパン−1,1,3,3−テトライル基、n−ブタン−1,1,4,4−テトライル基、n−ペンタン−1,1,5,5−テトライル基が挙げられる。また、芳香族炭化水素構造含有メチレン基は、下記Y1〜Y4の構造のものが挙げられる。
【0035】
【化7】


これらの中でも誘電効果に優れる点、更に有機溶剤へ溶解させた際の粘度が低い点から、とりわけメチレン基であることが好ましい。
従って、エポキシ樹脂(A)は、特に下記構造式(1)
【0036】
【化8】


(式中、Eはグリシジルオキシ基含有芳香族炭化水素基を、Xはアルコキシ基含有縮合多環式芳香族炭化水素基、X’はアルコキシ基含有縮合多環式芳香族炭化水素基又はグリシジルオキシ基含有芳香族炭化水素基を表し、nは繰り返し単位で1〜100の整数である。)で表される構造を有するものがとりわけ好ましい。
ここで、X’のアルコキシ基含有縮合多環式芳香族炭化水素基又はグリシジルオキシ基含有芳香族炭化水素基とは、X’が任意にアルコキシ基含有縮合多環式芳香族炭化水素基(X)又はグリシジルオキシ基含有芳香族炭化水素基(E)であることを示すものである。
【0037】
また、エポキシ樹脂(a1)は、特に前記構造式(1)で表される構造を有するものである場合、該樹脂中には、通常、下記構造式(1’)
【0038】
【化9】


(式中、Eはグリシジルオキシ基含有芳香族炭化水素基(E)を表す。)
で表される化合物が含まれることになるが、その含有率はエポキシ樹脂(a1)中、5質量%以下となる割合、特に1.0〜3.5質量%なる範囲であることが難燃性の点から好ましい。
【0039】
本発明では、このようにエポキシ樹脂(a1)の主たる成分として下記構造式
【0040】
【化10】

(式中、Eはグリシジルオキシ基含有芳香族炭化水素基を表す。)
で表される構造単位を繰り返し単位とする主骨格の末端にXはアルコキシ基含有縮合多環式芳香族炭化水素基を導入すること該エポキシ樹脂(A)の硬化物の難燃性を飛躍的に改善できる。
【0041】
また、前記構造式(1)中のnの値は、GPC測定から導出される繰り返し単位数である。ここでGPC測定の条件は、具体的には以下の通りである。
【0042】
また、前記エポキシ樹脂(a1)は、エポキシ当量が小さい場合には組成物の硬化性が良好なものとなり、エポキシ当量が大きい場合には硬化物の難燃性が良好となる。よって、これらのバランスが良好なものとなる点から、そのエポキシ当量は200〜600g/eq.の範囲、特に250〜550g/eq.の範囲であることが好ましい。
【0043】
更に、前記エポキシ樹脂(a1)は、グリシジルオキシ基含有芳香族炭化水素基(E)と、前記アルコキシ基含有縮合多環式芳香族炭化水素基(X)との存在比が、モル比で前者/後者=30/70〜98/2なる範囲であるであることが難燃性の点から好ましい。
【0044】
以上詳述した前記エポキシ樹脂(a1)は、フェノール性水酸基含有芳香族炭化水素基(P)、アルコキシ基含有縮合多環式芳香族炭化水素基(X)、並びに、メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(Y)の各構造部位を有しており、かつ、前記フェノール性水酸基含有芳香族炭化水素基(P)及び前記アルコキシ基含有縮合多環式芳香族炭化水素基(B)が、前記メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)を介して結合した構造を分子構造内に有するフェノール樹脂(ph1)とエピハロヒドリンを反応させることにより得ることができる。
【0045】
また、前記フェノール樹脂(ph1)は、ヒドロキシ基含有芳香族化合物(p)とアルコキシ基含有芳香族化合物(x)と、カルボニル基含有化合物(y)とを、反応させることによって製造することができる。
【0046】
上記製造方法に用いられるヒドロキシ基含有芳香族化合物(p)は、具体的には、フェノール、レゾルシノール、ヒドロキノンなどの無置換フェノール類、クレゾール、フェニルフェノール、エチルフェノール、n−プロピルフェノール、iso−プロピルフェノール、t−ブチルフェノールなどの一置換フェノール類、キシレノール、メチルプロピルフェノール、メチルブチルフェノール、メチルヘキシルフェノール、ジプロピルフェノール、ジブチルフェノールなどの二置換フェノール類、メシトール、2,3,5−トリメチルフェノール、2,3,6−トリメチルフェノール等の三置換フェノール類、1−ナフトール、2−ナフトール、メチルナフトールなどのナフトール類が挙げられる。前記フェノール樹脂(ph1)を製造する際、上記化合物は単独で使用してもよいし、2種類以上を併用してもよい。
【0047】
これらのなかでも、硬化物の難燃性に優れることから1−ナフトール、2−ナフトール、クレゾール、フェノールが特に好ましい。
【0048】
次に、アルコキシ基含有芳香族化合物(x)は、具体的には、1−メトキシナフタレン、2−メトキシナフタレン、1−メチル−2−メトキシナフタレン、1−メトキシ−2−メチルナフタレン、1,3,5−トリメチル−2−メトキシナフタレン、2,6−ジメトキシナフタレン、2,7−ジメトキシナフタレン、1−エトキシナフタレン、
1,4−ジメトキシナフタレン、1−t−ブトキシナフタレン、1−メトキシアントラセン、等が挙げられる。
【0049】
これらの中でも難燃性と誘電特性の点から1−メトキシナフタレン、2−メトキシナフタレン、及び2,7−ジメトキシナフタレンが好ましい。
【0050】
次に、カルボニル基含有化合物(y)は、具体的には、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等の脂肪族系アルデヒド、グリオキザール等のジアルデヒド、ベンズアルデヒド、4−メチルベンズアルデヒド、3,4−ジメチルベンズアルデヒド、4−ビフェニルアルデヒド、ナフチルアルデヒド等の芳香族系アルデヒド、ベンゾフェノン、フルオレノン、インダノン等のケトン化合物が挙げられる。
【0051】
これらのなかでも得られる硬化物が難燃性にすぐれる点からホルムアルデヒド、ベンズアルデヒド、4−ビフェニルアルデヒド、ナフチルアルデヒドが好ましく、得られる樹脂が低粘度である点からホルムアルデヒドが好ましい。
【0052】
上記したヒドロキシ基含有芳香族化合物(p)とアルコキシ基含有縮合多環式芳香族化合物(x)と、カルボニル基含有化合物(y)とを反応させる方法は、以下の方法1)〜3)が挙げられる。
【0053】
方法1):ヒドロキシ基含有芳香族系化合物(p)とアルコキシ基含有縮合多環式芳香族化合物(x)とカルボニル基含有化合物(y)とを実質的に同時に仕込み、適当な重合触媒の存在下で加熱撹拌して反応を行う方法。
方法2):アルコキシ基含有縮合多環式芳香族化合物(x)1モルに対して、0.05〜30モル、好ましくは2〜30モルのカルボニル基含有化合物(y)を反応させた後に、ヒドロキシ基含有芳香族系化合物(p)を仕込んで反応させる方法。
方法3):ヒドロキシ基含有芳香族系化合物(p)とアルコキシ基含有縮合多環式芳香族化合物(x)とを予め混合しておき、ここにカルボニル基含有化合物(y)を連続的乃至断続的に系内に加えることによって、反応を行う方法。
【0054】
上記方法1)において「実質的に同時」とは、加熱によって反応が加速されるまでの間に全ての原料を仕込むことを意味するものである。
【0055】
この様にして得られたフェノール樹脂(ph1)にエピハロヒドリンを反応させて目的のエポキシ樹脂(a1)を得ることができる。具体的には、前記フェノール樹脂(ph1)中のフェノール性水酸基1モルに対し、エピハロヒドリン2〜10モルを添加し、更に、フェノール性水酸基1モルに対し0.9〜2.0モルの塩基性触媒を一括添加または徐々に添加しながら20〜120℃の温度で0.5〜10時間反応させる方法が挙げられる。この塩基性触媒は固形でもその水溶液を使用してもよく、水溶液を使用する場合は、連続的に添加すると共に反応混合物中から減圧下、または常圧下、連続的に水及びエピハロヒドリン類を留出せしめ、更に分液して水は除去しエピハロヒドリン類は反応混合物中に連続的に戻す方法が好ましい。
【0056】
なお、工業生産を行う際、エポキシ樹脂生産の初バッチでは仕込みに用いるエピハロヒドリン類の全てが新しいものであるが、次バッチ以降は、粗反応生成物から回収されたエピハロヒドリン類と、反応で消費される分で消失する分に相当する新しいエピハロヒドリン類とを併用することが好ましい。この時、使用するエピハロヒドリンは特に限定されないが、例えばエピクロルヒドリン、エピブロモヒドリン、β−メチルエピクロルヒドリン等が挙げられる。なかでも工業的入手が容易なことからエピクロルヒドリンが好ましい。
【0057】
また、前記塩基性触媒は、具体的には、アルカリ土類金属水酸化物、アルカリ金属炭酸塩及びアルカリ金属水酸化物等が挙げられる。特にエポキシ樹脂合成反応の触媒活性に優れる点からアルカリ金属水酸化物が好ましく、例えば水酸化ナトリウム、水酸化カリウム等が挙げられる。使用に際しては、これらの塩基性触媒を10〜55質量%程度の水溶液の形態で使用してもよいし、固形の形態で使用しても構わない。また、有機溶媒を併用することにより、エポキシ樹脂の合成における反応速度を高めることができる。このような有機溶媒としては特に限定されないが、例えば、アセトン、メチルエチルケトン等のケトン類、メタノール、エタノール、1−プロピルアルコール、イソプロピルアルコール、1−ブタノール、セカンダリーブタノール、ターシャリーブタノール等のアルコール類、メチルセロソルブ、エチルセロソルブ等のセロソルブ類、テトラヒドロフラン、1、4−ジオキサン、1、3−ジオキサン、ジエトキシエタン等のエーテル類、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド等の非プロトン性極性溶媒等が挙げられる。これらの有機溶媒は、それぞれ単独で使用してもよいし、また、極性を調整するために適宜二種以上を併用してもよい。
【0058】
前述のエポキシ化反応の反応物を水洗後、加熱減圧下、蒸留によって未反応のエピハロヒドリンや併用する有機溶媒を留去する。また更に加水分解性ハロゲンの少ないエポキシ樹脂とするために、得られたエポキシ樹脂を再びトルエン、メチルイソブチルケトン、メチルエチルケトンなどの有機溶媒に溶解し、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えてさらに反応を行うこともできる。この際、反応速度の向上を目的として、4級アンモニウム塩やクラウンエーテル等の相関移動触媒を存在させてもよい。相関移動触媒を使用する場合のその使用量としては、用いるエポキシ樹脂に対して0.1〜3.0質量%の範囲が好ましい。反応終了後、生成した塩を濾過、水洗などにより除去し、更に、加熱減圧下トルエン、メチルイソブチルケトンなどの溶剤を留去することにより高純度のエポキシ樹脂(a1)を得ることができる。
【0059】
次に、前記エポキシ樹脂(a1)と反応させる活性水素原子含有芳香族系ホスフィン化合物(a2)は、具体的には、下記構造式a2−1
【0060】
【化11】

(式中、R1、R2はそれぞれ独立に水素原子又は炭素原子数1〜6のアルキル基を表す。)又は、下記構造式a2−2
【0061】
【化12】


(式中、R、Rはそれぞれ独立に水素原子又は炭素原子数1〜6のアルキル基を表す。)
で表される分子構造を有するものが挙げられる。
【0062】
上記構造式a2−1中のR1、R2は、それぞれ独立的に水素原子、又はメチル基、エチル基、プロピル基、i−ブチル基、t−ブチル基、ペンチル基、n−ヘキシル基、若しくはシクロヘキシル基等の炭素原子数1〜6のアルキル基であるが、これらのなかでも特に難燃性に優れる点からR1及びR2が何れも水素原子であることが好ましい。
一方、上記構造式a2−2中のR、Rは、それぞれ独立的に水素原子、又はメチル基、エチル基、プロピル基、i−ブチル基、t−ブチル基、ペンチル基、n−ヘキシル基、若しくはシクロヘキシル基等の炭素原子数1〜6のアルキル基であるが、これらのなかでも特に難燃性に優れる点からR1及びR2が何れも水素原子であることが好ましい。
【0063】
また、上記構造式a2−1で表される化合物、及び上記構造式a2−2で表される化合物の中でも特にエポキシ樹脂との反応性及び難燃性に優れる点から構造式a2−1で表される化合物が好ましい。
【0064】
ここで、エポキシ樹脂(a1)と、活性水素原子含有芳香族系ホスフィン化合物(a2)とを反応させる方法としては、例えば、エポキシ樹脂(a1)を溶融させ、そこへ活性水素原子含有芳香族系ホスフィン化合物(a2)を一括又は分割で添加して反応させることができる。反応温度は100℃〜200℃の範囲、なかでも120℃〜180℃の範囲であることが好ましく、反応は攪拌下に行うことが好ましい。この際、反応速度を考慮して必要に応じて触媒を使用する。触媒としては、具体的にはベンジルジメチルアミン等の第3級アミン類、テトラメチルアンモニウムクロライド等の第4級アンモニウム塩類、トリフェニルホスフィン、トリス(2,6−ジメトキシフェニル)ホスフィン等のホスフィン類、エチルトリフェニルホスホニウムブロマイド等のホスホニウム塩類、2メチルイミダゾール、2―エチル−4−メチルイミダゾール等のイミダゾール類等が挙げられる。
【0065】
反応終点を確認する方法としては、エポキシ当量の追跡により理論エポキシ当量の95%以上の値になったことで確認する方法、液体クロマトグラフィ−等で代表される機器分析により一般式で表されるホスフィン化合物を追跡しその残存が実質なくなったことを確認する方法などがあるが、これらに限定されるものではない。
【0066】
かかる前記エポキシ樹脂(A)は、そのエポキシ当量が250〜700g/eq.の範囲のものが、硬化物の難燃性と耐湿信頼性、耐熱信頼性が一層良好となる点から好ましい。
前記エポキシ樹脂(A)はリン化合物を反応させる前のエポキシ樹脂自体の難燃性が高いため、エポキシ樹脂(A)中のリン原子含有率は、必要以上に高くする必要はなく、また、リン原子含有量が多くなるほど耐湿信頼性が低下する傾向がある為、0.1質量%〜5.0質量%の範囲、なかでも0.3質量%〜3.0質量%、特に0.1質量%〜1.5質量%の範囲であることが好ましい。
【0067】
本発明のエポキシ樹脂組成物において、本発明の製造方法で得られる前記エポキシ樹脂は単独で、又は本発明の効果を損なわない範囲で他のエポキシ樹脂と併用して用いることができる。併用する場合には、エポキシ樹脂全体に占める本発明のエポキシ樹脂の割合は30質量%以上が好ましく、特に40質量%以上が好ましい。
【0068】
本発明のエポキシ樹脂と併用されうる他のエポキシ樹脂としては、種々のエポキシ樹脂を用いることができるが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン−フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール−フェノール共縮ノボラック型エポキシ樹脂、ナフトール−クレゾール共縮ノボラック型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂等が挙げられる。これらのなかでもフェノールアラルキル型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂や、ナフタレン骨格を含有するナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール−フェノール共縮ノボラック型エポキシ樹脂、ナフトール−クレゾール共縮ノボラック型エポキシ樹脂や、結晶性のビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂や、キサンテン型エポキシ樹脂が、難燃性や誘電特性に優れる硬化物が得られる点から特に好ましい。
【0069】
本発明のエポキシ樹脂組成物に用いる硬化剤としては、公知の各種エポキシ樹脂用硬化剤、例えばアミン系化合物、アミド系化合物、酸無水物系化合物、フェノ−ル系化合物などの硬化剤が使用できる。具体的には、アミン系化合物としてはジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、イミダゾ−ル、BF−アミン錯体、グアニジン誘導体等が挙げられ、アミド系化合物としては、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等が挙げられ、酸無水物系化合物としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等が挙げられ、フェノール系化合物としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂(通称、ザイロック樹脂)、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール−フェノール共縮ノボラック樹脂、ナフトール−クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミンやベンゾグアナミンなどでフェノール核が連結された多価フェノール化合物)等の多価フェノール化合物が挙げられる。
【0070】
これらの中でも、難燃性と耐熱性に優れる硬化物が得られることから、ジシアンジアミド、アミノトリアジン変性フェノール樹脂、フェノールノボラック樹脂、クレゾールノボラック樹脂が好ましい。
【0071】
本発明のエポキシ樹脂組成物におけるエポキシ樹脂と硬化剤との配合量としては、特に制限されるものではないが、得られる硬化物の特性が良好である点から、エポキシ樹脂を含むエポキシ樹脂中のエポキシ基の合計1当量に対して、窒素原子を含有する硬化剤は硬化剤中の活性基がは0.3〜1.3当量、そのほかの硬化剤は硬化剤中の活性基が0.7〜1.5当量になる量が好ましい。
【0072】
また必要に応じて本発明のエポキシ樹脂組成物に硬化促進剤を適宜併用することもできる。前記硬化促進剤としては種々のものが使用できるが、例えば、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。特に半導体封止材料用途として使用する場合には、硬化性、耐熱性、電気特性、耐湿信頼性等に優れる点から、リン系化合物ではトリフェニルフォスフィン、第3級アミンでは1,8−ジアザビシクロ−[5.4.0]−ウンデセン(DBU)が好ましい。
【0073】
以上詳述した本発明のエポキシ樹脂組成物は、エポキシ樹脂又はその硬化剤について、その分子構造の選択によっては、当該樹脂自体が優れた難燃性付与効果を有するものである為、従来用いられている難燃剤を配合しなくても、硬化物の難燃性が良好である。しかしながら、より高度な難燃性を発揮させるために、例えば回路基板の分野においては、スルーホール加工性、耐湿信頼性を低下させない範囲で、実質的にハロゲン原子を含有しない非ハロゲン系難燃剤(C)を配合してもよい。
【0074】
かかる非ハロゲン系難燃剤(C)を配合したエポキシ樹脂組成物は、実質的にハロゲン原子を含有しないものであるが、例えばエポキシ樹脂に含まれるエピハロヒドリン由来の5000ppm以下程度の微量の不純物によるハロゲン原子は含まれていても良い。
【0075】
前記非ハロゲン系難燃剤(C)としては、例えば、
リン系難燃剤、窒素系難燃剤、シリコーン系難燃剤、無機系難燃剤、有機金属塩系難燃剤等が挙げられ、それらの使用に際しても何等制限されるものではなく、単独で使用しても、同一系の難燃剤を複数用いても良く、また、異なる系の難燃剤を組み合わせて用いることも可能である。
【0076】
前記リン系難燃剤としては、無機系、有機系のいずれも使用することができる。無機系化合物としては、例えば、赤リン、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム類、リン酸アミド等の無機系含窒素リン化合物が挙げられる。
【0077】
また、前記赤リンは、加水分解等の防止を目的として表面処理が施されていることが好ましく、表面処理方法としては、例えば、(i)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン、酸化ビスマス、水酸化ビスマス、硝酸ビスマス又はこれらの混合物等の無機化合物で被覆処理する方法、(ii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物、及びフェノール樹脂等の熱硬化性樹脂の混合物で被覆処理する方法、(iii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物の被膜の上にフェノール樹脂等の熱硬化性樹脂で二重に被覆処理する方法等が挙げられる。
【0078】
前記有機リン系化合物としては、例えば、リン酸エステル化合物、ホスホン酸化合物、ホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、有機系含窒素リン化合物等の汎用有機リン系化合物の他、9,10−ジヒドロ−9−オキサー10−ホスファフェナントレン=10−オキシド、10−(2,5−ジヒドロオキシフェニル)−10H−9−オキサ−10−ホスファフェナントレン=10−オキシド、10−(2,7−ジヒドロオキシナフチル)−10H−9−オキサ−10−ホスファフェナントレン=10−オキシド等の環状有機リン化合物、及びそれをエポキシ樹脂やフェノール樹脂等の化合物と反応させた誘導体等が挙げられる。
【0079】
それらの配合量としては、リン系難燃剤の種類、エポキシ樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合したエポキシ樹脂組成物100質量部中、赤リンを非ハロゲン系難燃剤として使用する場合は0.1〜2.0質量部の範囲で配合することが好ましく、有機リン化合物を使用する場合は同様に0.1〜10.0質量部の範囲で配合することが好ましく、特に0.5〜6.0質量部の範囲で配合することが好ましい。
【0080】
また前記リン系難燃剤を使用する場合、該リン系難燃剤にハイドロタルサイト、水酸化マグネシウム、ホウ化合物、酸化ジルコニウム、黒色染料、炭酸カルシウム、ゼオライト、モリブデン酸亜鉛、活性炭等を併用してもよい。
【0081】
前記窒素系難燃剤としては、例えば、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物、フェノチアジン等が挙げられ、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物が好ましい。
【0082】
前記トリアジン化合物としては、例えば、メラミン、アセトグアナミン、ベンゾグアナミン、メロン、メラム、サクシノグアナミン、エチレンジメラミン、ポリリン酸メラミン、トリグアナミン等の他、例えば、(i)硫酸グアニルメラミン、硫酸メレム、硫酸メラムなどの硫酸アミノトリアジン化合物、(ii)フェノール、クレゾール、キシレノール、ブチルフェノール、ノニルフェノール等のフェノール類と、メラミン、ベンゾグアナミン、アセトグアナミン、ホルムグアナミン等のメラミン類およびホルムアルデヒドとの共縮合物、(iii)前記(ii)の共縮合物とフェノールホルムアルデヒド縮合物等のフェノール樹脂類との混合物、(iv)前記(ii)、(iii)を更に桐油、異性化アマニ油等で変性したもの等が挙げられる。
【0083】
前記シアヌル酸化合物の具体例としては、例えば、シアヌル酸、シアヌル酸メラミン等を挙げることができる。
【0084】
前記窒素系難燃剤の配合量としては、窒素系難燃剤の種類、エポキシ樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合したエポキシ樹脂組成物100質量部中、0.05〜10質量部の範囲で配合することが好ましく、特に0.1〜5質量部の範囲で配合することが好ましい。
【0085】
また前記窒素系難燃剤を使用する際、金属水酸化物、モリブデン化合物等を併用してもよい。
【0086】
前記シリコーン系難燃剤としては、ケイ素原子を含有する有機化合物であれば特に制限がなく使用でき、例えば、シリコーンオイル、シリコーンゴム、シリコーン樹脂等が挙げられる。
【0087】
前記シリコーン系難燃剤の配合量としては、シリコーン系難燃剤の種類、エポキシ樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合したエポキシ樹脂組成物100質量部中、0.05〜20質量部の範囲で配合することが好ましい。また前記シリコーン系難燃剤を使用する際、モリブデン化合物、アルミナ等を併用してもよい。
【0088】
前記無機系難燃剤としては、例えば、金属水酸化物、金属酸化物、金属炭酸塩化合物、金属粉、ホウ素化合物、低融点ガラス等が挙げられる。
【0089】
前記金属水酸化物の具体例としては、例えば、水酸化アルミニウム、水酸化マグネシウム、ドロマイト、ハイドロタルサイト、水酸化カルシウム、水酸化バリウム、水酸化ジルコニウム等を挙げることができる。
【0090】
前記金属酸化物の具体例としては、例えば、モリブデン酸亜鉛、三酸化モリブデン、スズ酸亜鉛、酸化スズ、酸化アルミニウム、酸化鉄、酸化チタン、酸化マンガン、酸化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化コバルト、酸化ビスマス、酸化クロム、酸化ニッケル、酸化銅、酸化タングステン等を挙げることができる。
【0091】
前記金属炭酸塩化合物の具体例としては、例えば、炭酸亜鉛、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、塩基性炭酸マグネシウム、炭酸アルミニウム、炭酸鉄、炭酸コバルト、炭酸チタン等を挙げることができる。
【0092】
前記金属粉の具体例としては、例えば、アルミニウム、鉄、チタン、マンガン、亜鉛、モリブデン、コバルト、ビスマス、クロム、ニッケル、銅、タングステン、スズ等を挙げることができる。
【0093】
前記ホウ素化合物の具体例としては、例えば、ホウ酸亜鉛、メタホウ酸亜鉛、メタホウ酸バリウム、ホウ酸、ホウ砂等を挙げることができる。
【0094】
前記低融点ガラスの具体例としては、例えば、シープリー(ボクスイ・ブラウン社)、水和ガラスSiO−MgO−HO、PbO−B系、ZnO−P−MgO系、P−B−PbO−MgO系、P−Sn−O−F系、PbO−V−TeO系、Al−HO系、ホウ珪酸鉛系等のガラス状化合物を挙げることができる。
【0095】
前記無機系難燃剤の配合量としては、無機系難燃剤の種類、エポキシ樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合したエポキシ樹脂組成物100質量部中、0.05〜100質量部の範囲で配合することが好ましく、特に0.5〜15質量部の範囲で配合することが好ましい。
【0096】
前記有機金属塩系難燃剤としては、例えば、フェロセン、アセチルアセトナート金属錯体、有機金属カルボニル化合物、有機コバルト塩化合物、有機スルホン酸金属塩、金属原子と芳香族化合物又は複素環化合物がイオン結合又は配位結合した化合物等が挙げられる。
【0097】
前記有機金属塩系難燃剤の配合量としては、有機金属塩系難燃剤の種類、エポキシ樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合したエポキシ樹脂組成物100質量部中、0.005〜10質量部の範囲で配合することが好ましい。
【0098】
本発明のエポキシ樹脂組成物には、必要に応じて無機質充填材を配合することができる。前記無機質充填材としては、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミ等が挙げられる。前記無機充填材の配合量を特に大きくする場合は溶融シリカを用いることが好ましい。前記溶融シリカは破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合量を高め且つ成形材料の溶融粘度の上昇を抑制するためには、球状のものを主に用いる方が好ましい。更に球状シリカの配合量を高めるためには、球状シリカの粒度分布を適当に調整することが好ましい。その充填率は難燃性を考慮して、高い方が好ましく、例えば、半導体封止材料用途では、エポキシ樹脂組成物の全体量に対して65質量%以上となる範囲であることが特に好ましい。また導電ペーストなどの用途に使用する場合は、銀粉や銅粉等の導電性充填剤を用いることができる。
【0099】
本発明のエポキシ樹脂組成物には、必要に応じて、シランカップリング剤、離型剤、顔料、乳化剤等の種々の配合剤を添加することができる。
【0100】
本発明のエポキシ樹脂組成物は、上記した各成分を均一に混合することにより得られる。本発明のエポキシ樹脂、硬化剤、更に必要により硬化促進剤の配合された本発明のエポキシ樹脂組成物は従来知られている方法と同様の方法で容易に硬化物とすることができる。該硬化物としては積層物、注型物、接着層、塗膜、フィルム等の成形硬化物が挙げられる。
【0101】
本発明のエポキシ樹脂組成物が用いられる用途としては、半導体封止材料、積層板や電子回路基板等に用いられる樹脂組成物、樹脂注型材料、接着剤、ビルドアップ基板用層間絶縁材料、絶縁塗料等のコーティング材料等が挙げられ、これらの中でも、半導体封止材料に好適に用いることができる。
【0102】
本発明のエポキシ樹脂組成物をプリント回路基板用組成物に加工するには、例えばプリプレグ用樹脂組成物とすることができる。該エポキシ樹脂組成物の粘度によっては無溶媒で用いることもできるが、有機溶剤を用いてワニス化することでプリプレグ用樹脂組成物とすることが好ましい。前記有機溶剤としては、メチルエチルケトン、アセトン、ジメチルホルムアミド等の沸点が160℃以下の極性溶剤を用いることが好ましく、単独でも2種以上の混合溶剤としても使用することができる。得られた該ワニスを、紙、ガラス布、ガラス不織布、アラミド紙、アラミド布、ガラスマット、ガラスロービング布などの各種補強基材に含浸し、用いた溶剤種に応じた加熱温度、好ましくは50〜170℃で加熱することによって、硬化物であるプリプレグを得ることができる。この時用いる樹脂組成物と補強基材の質量割合としては、特に限定されないが、通常、プリプレグ中の樹脂分が20〜60質量%となるように調製することが好ましい。また該エポキシ樹脂組成物を用いて銅張り積層板を製造する場合は、上記のようにして得られたプリプレグを、常法により積層し、適宜銅箔を重ねて、1〜10MPaの加圧下に170〜250℃で10分〜3時間、加熱圧着させることにより、銅張り積層板を得ることができる。
【0103】
半導体封止材用に調製されたエポキシ樹脂組成物を作製するためには、エポキシ樹脂と硬化剤、充填剤等の配合剤とを必要に応じて押出機、ニ−ダ、ロ−ル等を用いて均一になるまで充分に混合して溶融混合型のエポキシ樹脂組成物を得ればよい。その際、充填剤としては、通常シリカが用いられるが、その充填率はエポキシ樹脂組成物100質量部当たり、充填剤を30〜95質量%の範囲が用いることが好ましく、中でも、難燃性や耐湿性や耐ハンダクラック性の向上、線膨張係数の低下を図るためには、70質量部以上が特に好ましく、それらの効果を格段に上げるためには、80質量部以上が一層その効果を高めることができる。半導体パッケージ成形としては、該組成物を注型、或いはトランスファー成形機、射出成形機などを用いて成形し、さらに50〜200℃で2〜10時間に加熱することにより成形物である半導体装置を得る方法がある。
【0104】
本発明のエポキシ樹脂組成物をレジストインキとして使用する場合には、例えば該エポキシ樹脂組成物の硬化剤としてカチオン重合触媒を用い、更に、顔料、タルク、及びフィラーを加えてレジストインキ用組成物とした後、スクリーン印刷方式にてプリント基板上に塗布した後、レジストインキ硬化物とする方法が挙げられる。
【0105】
本発明のエポキシ樹脂組成物を導電ペーストとして使用する場合には、例えば、微細導電性粒子を該エポキシ樹脂組成物中に分散させ異方性導電膜用組成物とする方法、室温で液状である回路接続用ペースト樹脂組成物や異方性導電接着剤とする方法が挙げられる。本発明の硬化性樹脂組成物からビルドアップ基板用層間絶縁材料を得る方法としては例えば、ゴム、フィラーなどを適宜配合した当該硬化性樹脂組成物を、回路を形成した配線基板にスプレーコーティング法、カーテンコーティング法等を用いて塗布した後、硬化させる。その後、必要に応じて所定のスルーホール部等の穴あけを行った後、粗化剤により処理し、その表面を湯洗することによって、凹凸を形成させ、銅などの金属をめっき処理する。前記めっき方法としては、無電解めっき、電解めっき処理が好ましく、また前記粗化剤としては酸化剤、アルカリ、有機溶剤等が挙げられる。このような操作を所望に応じて順次繰り返し、樹脂絶縁層及び所定の回路パターンの導体層を交互にビルドアップして形成することにより、ビルドアップ基盤を得ることができる。但し、スルーホール部の穴あけは、最外層の樹脂絶縁層の形成後に行う。また、銅箔上で当該樹脂組成物を半硬化させた樹脂付き銅箔を、回路を形成した配線基板上に、170〜250℃で加熱圧着することで、粗化面を形成、メッキ処理の工程を省き、ビルドアップ基板を作製することも可能である。
【0106】
本発明の硬化性樹脂組成物からビルドアップ用接着フィルムを製造する方法は、例えば、本発明の硬化性樹脂組成物を、支持フィルム上に塗布し樹脂組成物層を形成させて多層プリント配線板用の接着フィルムとする方法が挙げられる。
【0107】
本発明の硬化性樹脂組成物をビルドアップ用接着フィルムに用いる場合、該接着フィルムは、真空ラミネート法におけるラミネートの温度条件(通常70℃〜140℃)で軟化し、回路基板のラミネートと同時に、回路基板に存在するビアホール或いはスルーホール内の樹脂充填が可能な流動性(樹脂流れ)を示すことが肝要であり、このような特性を発現するよう上記各成分を配合することが好ましい。
【0108】
ここで、多層プリント配線板のスルホールの直径は通常0.1〜0.5mm、深さは通常0.1〜1.2mmであり、通常この範囲で樹脂充填を可能とするのが好ましい。なお回路基板の両面をラミネートする場合はスルーホールの1/2程度充填されることが望ましい。
【0109】
上記した接着フィルムを製造する方法は、具体的には、ワニス状の本発明の硬化性樹脂組成物を調製した後、支持フィルムの表面に、このワニス状の組成物を塗布し、更に加熱、あるいは熱風吹きつけ等により有機溶剤を乾燥させて硬化性樹脂組成物の層(α)を形成させることにより製造することができる。
【0110】
形成される層(α)の厚さは、通常、導体層の厚さ以上とする。回路基板が有する導体層の厚さは通常5〜70μmの範囲であるので、樹脂組成物層の厚さは10〜100μmの厚みを有するのが好ましい。
【0111】
なお、前記層(α)は、後述する保護フィルムで保護されていてもよい。保護フィルムで保護することにより、樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。
【0112】
前記した支持フィルム及び保護フィルムは、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、更には離型紙や銅箔、アルミニウム箔等の金属箔などを挙げることができる。なお、支持フィルム及び保護フィルムはマッド処理、コロナ処理の他、離型処理を施してあってもよい。
【0113】
支持フィルムの厚さは特に限定されないが、通常10〜150μmであり、好ましくは25〜50μmの範囲で用いられる。また保護フィルムの厚さは1〜40μmとするのが好ましい。
【0114】
上記した支持フィルムは、回路基板にラミネートした後に、或いは加熱硬化することにより絶縁層を形成した後に、剥離される。接着フィルムを加熱硬化した後に支持フィルムを剥離すれば、硬化工程でのゴミ等の付着を防ぐことができる。硬化後に剥離する場合、通常、支持フィルムには予め離型処理が施される。
【0115】
次に、上記のようして得られた接着フィルムを用いて多層プリント配線板を製造する方法は、例えば、層(α)が保護フィルムで保護されている場合はこれらを剥離した後、層(α)を回路基板に直接接するように、回路基板の片面又は両面に、例えば真空ラミネート法によりラミネートする。ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。またラミネートを行う前に接着フィルム及び回路基板を必要により加熱(プレヒート)しておいてもよい。
【0116】
ラミネートの条件は、圧着温度(ラミネート温度)を好ましくは70〜140℃、圧着圧力を好ましくは1〜11kgf/cm2(9.8×10〜107.9×10N/m2)とし、空気圧20mmHg(26.7hPa)以下の減圧下でラミネートすることが好ましい。
【0117】
本発明の硬化物を得る方法としては、一般的な硬化性樹脂組成物の硬化方法に準拠すればよいが、例えば加熱温度条件は、組み合わせる硬化剤の種類や用途等によって、適宜選択すればよいが、上記方法によって得られた組成物を、室温〜250℃程度の温度範囲で加熱すればよい。
【0118】
従って、該フェノール樹脂を用いることによって、フェノール樹脂の溶剤溶解性が飛躍的に向上し、さらに硬化物とした際、耐熱性と低熱膨張率が発現でき、最先端のプリント配線板材料に適用できる。また、該フェノール樹脂は、本発明の製造方法にて容易に効率よく製造する事が出来、目的とする前述の性能のレベルに応じた分子設計が可能となる。
【0119】
本発明の硬化物を得る方法としては、一般的なエポキシ樹脂組成物の硬化方法に準拠すればよいが、例えば加熱温度条件は、組み合わせる硬化剤の種類や用途等によって、適宜選択すればよいが、上記方法によって得られた組成物を、室温〜250℃程度の温度範囲で加熱すればよい。成形方法などもエポキシ樹脂組成物の一般的な方法が用いられ、特に本発明のエポキシ樹脂組成物に特有の条件は不要である。
【実施例】
【0120】
次に本発明を実施例、比較例により具体的に説明するが、以下において「部」及び「%」は特に断わりのない限り重量基準である。150℃における溶融粘度(ICI粘度)は、ASTM D4287に準拠して実施した。また、GPCは下記の条件にて測定した。
[GPCの測定条件]
測定装置 :東ソー株式会社製「HLC−8220 GPC」、
カラム:東ソー株式会社製ガードカラム「HXL−L」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G3000HXL」
+東ソー株式会社製「TSK−GEL G4000HXL」
検出器: RI(示差屈折径)
データ処理:東ソー株式会社製「GPC−8020モデルIIバージョン4.10」
測定条件: カラム温度 40℃
展開溶媒 テトラヒドロフラン
流速 1.0ml/分
標準 : 前記「GPC−8020モデルIIバージョン4.10」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
(使用ポリスチレン)
東ソー株式会社製「A−500」
東ソー株式会社製「A−1000」
東ソー株式会社製「A−2500」
東ソー株式会社製「A−5000」
東ソー株式会社製「F−1」
東ソー株式会社製「F−2」
東ソー株式会社製「F−4」
東ソー株式会社製「F−10」
東ソー株式会社製「F−20」
東ソー株式会社製「F−40」
東ソー株式会社製「F−80」
東ソー株式会社製「F−128」
試料 : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)。
【0121】
合成例1〔エポキシ樹脂(a−1)の合成〕
温度計、冷却管、分留管、窒素ガス導入管、撹拌器を取り付けたフラスコに、o−クレゾール432.4g(4.00モル)と2−メトキシナフタレン158.2g(1.00モル)と41質量%ホルムアルデヒド水溶液179.3g(2.45モル)を仕込み、シュウ酸9.0gを加えて、100℃まで昇温し100℃で3時間反応させた。ついで、水を分留管で捕集しながら41%ホルムアルデヒド水溶液73.2g(1.00モル)を1時間かけて滴下した。滴下終了後、150℃まで1時間で昇温し、更に150℃で2時間反応させた。反応終了後、更にメチルイソブチルケトン1500gを加え、分液ロートに移し水洗した。次いで洗浄水が中性を示すまで水洗後、有機層から未反応のo−クレゾールと2−メトキシナフタレン、及びメチルイソブチルケトンを加熱減圧下に除去し、フェノール樹脂を得た。得られたフェノール樹脂の水酸基当量は164g/eq.であった。
更に、温度計、滴下ロート、冷却管、撹拌機を取り付けたフラスコに、窒素ガスパージを施しながら、得られたフェノール樹脂(A−1)を164g(水酸基1当量)、エピクロルヒドリン463g(5.0モル)、n−ブタノール139g、テトラエチルベンジルアンモニウムクロライド2gを仕込み溶解させた。65℃に昇温した後、共沸する圧力まで減圧して、49%水酸化ナトリウム水溶液90g(1.1モル)を5時間かけて滴下した。その後、同条件で0.5時間撹拌を続けた。この間、共沸によって留出してきた留出分をディーンスタークトラップで分離し、水層を除去し、油層を反応系内に戻しながら、反応を行った。その後、未反応のエピクロルヒドリンを減圧蒸留によって留去させた。それで得られた粗エポキシ樹脂にメチルイソブチルケトン590gとn−ブタノール177gとを加え溶解した。更にこの溶液に10%水酸化ナトリウム水溶液10gを添加して80℃で2時間反応させた後に洗浄液のPHが中性となるまで水150gで水洗を3回繰り返した。次いで共沸によって系内を脱水し、精密濾過を経た後に、溶媒を減圧下で留去して、エポキシ樹脂(a−1)を得た。得られたエポキシ樹脂のエポキシ当量は250g/eq.であった。
【0122】
合成例2〔エポキシ樹脂(a−2)の合成〕
温度計、冷却管、分留管、窒素ガス導入管、撹拌器を取り付けたフラスコに、o−クレゾール432.4g(4.00モル)と2−メトキシナフタレン158.2g(1.00モル)と41%ホルムアルデヒド水溶液292.7g(4.00モル)を仕込み、シュウ酸9.0gを加えて、100℃まで昇温し100℃で3時間反応させた。ついで、水を分留管で捕集しながら41質量%ホルムアルデヒド水溶液73.2g(1.00モル)を1時間かけて滴下した。滴下終了後、150℃まで1時間で昇温し、更に150℃で2時間反応させた。反応終了後、更にメチルイソブチルケトン1500gを加え、分液ロートに移し水洗した。次いで洗浄水が中性を示すまで水洗後、有機層から未反応のo−クレゾールと2−メトキシナフタレン、及びメチルイソブチルケトンを加熱減圧下に除去し、フェノール樹脂を得た。得られたフェノール樹脂の水酸基当量は170g/eq.であった。
更に、温度計、滴下ロート、冷却管、撹拌機を取り付けたフラスコに、窒素ガスパージを施しながら、得られたフェノール樹脂170g(水酸基1当量)を用いた以外は合成例1と同様にしてエポキシ樹脂(a−2)を得た。得られたエポキシ樹脂のエポキシ当量は274g/eq.であった。
【0123】
合成例3 〔エポキシ樹脂(a−3)の合成〕
温度計、冷却管、分留管、撹拌器を取り付けたフラスコに、フェノール141.2g(1.5と2−メトキシナフタレン79.1g(0.50モル)と92質量%パラホルムアルデヒド32.6g(ホルムアルデヒド単位1.00モル)を仕込み、シュウ酸5.0gを加えて、100℃まで1時間で昇温した。昇温後100℃で2時間反応させた。反応終了後、更にメチルイソブチルケトン700gを加え、分液ロートに移し水洗した。次いで洗浄水が中性を示すまで水洗後、有機層から未反応のフェノールと2−メトキシナフタレン、及びメチルイソブチルケトンを加熱減圧下に除去し、フェノール樹脂を得た。これの水酸基当量は200g/eq.であった。
更に温度計、滴下ロート、冷却管、撹拌機を取り付けたフラスコに、窒素ガスパージを施しながら、得られたフェノール樹脂200g(水酸基1当量)に変更した以外は合成例1と同様にしてエポキシ樹脂(a−3)を得た。得られたエポキシ樹脂のエポキシ当量は290g/eq.であった。
【0124】
実施例1(エポキシ樹脂(A−1)の製造方法)
合成例1で得られたエポキシ樹脂(a−1)179.5g、合成例2で得られたエポキシ樹脂(a−2)76.9g、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド30.2gを仕込んだ。仕込み後、90℃に昇温し、トリフェニルホスフィン0.020部添加して150℃にて7時間反応させて、リン原子含有量1.5重量%でエポキシ当量が334g/eq、軟化点84℃、溶融粘度(ICI粘度、150℃)5.4dPa・sである目的樹脂を得た。以下、これをエポキシ樹脂(A−1)と略記する。得られたエポキシ樹樹脂のGPCチャートを図1に示す。
【0125】
実施例2(エポキシ樹脂(A−2)の製造方法)
実施例1において、用いるエポキシ樹脂を、合成例1で得られたエポキシ樹脂(a−1)を250g、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド65gを仕込んだ以外は同様にして、リン原子含有量3.0重量%でエポキシ当量が452g/eqである目的樹脂を得た。以下、これをエポキシ樹脂(A−2)と略記する。
【0126】
実施例3(エポキシ樹脂(A−3)の製造方法)
実施例1において、用いるエポキシ樹脂を、合成例1で得られたエポキシ樹脂(a−1)を250g、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド14gを仕込んだ以外は同様にして、リン原子含有量0.7重量%でエポキシ当量が282g/eqである目的樹脂を得た。以下、これをエポキシ樹脂(A−3)と略記する。
【0127】
実施例4(エポキシ樹脂(A−4)の製造方法)
実施例1において、用いるエポキシ樹脂を、合成例3で得られたエポキシ樹脂(a−3)290gと9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド40gを仕込んだ以外は同様にして、リン原子含有量1.7重量%でエポキシ当量が405g/eqである目的樹脂を得た。以下、これをエポキシ樹脂(A−4)と略記する。
【0128】
比較合成例1
攪拌装置、温度計、冷却管、窒素ガス導入装置を備えた4つ口のガラス製セパラブルフラスコに、エポキシ当量204g/eqのオルソクレゾールノボラック型エポキシ樹脂 843g、ビスフェノールA 16.0gを仕込み、窒素ガスを導入しながら攪拌を行い、加熱を行って溶解した。触媒としてトリフェニルホスフィン0.02gを添加して150℃で3時間反応した後、前記HCA 141.0gを添加して更に反応を行った。リン含有量2.0重量%でエポキシ当量が299g/eqである目的樹脂を得た。以下、これをエポキシ樹脂(A−5)と略記する。
【0129】
実施例5〜10と比較例1
第1表に示した配合で、エポキシ樹脂組成物(ワニス)を調整し、下記の如き条件で硬化させて両面銅張り積層板を作製し、各種の試験を行った。尚、表中、「TD−2090」はフェノールノボラック樹脂(DIC株式会社製「PHENOLITE 2090−60M」水酸基当量104g/eq.)、「LA−7054」はアミノトリアジンノボラック樹脂(DIC株式会社製「PHENOLITE 7054」、水酸基当量 125g/eq.)を示し、それぞれの表に記載された値は固形分の質量を表す。
表中の水酸化アルミニウムとしては、住友化学製、商品名:CL−303を用いた。
【0130】
[ワニスの調整]
ワニスは、予めエポキシ樹脂をメチルエチルケトンに溶解し、次いで予めメチルエチルケトンに溶解させておいた硬化剤(ジシアンジアミドの場合はN,N’−ジメチルホルムアミドに溶解)と硬化促進剤(2−エチル−4−メチルイミダゾール)を加え、溶解(又は分散)させ、最終的に組成物の不揮発分が58質量%なる混合溶液を調整した。硬化促進剤量はプリプレグのゲルタイムが170℃で120秒になる割合にした。
[積層板作製条件]
基材:100μm;日東紡績株式会社製ガラスクロス「#2116」
プライ数:6
プリプレグ化条件:160℃/2分
銅箔::18μm;日鉱金属株式会社製 JTC箔
硬化条件:200℃、40kg/cmで1.5時間
成型後板厚:0.8mm
【0131】
[物性試験条件]
得られた各々の積層板について、耐湿耐半田性、半田フロート、オーブン耐熱性、ピール強度、誘電率、誘電正接、難燃性の各物性を試験した。
耐湿耐半田性:
PCT(プレッシャークッカー試験)にて121℃/湿度100%で処理した後、
260℃のハンダ浴に30秒浸漬させてその状態を観察した。
判定基準:○変化なし、△ミーズリングあり、×ふくれ発生
半田フロート
288℃に加熱した半田浴に積層板を放置し、表面に膨れが発生するまでの時間を調べた。(最長60分まで評価)
オーブン耐熱性:
288℃の乾燥機に2時間放置し、積層板表面の膨れの有無を確認した。
ピール強度:
JIS−K6481に準拠。
誘電率、誘電正接:
JIS−C−6481に準拠した方法により、アジレント・テクノロジー株式会社製インピーダンス・マテリアル・アナライザ「HP4291B」により、絶乾後、23℃、湿度50%の室内に24時間保管した後の硬化物の周波数100MHzにおける誘電率と誘電正接を測定した。
燃焼試験: UL−94垂直試験に準拠。
ガラス転移温度:エッチング処理を施し銅箔除去した後、DMA法にて測定(昇温スピード3℃/min)
【0132】
【表1】


【特許請求の範囲】
【請求項1】
エポキシ樹脂(A)と硬化剤(B)を必須成分とするエポキシ樹脂組成物であって、
前記エポキシ樹脂(A)が、
グリシジルオキシ基含有芳香族炭化水素基(E)、
アルコキシ基含有縮合多環式芳香族炭化水素基(X)、並びに、
メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(Y)の各構造部位を有しており、かつ、
前記グリシジルオキシ基含有芳香族炭化水素基(E)及び前記アルコキシ基含有縮合多環式芳香族炭化水素基(X)が、前記メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(Y)を介して結合した構造を分子構造内に有するエポキシ樹脂(a1)と、
活性水素原子含有芳香族系ホスフィン化合物(a2)とを反応させて得られる分子構造を有するエポキシ樹脂であることを特徴とするエポキシ樹脂組成物。
【請求項2】
前記活性水素原子含有芳香族系ホスフィン化合物(a2)が、下記構造式a2−1
【化1】

(式中、R1、R2はそれぞれ独立に水素原子又は炭素原子数1〜6のアルキル基を表す。)又は、下記構造式a2−2
【化2】


(式中、R、Rはそれぞれ独立に水素原子又は炭素原子数1〜6のアルキル基を表す。)
で表される化合物である請求項1記載のエポキシ樹脂組成物。
【請求項3】
エポキシ樹脂(A)に占めるリン原子含有量が0.1〜5.0重量%である請求項1記載のエポキシ樹脂組成物。
【請求項4】
エポキシ樹脂(A)のエポキシ当量が250〜700g/eqである請求項1記載のエポキシ樹脂組成物。
【請求項5】
前記エポキシ樹脂(A)及び硬化剤(B)に加え、更に無機充填剤(C)を含有することを特徴とする請求項1記載のエポキシ樹脂組成物。
【請求項6】
硬化剤(B)が、ジシアンジアミド、ノボラック樹脂、窒素原子含有フェノール化合物からなる群から選択されるものである請求項1記載のエポキシ樹脂組成物。
【請求項7】
請求項1〜6の何れか1つに記載のエポキシ樹脂組成物を硬化させてなる硬化物。
【請求項8】
請求項1〜6の何れか1つに記載のエポキシ樹脂組成物を用いることを特徴とする回路基板。
【請求項9】
請求項1〜6の何れか1つにエポキシ樹脂組成物を用いることを特徴とするビルドアップ材料
【請求項10】
請求項1〜6の何れか1つに記載のエポキシ樹脂組成を用いることを特徴とする半導体封止材料。
【請求項11】
グリシジルオキシ基含有芳香族炭化水素基(E)、
アルコキシ基含有縮合多環式芳香族炭化水素基(X)、並びに、
メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(Y)の各構造部位を有しており、かつ、
前記グリシジルオキシ基含有芳香族炭化水素基(E)及び前記アルコキシ基含有縮合多環式芳香族炭化水素基(X)が、前記メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(Y)を介して結合した構造を分子構造内に有するエポキシ樹脂(a1)と
活性水素原子含有芳香族系ホスフィン化合物(a2)とを反応させて得られる分子構造を有することを特徴とするエポキシ樹脂。
【請求項12】
前記から活性水素原子含有芳香族系ホスフィン化合物(a2)が、下記構造式a2−1
【化3】

(式中、R1、R2はそれぞれ独立に水素原子又は炭素原子数1〜6のアルキル基を表す。)又は、下記構造式a2−2
【化4】


(式中、R、Rはそれぞれ独立に水素原子又は炭素原子数1〜6のアルキル基を表す。)
で表される化合物である請求項11記載のエポキシ樹脂。

【図1】
image rotate


【公開番号】特開2011−21050(P2011−21050A)
【公開日】平成23年2月3日(2011.2.3)
【国際特許分類】
【出願番号】特願2009−164594(P2009−164594)
【出願日】平成21年7月13日(2009.7.13)
【出願人】(000002886)DIC株式会社 (2,597)
【Fターム(参考)】