説明

オンチップ光導波路を用いた光電子スイッチ

本発明の実施形態は、光電子ネットワークスイッチに向けられている。1実施形態では、光電子スイッチは、1組のほぼ平行な入力導波路と、該入力導波路にほぼ垂直に配置されたほぼ平行な1組の出力導波路を備える。該出力導波路の各々は該1組の入力導波路と交差する。光電子スイッチは、1つ以上の入力導波路上を伝送する1つ以上の光信号を1つ以上の交差する出力導波路へと切り換えるように構成された少なくとも1つのスイッチ素子を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、光電デバイス、特に、光電スイッチに向けられている。
【背景技術】
【0002】
交換網(またはスイッチ網)は、プロセッサ、メモリ、回路基板、サーバ、記憶サーバ(ストレージサーバ)、外部ネットワーク接続、または、他の任意のデータ処理、データ記憶装置、またはデータ送信装置を含む、種々の種類のノードの入力ポートに出力ポートからデータを送るために利用されている。大規模なコンピュータシステムでは、スケーラブルなパケット交換ネットワークがポートを接続するために使用される。多数のポートに拡張可能な交換網を構築するために、基本となるスイッチ要素(または、交換機要素。以下同じ)が、可能な限り多くの入力及び出力を有することが望ましい。このことは、交換網が全てのポートをカバーすることができ、かつ、該交換網をより少ない段数で構成できることを意味する。ClosネットワークなどのNlog(N)の成長特性を有する交換網では、これは、底(基数)が高いルータ(high radix router)と呼ばれる。というのは、スイッチ要素のサイズが大きいと、ネットワークの複雑さにおける対数成長項を減少させるからである。電子デバイスが交換処理に使用される場合には、それぞれのスイッチ要素の全体的な外部帯域幅が制限されるために、システム設計者は、スイッチをオン及びオフするチャンネルの数とチャンネルの帯域幅との間で妥協を強いられる。たとえば、同じシリコン技術は、各チャンネルが40Gbit/sで動作する64×64スイッチ、または、各チャンネルが160Gbit/sで動作する16×16スイッチを実施することができる。この制約は、1つのパッケージにおける信号接続の最大数、及び、信号自体のデータレートから生じる。信号データレートは、電力及び信号の完全性を考慮して決定される。
【0003】
交換網は、しばしば、コンピューティング環境のデータ処理ボトルネックになりうる。典型的な交換網は、たとえば、絶えず高まる、多くのアプリケーションのデータ処理及びデータ伝送の必要性に対応するコンピューティング環境能力の範囲を制限する場合がある。なぜなら、多くの交換網は、「その日のポート率(port-rate)」及び「その日のポートカウント(port-count)」だけに対応するように作製され、かつ、将来のアプリケーションに効果的に対応するために必要になりうるより大きな帯域幅に対応するようには作製されないからである。具体的には、所定のポート間でデータが交換される量及び頻度は、いくつかのポートに対するものの方が他のポートに対するものよりも大きい場合があり、かつ、ほとんどの交換網によって利用される遅延が小さい、金属−信号線を使用すると帯域幅が制限される。その結果、ポート間を伝送させることができるデータ量が、アプリケーションによって各時点で利用されるポートのデータ転送要求に十分に合致しない場合があり、これは、データ処理及び/または伝送遅延をしばしば引き起こす。交換網は、任意の入力を任意の出力に接続するための必要から生じる多数の長い信号線によるチップ内接続を有する。これらの長い信号線は、電子的伝送損失を克服するために必要とされるリピータ(中継器)において大きな電力を消費する。
【0004】
信号線を介して伝送される電子信号に関連する多くの問題は、導波路を介して伝送される光の特定の波長またはチャンネルにおける同じ情報を符号化することによって大幅に低減することができる。第1に、導波路によってはるかに大きな帯域幅が提供されるためにデータ伝送レートを大幅に高めることができる。第2に、導波路を介して伝送される光の単位長さ当たりの劣化または損失は、信号線を介して伝送される電子信号よりもはるかに小さい。したがって、伝送されるビット当たりの電力消費は、導波路を介して光を伝送する場合の方が、信号線を介して同じデータを電子信号で送信する場合よりも小さい。
【0005】
光スイッチの要素(コンポーネント)は、マイクロマシン技術(または微小電気機械システム)、及び磁気光学効果などの種々の異なる技術を用いて構成されている。しかしながら、これらのスイッチは、全て回線スイッチ(または回線交換機。以下同じ)であって、そのスイッチの構成は、別個の、全体的に電子的な制御プレーンによって実施される。パケットスイッチ(またはパケット交換機。以下同じ)は、入力データストリームに埋め込まれたルーティング情報(経路指定情報)にしたがって接続を行う能力によって回線スイッチと区別される。パケットスイッチは、典型的には、要求された出力が使用されているときには入力データのバッファリングを可能にする。多くの電子パケットスイッチが構築されている。しかしながら、これらのネットワークスイッチは、将来のより高性能の処理の要求を満たすように拡張する能力に制限がある。2つの制限要因がある。第1は、パッケージング技術(実装技術)によって制限された入力/出力(「IO」)の数と、信号の完全性を考慮することによって制限されたIO速度の両方の点で、ルーターチップをオン及びオフする帯域幅が制限されていることである。第2は、チップ間及びチップ内の通信に必要な電力は、IO数が多くなり、及びデータレート(データ転送速度)が高くなると大幅に増えることである。
【発明の概要】
【発明が解決しようとする課題】
【0006】
技術者は、種々のデータ処理装置、データ格納装置、または、データ伝送装置間でデータを大量に伝送するための媒体(伝達手段)として、データ符号化された光に対応できる高速のネットワークスイッチが必要であることを認識している。
【課題を解決するための手段】
【0007】
本発明の実施形態は、光電子ネットワークスイッチに向けられている。1実施形態では、光電子スイッチは、1組のほぼ平行な入力導波路と、入力導波路にほぼ垂直に配置された1組のほぼ平行な出力導波路を備える。出力導波路の各々は、1組の入力導波路と交差する。光電子スイッチは、1つ以上の入力導波路を伝送する1つ以上の光信号を、交差する1つ以上の出力導波路へと切り換えるように構成された少なくとも1つのスイッチ要素を備える。
【図面の簡単な説明】
【0008】
【図1】本発明の実施形態にしたがって構成された第1の光電子ネットワークスイッチの略図である。
【図2A】本発明の実施形態にしたがって構成された第1の回線スイッチ要素の概略及びその動作を示す。
【図2B】本発明の実施形態にしたがって構成された第2の回線スイッチ要素の概略及びその動作を示す。
【図3A】本発明の実施形態にしたがって構成されたパケットスイッチ要素の概略及びその動作を示す。
【図3B】本発明の実施形態にしたがって構成されたパケットスイッチ要素の概略及びその動作を示す。
【図4】本発明の実施形態にしたがって構成された第2の光電子ネットワークスイッチの略図である。
【図5】本発明の実施形態にしたがって構成された2×2パケットスイッチ要素の略図である。
【図6】本発明の実施形態にしたがう、4つの1×1スイッチ要素、及び、単一の2×2スイッチ要素を示す。
【図7A】本発明の実施形態にしたがう、2つの個別の光学層に形成された交換要素の組立分解等角図である。
【図7B】本発明の実施形態にしたがう、単一の光学層に形成された交換要素の等角図である。
【図8A】本発明の実施形態にしたって構成されたマイクロリング共振器、及び、隣接するリッジ導波路の一部との等角図である。
【図8B】本発明の実施形態にしたがうマイクロリングに関する透過率対波長のプロットを示す。
【図9A】本発明の実施形態にしたがって光検出器として使用されるマイクロリング共振器を示す。
【図9B】本発明の実施形態にしたがって、第1の導波路から第2の導波路に光信号を結合するために使用されるマイクロリング共振器を示す。
【図10】本発明の実施形態にしたがって、マイクロリング及びリッジ導波路を囲むドーピング領域の概略を示す平面図である。
【図11】本発明の実施形態にしたがって構成された導波路及び共振空胴を有するフォトニック結晶の平面図である。
【図12A】本発明の実施形態にしたがって構成された共振空胴の等角図である。
【図12B】本発明の実施形態にしたがって構成された第1の電子的に調整可能な共振空胴の断面図である。
【図12C】本発明の実施形態にしたがって構成された第2の電子的に調整可能な共振空胴の断面図である。
【発明を実施するための形態】
【0009】
本発明の種々の実施形態は光電子ネットワークスイッチに向けられている。これらの実施形態は、広帯域のチップ−チップ相互接続のために、電子相互接続よりも必要な電力が少ない直接ナノフォトニック相互接続を使用することによって入力及び出力帯域幅を大幅に高める。さらに、本発明の実施形態は、高密度波長分割多重(Dense Wave Division Multiplexing:DWDM)を利用して多数の光信号をデバイス(装置)に接続する。DWDMは、単一の導波路において異なる波長の光信号を多重化する。ネットワークスイッチは、入力導波路を出力導波路に接続するスイッチ要素(スイッチ素子ともいう。以下同じ)を備え、光信号を複数のポートに分配する。本発明の実施形態は、該スイッチ全体における多くのポイントに光信号を接続する能力を利用して、長い内部電子接続の必要性を排除する。ある距離閾値より上では、チップ上の光通信(オンチップ光通信)は電子通信よりも効率がよい。なぜなら、所与の距離において、光導波路の伝送損失の方が小さいためにリピーターが不要になるからである。
【0010】
本発明の実施形態の説明において、「光信号」という用語は、データを符号化するために、変調されているか、または「オン」及び「オフ」にされている特定の波長の電磁放射を指す。たとえば、光信号の振幅の大きな部分をビット「1」に、該振幅の小さな部分をビット「0」にそれぞれ対応させることができ、または、光信号の「オン」の部分、「オフ」の部分をビット「1」、「0」にそれぞれ対応させることができる。「光信号」は、電磁スペクトルの可視部分だけにある波長に限定されず、赤外部分や紫外部分などの、可視部分以外の波長を有する古典電磁放射及び量子的電磁放射を指す場合もある。同じ材料から構成されるいくつかの構造的に類似の要素(コンポーネント)には、同じ参照番号が付されており、簡略化のために、それらの構造及び機能の説明は繰り返さない。
【0011】
図1は、本発明の実施形態にしたがって構成された光電子ネットワークスイッチ100の略図である。スイッチ100は、8個の垂直な入力導波路102−109の組(8個で1組)、8個の水平な出力導波路110−117の組(8個で1組)、及び、出力導波路110−117にほぼ平行な8個の水平な光パワー導波路(光電力導波路ともいう。以下同じ)118−125の組(8個で1組)を備える。このパワー導波路118−125は、ソース導波路126に光学的に結合され、その結果、光パワーソース(光電力源ともいう。以下同じ)127に光学的に接続されている。入力導波路102−109は、出力導波路及びパワー導波路110−125に対してほぼ垂直に向けられており、各入力導波路は、該出力導波路及びパワー導波路110−125と交差して、図1の破線のボックスで示されているスイッチ要素128などのスイッチ要素を介して出力導波路の各々に光学的に結合されている。図1に示すように、スイッチ100は、スイッチ要素の8×8の配列を備え、各スイッチ要素は、出力導波路と交差する入力導波路を備える。たとえば、スイッチ要素128は、出力導波路113と交差する入力導波路107を備える。スイッチ要素の実施形態については、図2−図3を参照してより詳細に後述する。
【0012】
導波路102−126の各々は、DWDMを使用して複数の光信号を伝送することができる。光パワーソース127は、DWDMを用いて、複数の持続波(または連続波)(「CW」)(すなわち、変調されていない、または、ほぼ一定の振幅及び波長)である光波(光波の各々は異なる波長を有する)をソース導波路126上に出力する。各光波の一部は、パワー導波路118−125の各々中へと結合され、これによって、パワー導波路118−125の各々は、光パワーソース127からの同じ光波出力の組を伝送する。光波は、矢印129によって示される方向にパワー導波路118−125に沿って伝送される。入力導波路102−109は、入力ポート132−139にそれぞれ別個に結合されており、出力導波路118−125は、出力ポート140−147にそれぞれ別個に結合されている。入力光信号は、対応する入力ポート132−139によって入力導波路102−109に配置され、矢印130によって示される方向に伝送される。出力光信号は、スイッチ要素によって出力導波路110−117に配置されて、矢印131によって示される方向に伝送される。入力光信号及び出力光信号は、データ符号化された(すなわち振幅変調された)光信号である。入力ポート及び出力ポート132−147を、プロセッサ、メモリ、回路基板、サーバ、ストレージサーバ(記憶サーバ)、外部ネットワーク接続、他のスイッチ、または、他の任意のデータ処理装置、データ記憶装置、もしくは、データ送信装置に接続することができる。
【0013】
スイッチ100は回線スイッチとして動作することができる。スイッチ100が、入力ポート137から出力ポート143にデータを送信するように指示されているとする。外部スイッチ制御(不図示)がスイッチ要素128を作動させる。入力ポート137は、データを符号化している入力光信号を方向130へと入力導波路107に配置する。スイッチ要素128は、入力光信号と、方向129へとパワー導波路121に沿って伝送された光波とを取り出す。スイッチ要素128は、次に、取り出した光波を変調し、または、「オン」及び「オフ」して、出力光信号を生成することによって、入力光信号中に符号化されたデータを該光波に符号化する。この出力光信号は、方向131へと出力導波路113から出力ポート143まで送信される。
【0014】
光電子ネットワークスイッチの実施形態は、正方形の8×8ネットワークスイッチ100に限定されない。他の実施形態では、スイッチ要素の行及び列の数を、必要に応じて多くしたり少なくしたりすることができる。一般的に、本発明の実施形態はN×Nのネットワークスイッチを備え、ここで、Nは、スイッチ要素の同じ数の行と列を表す正の整数である。他のネットワークスイッチの実施形態では、行の数は列の数とは異なる場合がある。一般に、ネットワークスイッチの実施形態ではM×Nとすることができ、ここで、M、Nは、それぞれ、スイッチ要素の行と列の数を表す正の整数である。
【0015】
図2Aは、本発明の実施形態にしたがって構成された第1の回線スイッチ要素200の略図である。スイッチ要素200は、入力導波路202、出力導波路204、及び、パワー導波路206を備える。入力導波路202は6個の入力共振器207−212に光学的に結合され、パワー導波路206は6個の出力共振器214−219に光学的に結合されており、該出力共振器は、出力導波路204に光学的に結合されている。6個の入力共振器207−212は、受信装置220に電子的に結合された検出器に光学的に結合されている。たとえば、検出器222は、入力共振器207に隣接して該入力共振器に光学的に結合されており、かつ、受信装置220に電子的に結合されている。検出器は、入力共振器207−212に閉じこめられた入力光信号を吸収して、受信機220に送信される対応するデータ符号化された電子信号を生成する。該受信機は、電子相互接続を介して該電子信号を送信機226に送信する。この直接電気接続部は、矢印224などの矢印によって表されている。スイッチ状態コントローラ228は、スイッチ要素用の構成データ(コンフィグレーションデータ)を保持し、どの入力をどの出力に接続するかを決定する。
【0016】
入力共振器207−212及び出力共振器214−219は、それぞれ、電子的に調整可能であって、適切な電圧が印加されると、光学的に結合された導波路に沿って伝搬する光の特定の波長と共振するように構成されている。この場合には、共振器は「オン」にされているという。「オン」にされている各共振器は、エバネッセント結合(evanescent coupling)を介して、導波路から光の少なくとも一部を取り出して、取り出した光をある時間だけ、共振器内に閉じ込める。電圧が「オフ」にされると、共振器の共振波長は、該光の波長から離れる方にシフトし、該光は、光学的に結合された導波路に沿って邪魔されずに伝搬して、共振器を通過する。この場合には、共振器は「オフ」にされているという。入力共振器207−212及び出力共振器214−219の構成及び動作については、下記の「マイクロリング共振器及びリッジ導波路」及び「フォトニック結晶及び共振空胴」というサブセクションでより詳細に説明する。
【0017】
スイッチ要素200の動作を特定の例を参照してこれから説明する。以下の説明では、特定の波長の光波がλによって表され、同じ波長のデータ符号化された入力光信号または出力光信号は、
【数1】


によって表される。さらに、全ての入力光信号がデータを伝送するために使用され、全てのパワー信号が同じデータを符号化している出力光信号を生成するために使用される。入力共振器207−212及び出力共振器214−219は、「オン」にされると、6個の異なる波長λ、λ、λ、λ、λ、及びλの1つとそれぞれ共振するように構成されている。図2Aに示すように、パワー導波路206は、光パワーソース(不図示)からの6個の光波出力を伝送する。6個の共振器207−212は、「オン」にされて、導波路202からの6個の入力光信号
【数2】


とそれぞれエバネッセント結合(または一時的に結合)する。6個の入力光信号は、出力導波路204に接続された出力ポート(不図示)に送られるデータを符号化する。対応する検出器は、共振器207−212中で共振している6個の入力光信号を、直接電気接続部を介して送信機226に送られる6個の電子信号に変換する。リタイミングロジック230が、送信機における電子信号の到着を同期化するために使用される。なぜなら、入力信号は、それらが入力導波路202から取り出されるときには位相が異なっている場合があるからである。送信機226は、データを6個の波長λ、λ、λ、λ、λ、及びλに符号化して、出力導波路204に沿って送信される6個の出力光信号
【数3】


を生成する。
【0018】
6個の光波へのデータの符号化は、出力共振器214−219へと送信される電子信号の「0」及び「1」ビットにしたがって出力共振器214−219を「オン」及び「オフ」することによって達成できる。たとえば、出力共振器214が、ビット「0」に対応する時間期間だけ「オン」にされると、出力共振器214は、光波λの少なくとも一部をパワー導波路206から出力導波路204へとエバネッセント結合(または一時的に結合)する。出力共振器214が、ビット「1」に対応する時間期間だけ「オフ」にされると、光波λは出力共振器214を邪魔されずに通過する。結果物232は、入力光信号によって伝送されるデータを符号化している振幅変調された、または、「オン」及び「オフ」する出力光信号
【数4】


である。
【0019】
いくつかの実施形態では、入力光信号の波長を出力光信号の波長に対応させる(または同じにする)ことができるが、他の実施形態では、入力光信号の波長を出力光信号の波長に対応させる(または同じにする)必要はないことに留意されたい。たとえば、いくつかの実施形態では、入力光信号
【数5】


によって伝送されるデータを、光波λに符号化して、同じデータを伝送する出力信号
【数6】


を生成することができるが、他の実施形態では、入力光信号
【数7】


を光波λに符号化して、同じデータを伝送する出力信号
【数8】


を生成することができる。
【0020】
図2Bは、本発明の実施形態にしたがって構成された第2の回線スイッチ要素250の略図である。スイッチ要素250は、該スイッチ250が、受信機220及び送信機226に電子的に結合された電子クロスバー252を備える点を除いてスイッチ要素200とほぼ同じである。電子クロスバー252は、スイッチ状態コントローラ228によって制御されて、受信機220からの電子信号出力を送信機226へと(経路指定して)送る。
【0021】
スイッチ要素250を用いて、6個の全ての入力光信号に符号化されたデータによって生成された電気信号を転送し、図2Aを参照して説明したように、6個の全ての出力信号に符号化されたデータを生成することができる。他の実施形態では、6個の全ての入力光信号におけるデータを受信して全ての出力光信号を使用するのではなく、スイッチ要素250を用いて、いくつかの入力光信号に符号化されたデータを受信して、それとは異なる数の出力光信号におけるデータを出力することができる。たとえば、入力ポート(不図示)は、入力光信号
【数9】


を入力導波路202に配置する。これらの2つの入力光信号
【数10】


は、出力導波路204に結合された出力ポート(不図示)に向けて送られるデータで符号化される。図2Bに示すように、共振器208及び210が「オン」にされているときは、入力光信号
【数11】


は入力導波路202からエバネッセント結合(または一時的に結合)される。対応する検出器は、入力光信号
【数12】


を同じデータを符号化している電子信号に変換して、該電子信号を受信機220に送信する。電子クロスバー224は、受信機220からこの電子信号を受信して、この電子信号を送信機226に向けて送る。入力光信号の伝送(送信)のタイミング(または時刻)は同期していない場合があるので、スイッチ要素200は、送信機226への電子信号の伝送を同期化するためのリタイミングロジック230を備えることができる。送信機226は、データを3つの波長λ、λ、及びλに符号化して、出力導波路204に沿って伝送される出力光信号
【数13】


を生成する。
【0022】
スイッチ要素200の直接電子相互接続と、スイッチ要素250の電子クロスバーは、受信機220から送信機226に電気信号を送信するために使用できる多くの異なる種類の電気的相互接続のうちの2つに過ぎないことに留意されたい。
【0023】
一般に、スイッチ要素の実施形態を、任意の数の入力光信号においてデータを受信して、任意の数の出力光信号においてデータを出力するように構成することができる。図2を参照して説明した例とは異なり、いくつかの実施形態では、スイッチ要素の共振器を、1組の波長を有する入力光信号を受信して、それとは異なる組の波長を有する出力光信号を生成するように構成することができる。さらに、スイッチ要素の実施形態は、6個の入力共振器と6個の出力共振器に限定されない。他の実施形態では、任意の好適な数の入力共振器及び出力共振器を使用することができ、入力共振器の数を、出力共振器の数とは異なるものとすることができる。
【0024】
スイッチ100を、各スイッチ要素にデータパケットバッファを設けることによってデータパケットスイッチとして動作させることもできる。アービトレーションを用いて、複数の入力パケットのうちのどれを特定の出力ポートに送信するかを選択することができる。図3A−図3Bは、本発明の実施形態にしたがってデータパケットを伝送するように構成されたパケットスイッチ要素300の略図である。スイッチ要素300は、電子相互接続252が、電子相互接続とパケットバッファ302の組み合わせによって置き換えられている点を除いてスイッチ要素250とほぼ同じである。パケットバッファを、出力ポートへの送信を待っているパケットを格納するために確保された追加のメモリ空間とすることができる。図3Aに示すように、第1の段階では、スイッチ要素は、共振器207を「オン」にするようにアービトレーション304によって指示される。光信号λ’は、入力導波路202からマイクロリング207へとエバネッセント結合(または、一時的に結合)され、スイッチ要素300は、残りの共振器208−212を「オン」にすることによって入力光信号を受信する準備をする。図3Bに示すように、第2の段階では、入力光信号
【数14】


は、共振器207−212にエバネッセント結合され(または一時的に結合され)、スイッチ要素300は、図2Aを参照して上述したように、出力光信号
【数15】


において同じデータパケットを出力する。他の実施形態では、データパケットを、図2Bを参照して上述したように、いくつかの入力光信号を用いて送信し、異なるかもしくは同じ出力光信号において出力することができる。
【0025】
いくつかの実施形態では、出力ポートがビジーでない(または使用中でないとき)は、直ちにパケットを、「カットスルー(cut-through)」と呼ばれる技術を使って出力ポートに向けて送ることができる。代替的には、出力ポートが他の入力ポートによって使用中であるときに、パケットをパケットバッファに格納して、出力ポートが利用可能になったときに送信する。アービトレーション304を用いて、パケットを要求している可能性のある任意のスイッチ要素の中からスイッチ要素が選択される。
【0026】
図1を参照すると、いくつのスイッチの実施形態では、光パワーの消費を低減するために、データを2つの段階で送ることができる。第1の段階では、スイッチ要素の各々が異なる共振器を「オン」にして、第1の時間間隔内で対応する光信号を受信するのを待つ。スイッチ要素は全て、出力ポートを特定する同じ光信号を受信する。しかしながら、光信号は、選択された出力ポートに結合されたスイッチ要素の特定の共振器と共振する。このスイッチ要素は、第2の段階中、いくつかの入力光信号に符号化されたデータを受信する準備をすることによって応答する。残りのスイッチ要素は、光信号の共振に整合する共振器を「オン」にしなかったので、それらのスイッチ要素は、第1の時間間隔中に光信号を受信せず、それらの共振器を「オフ」にすることによって応答し、第2の段階中にデータが送信されるのを待つ。たとえば、最初に、8個の異なるスイッチ要素150−157の各々が異なる共振器を「オン」にする。それらの共振器の各々は、波長λ、λ、λ、λ、λ、λ、λ、及びλを有する8個の異なる光信号のうちの1つに対応することができる。入力ポート136が出力ポート145にデータを送信する場合を考える。入力ポート136は、スイッチ要素155によって「オン」にされた共振器と共振する波長の(1個のパルスなどの)単一の光信号を出力する。光信号を受信すると、スイッチ要素155は、それの対応する共振器を「オン」にすることによって応答して、入力ポート136からの入力光信号を受信するのを待ち、一方、残りのスイッチ要素150−154、156、及び157は、それらの対応する入力共振器を「オフ」にする。第2の段階では、入力ポート136は入力光信号を送信し、該入力光信号はスイッチ要素155によって受信されて、出力ポート145に送信される。
【0027】
他のスイッチの実施形態では、単一のアドレス光信号を用いて、選択された出力ポートに結合されたスイッチ要素を作動させることができる。たとえば、第1の段階において、出力ポート140−147の各々に異なるアドレスを割り当てることができる。全てのスイッチ要素150−157は、アドレス光信号の波長と共振する共振器を「オン」にして、該アドレス光信号を受信するのを待つことができる。入力ポートは、導波路106を介して出力ポート145のアドレスをアドレス光信号において送信する。スイッチ要素155は、アドレス光信号を受信して、入力光信号を受信する準備をする。残りのスイッチ要素150−154、156及び157もアドレス光信号を受信するが、該アドレスは、それらが光学的に結合された出力ポートのアドレスとは一致しないので、それらの残りのスイッチ要素150−154、156及び157は、それらの入力共振器を「オフ」にすることによって応答する。第2の段階では、入力ポート136が入力光信号を送信し、該入力光信号は、スイッチ要素155によって受信されて出力ポート145に送信される。
【0028】
光電子ネットワークスイッチの実施形態は、各入力導波路と出力導波路の交差ポイントにおいて単一のスイッチ要素を使用することに限定されない。短距離の交換(または切り換え)及び通信が電子的に実行される階層的方式を適用して、共振器、受信機、及び送信機の数を少なくする一方で、入力導波路と出力導波路の数は同じに維持することができる。
【0029】
図4は、本発明の実施形態にしたがって構成された第2の光電子ネットワークスイッチ400の略図である。スイッチ400は、図1を参照して上述したスイッチ100と同じ導波路102−126、光パワーソース127、及びポート132−147を備える。スイッチ100と同様に、スイッチ400のスイッチ要素もまた、入力導波路102−109で受信した入力光信号を出力導波路110−117によって伝送される出力光信号へと切り換える(交換する)。しかしながら、1つの入力導波路によって伝送される入力光信号を出力導波路によって伝送される出力光信号に切り換える(交換する)ために単一のスイッチ要素を使用するのではなく、スイッチ400は、2つの入力導波路のうちの1つによって伝送される入力光信号を2つの出力導波路のうちの1つによって伝送されることができる出力光信号に切り換える(交換する)ために2×2スイッチ要素を使用する。たとえば、2×2スイッチ要素402は、入力導波路104または入力導波路105において入力光信号を受信することができ、及び、出力導波路114または出力導波路115上に対応する出力光信号を配置することができる。
【0030】
図5は、本発明の実施形態にしたがって構成された2×2パケットスイッチ要素500の略図である。スイッチ要素500は、2つの入力導波路502及び504と2つの出力導波路506及び508を備える。入力導波路502及び504の各々は、受信機510及び512にそれぞれ電子的に結合された6個の共振器からなる1組の共振器に光学的に結合される。出力導波路506及び508の各々は、また、パワー導波路514及び516にそれぞれ光学的に結合された6個の共振器からなる1組の共振器に光学的に結合され、及び、送信機518及び520にそれぞれ電子的に結合される。共振器は、図2を参照して上述したように動作する。スイッチ要素500は、受信機510及び512から電子パケットを受信し、パケットバッファにデータパケットを格納し、及び、該パケットを送信機518または送信機520のいずれかに送信する2×2電子相互接続及びパケットバッファ524を備える。それらのパケットは、図2を参照して上述したように、送信機518及び520によって光波に符号化される。他の実施形態では、パケットバッファを除去して、送信機518及び520の各々と2×2電子相互接続及びパケットバッファ524との間に図2を参照して説明したリタイミングロジックを含め、及び図2を参照して上述したスイッチ構成状態を含めることによって回線スイッチ用に2×2パケットスイッチ要素500を変更することができる。
【0031】
図6は、本発明の実施形態にしたがう4つの1×1スイッチ要素601−604と単一の2×2スイッチ要素606を示す。4つの1×1スイッチ要素601−604は、図3を参照して上述した4つの隣接するパケットスイッチ要素を大まかに表している。1×1スイッチ要素601−604の各々は、対応する入力共振器及び出力共振器の組、受信機(R)、送信機(T)、及び、電子相互接続及びパケットバッファ(EI&PB)を備え、合計すると、4つの受信機、4つの送信機、4つの電子相互接続、及び、48個の共振器となることに留意されたい。これとは対照的に、図6はまた、2×2回線スイッチ要素、または、2×2パケットスイッチ要素500を大まかに表す単一の2×2スイッチ要素606を示している。単一の2×2スイッチ要素606は、4つの1×1スイッチ要素601−604によって実行されるのと同じ交換動作を実行することができるが、共振器、受信機、及び送信機の数は半分である。
【0032】
本発明のスイッチ要素の実施形態は、上述した2×2スイッチ要素に限定されない。実際には、スイッチ要素のサイズは、チップ内光通信とチップ内電子通信との間の効率の交差ポイントによって決定される。他の実施形態では、3×3、4×4、5×5、またはより大きなスイッチ要素を含むようにスイッチ要素を拡張することができる。一般的には、M×Nのネットワークスイッチは、M×Nの受信機及びM×Nの送信機を有し、パケットネットワークスイッチの場合には、各アービタは、M個の入力を多重化する必要がある。N×Nのネットワークスイッチを、それと同じ数の入力導波路及び出力導波路に対するP×Qネットワークスイッチで(M>P、N>Qであり、MはPで割り切れ、NはQで割り切れる)置き換えることによって、受信機の数はN/Qに少なくなり、各出力アービタは、M/P個の入力を多重化するだけですむようになる。合計でN×Mのネットワークスイッチは、N×M/P個の受信機とM×N/Q個の送信機を使用する。パケットネットワークスイッチでは、単一の電子相互接続の使用によって、バッファリソースの共有も可能となり、該電子相互接続が、M×NネットワークスイッチのM×N個のバッファ要件を緩和する。
【0033】
いくつかの光電子ネットワークスイッチの実施形態では、入力導波路の組と出力導波路の組を2つの別個の光学層に作製することができる。図7Aは、本発明の実施形態にしたがう2つの別個の光学層に形成されたスイッチ要素200の組立分解等角図である。入力導波路202及び光学的に結合された共振器207−212は第1の光学層702において実施され、出力導波路204、パワー導波路206、及び出力共振器214−219は、第2の光学層704において実施されている。図7Aに示すように、入力、出力、及びパワー導波路202、204、及び206は、リッジ導波路を使用して実施され、入力共振器207−212及び出力共振器214−219は、より詳細に後述するマイクロリング共振器を用いて実施される。他の実施形態では、入力導波路の組及び出力導波路の組を単一の光学層において実施することができる。図7Bは、本発明の実施形態にしたがって単一の光学層706に形成されたスイッチ要素200の等角図である。入力導波路202と出力導波路204及びパワー導波路206とのそれぞれの間の交差部708及び710にはクロストークはほとんど生じない。
【0034】
本発明のスイッチの実施形態は、チップ間通信用に統合化された(または集積化された)光IO構造を使用することによって電子スイッチだけの場合よりも帯域幅及びスイッチのサイズをより大きくするように拡張可能である。これらは、同じデータレート(データ転送速度)で動作する等価な電子IOよりも電力消費が少ない。光学オンチップ相互接続によって接続されたより小さな電子スイッチの配列を用いる階層的内部構造を使用することによって、非常に長いオンチップの電子相互接続を不要にすることができ、一方で、光から電子への変換器、及び電子から光への変換器の使用が最適化される。光スイッチ(光交換機)だけの場合に比べると、本発明の光電子ネットワークスイッチは、パケットスイッチ及びバッファリングを実装する能力があるためによりフレキシブルであるが、これは、多くの汎用計算アプリケーションに対する要件である。
【0035】
マイクロリング共振器及びリッジ導波路
いくつかのシステムの実施形態では、導波路202、204、及び206をリッジ導波路とすることができ、共振器をマイクロリング共振器とすることができる。図8Aは、本発明の実施形態にしたがって構成された、基板806の表面に配置されたマイクロリング共振器802、及び隣接するリッジ導波路804の一部の等角図である。導波路804に沿って伝送される光信号は、該光信号が共振条件neffC=mλを満たすときには、導波路804からマイクロリング802へとエバネッセント結合(または一時的に結合)される。ここで、neffはマイクロリング802の実効屈折率、Cはマイクロリング802の円周、mは整数、λは光信号の波長である。換言すれば、波長λの整数倍である波長を有する光信号は、導波路804からマイクロリング802へとエバネッセント結合(または一時的に結合)される。
【0036】
図8Bは、図8Aに示すマイクロリング802及び導波路804についての透過率対波長のプロットを示す。水平線808は波長軸を表し、垂直線810は透過率軸を表し、曲線812はマイクロリング802を通過するある波長の範囲にわたる光信号の透過率を表す。マイクロリング802を通過する光信号の透過率は、T=Iout/Iinによって定義される。ここで、Iinは、マイクロリング802に到達する前に導波路804に沿って伝搬する光信号の強度であり、Ioutは、マイクロリング802を通過した後に導波路804に沿って伝搬する光信号の強度である。透過率曲線812の最小値814及び816は、波長mλ及び(m+1)λを有する光信号のゼロ透過率に対応し、一定間隔で配置された多くの最小値のうちの2つのみを表している。これらの光信号は、上記の共振条件を満たし、マイクロリング802と「強い共振」状態にあるといわれ、導波路804からマイクロリング802へとエバネッセント結合(または一時的に結合)される。波長mλと(m+1)λの周囲の狭い波長領域では、透過率曲線812は、光信号の波長が波長mλ及び(m+1)λから離れるにしたがい透過率が急激に増加している。換言すれば、共振の強度、並びに、導波路804からマイクロリング802へと結合された光信号の一部は、光信号の波長が波長λの整数倍から離れるにしたがい減少する。領域818−820の波長を有する光信号は、ほぼ邪魔されることなくマイクロリング802を通過する。
【0037】
マイクロリング共振器のエバネッセント結合特性のために、マイクロリング共振器を用いて、隣接する導波路に沿って伝送する特定の光信号を検出すること、すなわち、マイクロリング共振器を用いて、特定の波長の光信号を隣接する一方の導波路から隣接するもう1つの導波路へと結合することができる。図9Aは、本発明の実施形態にしたがって光検出器として使用されるマイクロリング共振器802を示す。マイクロリング802と共振する波長を有する光信号は、導波路804からマイクロリング802へとエバネッセント結合(または一時的に結合)され、ある時間中、導波路802内を循環しながら閉じ込められたままとなる。検出器902は、マイクロリング802に隣接する基板806の表面に配置される。検出器902は、マイクロリング802内を循環している光信号を吸収して、該光信号を、信号線を介して電子装置(電子デバイス)に送信されることができる電子信号に変換する。検出器902を、ゲルマニウム(「Ge」)、または、他の任意の適切な光吸収要素または光吸収化合物から構成することができる。図9Bは、本発明の実施形態にしたがって、光信号を導波路804から第2の導波路904へ結合するために使用されるマイクロリング共振器802を示す。マイクロリング802と共振する波長を有する光信号は、導波路804からマイクロリング802へとエバネッセント結合(または一時的に結合)される。該光信号は、マイクロリング802内を循環し、導波路904へとエバネッセント結合(または一時的に結合)される。該光信号は、導波路804に沿って一方の方向に伝送され、第2の導波路904に結合された光信号は、該一方の方向とは反対の方向に伝送されることに留意されたい。
【0038】
マイクロリング802及び導波路804を囲む基板806の領域に適切な電子供与体及び電子受容体原子または不純物をドーピング(注入)することによって、マイクロリング802を電子的に調整することができる。図10は、本発明の実施形態にしたがう、マイクロリング802及びリッジ導波路804を囲むドーピングされた領域を大まかに表す平面図である。いくつかの実施形態では、マイクロリング802は真性半導体から構成される。p型半導体領域1001を、マイクロリング802の内部の半導体基板に形成することができ、n型半導体領域802及び803を、導波路804の反対側においてマイクロリング802の外側を囲む半導体基板806に形成することができる。p型領域1001とn型領域1002及び1003は、マイクロリング802の周りにp-i-n接合を形成する。他の実施形態では、ドーパントを逆にして、マイクロリング802の内側の基板にn型半導体領域1001を、マイクロリング802の外側を囲む基板にp型半導体領域1002及び1003を形成することができる。
【0039】
適切な電圧がマイクロリングを囲む領域に印加されているときに、隣接する導波路からの光の進路を変更し、または、該光をエバネッセント結合(または一時的に結合)するように、電子的に調整可能なマイクロリング802を構成することができる。たとえば、導波路804に沿って伝搬する波長λの光信号が共振条件を満たさない、すなわち、
【数16】


となるような周囲の長さ(円周の長さ)C及び実効屈折率neff’を有する電子的に制御されるマイクロリング802を構成することができる。この光信号はマイクロリング802を邪魔されずに通過し、この場合、マイクロリング802は「オフ」にされているといわれる。他方で、適切な電圧がマイクロリング802に印加されているときに、実効屈折率neff’が屈折率値neffへとシフトし、光信号が共振条件を満たす、すなわち、
【数17】


となるように、マイクロリング802を適切な材料で形成することができる。光信号は、今や、導波路804からマイクロリング802へと結合されており、この場合、マイクロリング802は「オン」にされているといわれる。電圧がその後「オフ」にされると、マイクロリング802の実効屈折率はneff’にシフトして戻り、同じ光信号が、導波路804に沿って邪魔されずに伝搬する。
【0040】
フォトニック結晶及び共振空胴
いくつかのシステムの実施形態では、導波路がフォトニック結晶導波路であり、共振器が共振空胴である2次元フォトニック結晶を用いて、光電子ネットワークスイッチを実施することができる。フォトニック結晶は、2つ以上の異なる材料からなるフォトニックデバイスであり、該材料は、規則的なパターンで互いに組み合わされると光信号の伝搬特性を変更することが可能な誘電特性を有する。2次元フォトニック結晶を、誘電性スラブまたは半導体スラブに作製された円筒孔の規則的格子(または正則格子)から構成することができる。円筒孔を、スラブの誘電材料とは異なる誘電材料で充填された空気孔(エアホール)または孔とすることができる。2次元フォトニック結晶を、指定された周波数帯内の光信号を反射するように設計することができる。その結果、2次元フォトニック結晶を、該フォトニック結晶のフォトニックバンドギャップ内の周波数を有する光信号の伝搬を阻止するための周波数帯域消去フィルタ(周波数バンドストップフィルタ)として設計して作製することができる。一般的に、円筒孔のサイズ及び相対的な間隔によって、光信号のどの波長が2次元フォトニック結晶中を伝搬するのを阻止されるかが制御される。しかしながら、欠陥を円筒孔の格子に導入して、特定の局在化したコンポーネントを生成することができる。具体的には、「点欠陥」とも呼ばれる共振空胴を作製して、狭い波長範囲の光信号を一時的に閉じこめる共振器を設けることができる。「線欠陥」とも呼ばれる導波路を作製して、フォトニックバンドギャップのある波長範囲内にある波長を有する光信号を伝送することができる。
【0041】
図11は、本発明の実施形態にしたがう、スラブ1106に形成されたフォトニック結晶導波路1102及び共振空胴1104の平面図である。円1108などの円は、スラブ1106の高さにわたる(延在する)孔を表している。選択された円筒孔を削除し、そのサイズを大きくし、または、小さくすることによって、共振空胴を形成することができる。具体的には、共振空胴1104は、円筒孔を削除することによって生成される。フォトニック結晶導波路は、フォトニック結晶バンドギャップの特定の波長範囲内の光信号を導くために使用することができる光伝送路である。列または行に並んだ円筒孔内の所定の円筒孔の直径を変更することによって、または、円筒孔の(いくつかの)行または列を削除することによって、導波路を作製することができる。導波路1102は、円筒孔の1行全体を削除することによって生成される。共振空胴1104を囲んでいる孔並びに導波路1102は、フォトニック結晶バンドギャップの周波数範囲内の光信号を一時的に閉じこめる2次元ブラッグミラーを形成する。網状に分岐する導波路を用いて、フォトニック結晶を通過する種々の異なる経路で光信号を送ることができる。導波路に沿って伝搬する電磁信号の直径をλ/3n(nはスラブの屈折率)ほどに小さくすることができ、一方で、共振空胴の調和モード(または高調波モード)ボリュームを2λ/3nほどに小さくできる。
【0042】
光信号が導波路及び共振空胴をじかに囲む領域に逃れるのを阻止する該導波路及び共振空胴の効果は、100%より小さい場合がある。たとえば、導波路に沿って伝搬するフォトニックバンドギャップにおけるある周波数範囲内の光信号は、導波路を囲む領域に拡散する傾向もある。導波路1102または共振空胴1104を囲んでいる領域に入る光信号は、「エバネッセンス(evanescence)」と呼ばれるプロセスにおいて振幅が指数関数的に減衰する。その結果、共振空胴1104は、導波路1102から短い距離内に配置されて、導波路1102によって運ばれる光信号の所定の波長を、矢印1110で示すように、導波路1102から共振空胴1104へとエバネセント結合(または一時的に結合)できるようにする。共振空胴1104のQ因子に依存して、抽出された光信号は、共振空胴1104内に閉じこめられた状態を維持して、しばらくの間共振することができる。
【0043】
図12Aは、本発明の実施形態にしたがって構成された共振空胴1202、及びスラブ1204の一部を示す。共振空胴1202は、円筒孔を削除することによって生成される。共振空胴1202の直径と、円筒孔1206などの該共振空胴1202を囲む円筒孔のパターン及び直径とを、共振空胴1202内の光信号の特定の波長を一時的に閉じこめるように選択することができる。スラブ1204は、ガラス基板1208の上部に配置される。図12Aに示すように、いくつかの実施形態では、スラブ1204を、p型半導体層1212とn型半導体層1214との間に挟まれた真性層1210(これらは、p-i-n接合共振空胴1202を形成する)から構成することができる。
【0044】
図12Bは、本発明の実施形態にしたがって構成された第1の電子的に調整可能な共振空胴の断面図である。共振空胴1202は、2つの電極1220と1222との間に挟まれている。スラブ1204を、p-i-n接合層1210、1212、及び1214、または、単一の誘電層もしくは単一の半導体層から構成することができる。共振空胴1202(の両端)にある電圧を印加することによって、該共振空胴1202の実効屈折率を変更し、これによって、共振空胴1202を、近くの導波路(不図示)中を伝搬する光信号の特定の波長と共振するように、または、共振しないようにシフトさせることができる。
【0045】
図12Cは、本発明の実施形態にしたがって構成された第2の電子的に調整可能な共振空胴の断面図である。共振空胴1202は、2つの電極1224と1226との間に挟まれている。スラブ1204を、p-i-n層1210、1212、及び1214、または、単一の誘電層もしくは単一の半導体層などの単一層から構成することができる。共振空胴1202(の両端)にある電圧を印加することによって、該共振空胴1202の実効屈折率を変更し、これによって、共振空胴1202を、近くの導波路(不図示)中を伝搬する光信号の特定の波長と共振するように、または、共振しないようにシフトさせることができる。
【0046】
いくつかの実施形態では、共振空胴を、上述した検出器902などの検出器を共振空胴に隣接して配置することによって、電子的に調整可能な光検出器として動作させることができる。
【0047】
本発明のシステムの実施形態は、マイクロリング共振器及びフォトニック結晶共振空胴に限定されないことに留意されたい。他の実施形態では、導波路に沿って伝搬する光信号の特定の波長と結合するように構成可能な任意の適切な共振器を使用することができる。
【0048】
上記では、本発明を十分に理解できるようにするために、説明を目的として特定の用語を使用した。しかしながら、本発明を実施するために特定の細部は必要ではないことが当業者には明らかであろう。本発明の特定の実施形態に関する上記説明は、例示及び説明のために提示されたものである。それらは、本発明を網羅することも本発明を開示した形態そのものに限定することも意図していない。上記の教示に照らして多くの修正及び変形が可能であることは明らかである。それらの実施形態は、本発明の原理及びその実用的応用を最も良く説明し、これによって、当業者が、意図する特定の用途に適するように種々の変更を加えつつ本発明及び種々の実施形態を最良に利用できるようにするために図示し及び説明された。本発明の範囲は、添付の特許請求の範囲及びその等価物によって画定されることが意図されている。


【特許請求の範囲】
【請求項1】
1組のほぼ平行な入力導波路と、
前記入力導波路にほぼ垂直に配置された1組のほぼ平行な出力導波路であって、各出力導波路が、前記1組の入力導波路と交差する、1組のほぼ平行な出力導波路と、
1つ以上の入力導波路を伝送する1つ以上の光信号を1つ以上の交差する出力導波路に切り換えるように構成された少なくとも1つのスイッチ要素
を備える、光電子スイッチ。
【請求項2】
ソース導波路と、
1組のパワー導波路であって、各パワー導波路は、前記ソース導波路に光学的に結合されて、前記1組の出力導波路中の1つの出力導波路にほぼ平行に延在し、及び、前記1組の入力導波路中の各入力導波路とほぼ垂直に交差する、1組のパワー導波路と、
前記ソース導波路に光学的に結合され、及び、前記光学的に結合されたソース導波路を介して前記1組のパワー導波路中のパワー導波路の各々に1つ以上の持続波光信号を放出するように構成された光パワーソース
をさらに備える、請求項1のスイッチ。
【請求項3】
前記ソース導波路及びパワー導波路が、リッジ導波路またはフォトニック結晶導波路である、請求項2のスイッチ。
【請求項4】
1組の入力ポートであって、各入力ポートが、前記1組の入力導波路中の1つの入力導波路に光学的に結合され、かつ、前記1つ以上の光信号を前記入力導波路に放出するように構成されている、1組の入力ポートと、
1組の出力ポートであって、各出力ポートが、前記1組の出力導波路中の1つの出力導波路に光学的に結合され、かつ、前記出力導波路を伝送する1つ以上の光信号を受信するように構成されている、1組の出力ポート
をさらに備える、請求項1のスイッチ。
【請求項5】
前記入力導波路及び出力導波路が、リッジ導波路またはフォトニック結晶導波路からさらに構成される、請求項1のスイッチ。
【請求項6】
前記1組の入力導波路が第1の光学層に形成され、前記1組の出力導波路が第2の光学層に形成される、請求項1のスイッチ。
【請求項7】
前記1組の入力導波路と前記1組の出力導波路が、入力導波路と出力導波路が交差するように単一の光学層に形成される。請求項1のスイッチ。
【請求項8】
前記少なくとも1つのスイッチ要素が、
1組の電子的に調整可能な入力共振器であって、各入力共振器は、入力導波路に光学的に結合され、かつ、適切な電圧が該入力共振器に印加されているときに、前記入力導波路からの光信号を結合するように構成されている、1組の電子的に調整可能な入力共振器と、
1組の電子的に調整可能な出力共振器であって、各出力共振器は、出力導波路及びパワー導波路に光学的に結合され、かつ、適切な電圧が該出力共振器に印加されているときに、光信号を前記パワー導波路から前記出力導波路に結合するように構成されている、1組の電子的に調整可能な出力共振器と、
前記入力共振器の各々に電子的に結合され、かつ、前記入力導波路から結合された光信号に対応する電子信号を送信するように構成された受信機と、
前記受信機に電子的に結合され、かつ、前記受信機によって送信された電子信号の進路を変更するように構成された電子相互接続部と、
前記電子相互接続部及び前記1組の出力共振器に電子的に結合され、かつ、前記電子相互接続部から出力された前記進路変更された電子信号を受信し、これに応じて適切な電圧を前記出力共振器に印加するように構成された送信機
をさらに備えることからなる、請求項1のスイッチ。
【請求項9】
前記少なくとも1つのスイッチ要素が1組の検出器をさらに備え、各検出器が、入力共振器に隣接して配置され、かつ、前記入力導波路から結合された光信号を前記受信機によって送信される電子信号に変換するように構成されていることからなる、請求項8のスイッチ。
【請求項10】
前記電子相互接続部がさらに、
直接電気接続部と、
電子クロスバー
のうちの1つを備える、請求項8のスイッチ。
【請求項11】
前記電子相互接続部が、データパケットを格納するためのパケットバッファをさらに備える、請求項8のスイッチ。
【請求項12】
前記共振器が、
マイクロリング共振器と、
共振器空胴
のうちの1つをさらに備える、請求項8のスイッチ。
【請求項13】
前記ポートが、
プロセッサ、
メモリ、
回路基板、
サーバ、
ストレージサーバ、
外部ネットワーク接続、
他の任意のデータ処理装置、データ記憶装置、または、データ伝送装置
のうちの1つに光学的に結合される、請求項1のスイッチ。
【請求項14】
1つ以上の持続波光信号を送信するように構成されたパワー導波路と、
前記パワー導波路にほぼ平行に配置された出力導波路と、
出力導波路と交差する入力導波路と、
前記入力導波路からの1つ以上の入力光信号を結合し、前記パワー導波路からの1つ以上の持続波光信号を結合し、前記1つ以上の入力光信号に符号化された情報を前記1つ以上の連続波光信号中に符号化して出力光信号を生成し、及び、該出力光信号を前記出力導波路に結合するように構成された光電子装置
を備える光電子スイッチ要素。
【請求項15】
前記光電子装置が、
1組の電子的に調整可能な入力共振器であって、各入力共振器は、前記入力導波路に光学的に結合され、かつ、適切な電圧が該入力共振器に印加されているときに、前記入力導波路からの前記1つ以上の入力光信号のうちの1つを結合するように構成されている、1組の電子的に調整可能な入力共振器と、
1組の電子的に調整可能な出力共振器であって、各出力共振器は、前記出力導波路及びパワー導波路に光学的に結合され、かつ、適切な電圧が該出力共振器に印加されているときに、前記パワー導波路からの持続波光信号を前記出力導波路に結合するように構成されている、1組の電子的に調整可能な出力共振器と、
前記入力共振器の各々に電子的に結合され、かつ、前記入力導波路から結合された前記1つ以上の入力光信号に対応する電子信号を送信するように構成された受信機と、
前記受信機に電子的に結合され、かつ、前記受信機から送信された電子信号の進路を変更するように構成された電子相互接続部と、
前記電子相互接続部及び前記1組の出力共振器に電子的に結合され、かつ、前記電子相互接続部から出力された前記進路変更された電子信号を受信し、これに応じて適切な電圧を前記出力共振器に印加し、これによって、前記1つ以上の入力光信号に符号化された情報を前記1つ以上の連続波光信号中に符号化して出力光信号を生成するように構成された送信機
をさらに備えることからなる、請求項13のスイッチ要素。
【請求項16】
1組の検出器をさらに備え、各検出器が、入力共振器に隣接して配置され、かつ、前記入力導波路から結合された光信号を前記受信機によって送信される電子信号に変換するように構成されていることからなる、請求項14のスイッチ要素。
【請求項17】
前記電子相互接続部から前記送信機へと送信される電子信号を同期化するためのリタイミングロジックをさらに備える、請求項14のスイッチ要素。
【請求項18】
前記電子相互接続部がさらに、
直接電気接続部と、
電子クロスバー
のうちの1つを備える、請求項8のスイッチ。
【請求項19】
前記導波路がさらに、
リッジ導波路と、
フォトニック結晶導波路
のうちの1つを備える、請求項13のスイッチ要素。
【請求項20】
前記共振器がさらに、
マイクロリング共振器と、
共振空胴
のうちの1つ備える、請求項13のスイッチ。


【図1】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7A】
image rotate

【図7B】
image rotate

【図8A】
image rotate

【図8B】
image rotate

【図9A】
image rotate

【図9B】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12A】
image rotate

【図12B】
image rotate

【図12C】
image rotate


【公表番号】特表2011−518344(P2011−518344A)
【公表日】平成23年6月23日(2011.6.23)
【国際特許分類】
【出願番号】特願2010−550643(P2010−550643)
【出願日】平成20年3月11日(2008.3.11)
【国際出願番号】PCT/US2008/003244
【国際公開番号】WO2009/113977
【国際公開日】平成21年9月17日(2009.9.17)
【出願人】(511076424)ヒューレット−パッカード デベロップメント カンパニー エル.ピー. (155)
【氏名又は名称原語表記】Hewlett‐Packard Development Company, L.P.
【Fターム(参考)】