説明

クリセン骨格を有する有機化合物を用いた半導体材料

【課題】ペンタセンの不安定性を克服しつつ、単結晶の貼り付け法、真空蒸着法、塗布法と多様な製造プロセスに適応でき、有機トランジスタとしても高い性能を示す新規な有機半導体材料を提供する。
【解決手段】下記化学式で表されるクリセン骨格を有する有機半導体材料。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、耐酸化性等の安定性及び有機溶媒への溶解性に優れ、かつ加工性に特徴を有する有機半導体に関する。
【背景技術】
【0002】
有機薄膜トランジスタは、有機材料の特徴である軽量性と、柔軟性を活かした、安価なトランジスタ製品を実現できる可能性があることから、研究開発が盛んに行われている。有機半導体材料は、有機トランジスタの中で薄膜として存在するが、その特性は、デバイスの製造プロセスやデバイスの性能を左右する非常に重要な要素となっている。
中でも、ペンタセンに代表される多環芳香族化合物は、その高い移動度と化合物自体の安定性の面から、これまでも多くの報告がなされている。(非特許文献1)
【0003】
有機薄膜トランジスタの製造方法としては、一般的に真空蒸着法に代表されるドライプロセスと、溶液塗布法に代表されるウェットプロセスに大別でき、製造コストの大幅なコストダウンが実現できる点から、ウェットプロセスに適応できることが好ましい。しかし、トランジスタの性能面からは、ドライプロセスが有利なため、どちらの材料にも適応できる柔軟性の高い材料があれば、さらに好ましいといえる。
【0004】
そのような状況下、ウェットプロセスにもドライプロセスにも適応できる新たな有機半導体材料として、ベンゾカルコゲノベンゾカルコゲノフェン誘導体が開示された。(特許文献1、非特許文献2)
また、ベンゾチエノベンゾチオフェンとクリセンの可視紫外光吸収スペクトルが類似であることも報告された。(非特許文献3)
【0005】
【特許文献1】国際公開WO 2006/077888 A1
【非特許文献1】Hong Meng,Michael Bendikov,Gregory Mitchell,Roger Helgson,Fred Wudl,Zhenan Bao,Theo Siegrist,Christian Kloc, Cheng−Hsuan Chen,「Advanced Materials」 2003年,15巻,p.1090
【非特許文献2】Hideaki Ebata,Takafumi Izawa,Eigo Miyazaki,Kazuo Takimiya,Masaaki Ikeda,Hirokazu Kuwabara, Tatsuto Yui,「Journal of American Chemical Society」 2007年,第129巻,p.15732
【非特許文献3】Kazuo Takimiya,Tatsuya Yamamoto,Hideaki Ebata,Takafumi Izawa 「Science and Technology of Advanced Materials」 2007年,8巻,p.273
【0006】
ベンゾチエノベンゾチオフェンとクリセンの可視紫外光吸収スペクトルが酷似していることから、クリセンもウェットプロセスにもドライプロセスにも適応できる新たな有機半導体材料となるのではないかと考えられた。ただし、クリセン骨格を有する材料で有機トランジスタとしての性能はこれまで不明であった。本発明者らは、クリセンを用いて真空蒸着法にて有機トランジスタ素子を作製し評価を試みた。しかし、トランジスタ応答を観測することはできなかった。そこで、クリセン単体では無理であっても、様々な置換基を付与することで、トランジスタ応答を得ることができると考え、クリセンの誘導体を新規に合成し、そのトランジスタ特性の評価を繰り返すことで、本発明に至った。
【発明の開示】
【発明が解決しようとする課題】
【0007】
代表的な有機半導体材料であるペンタセンは、有機溶媒に対する溶解性が低く、さらに、溶液状態での安定性に問題がある。そこで、ペンタセンに代わり、有機溶媒に対する溶解性が高く、溶液状態でも安定性がある有機半導体材料を提供することにある。
【課題を解決するための手段】
【0008】
そこで、本発明は前記課題を解決するために、本発明者らは鋭意検討した結果、クリセン骨格を有する化合物が、ペンタセンの不安定性を克服しつつ、有機トランジスタとしても高い性能を示す新規な有機半導体材料であることを見出し、本発明を完成するに至った。すなわち、本発明は次のような構成から成る。
【0009】
すなわち、第1の発明は、下記化学式〔化1〕で表されるクリセン骨格を有する有機半導体材料を提供するものである。
〔化1〕

【0010】
ただし、化学式〔化1〕中の置換基Rから 12は、それぞれ独立に、水素原子及びハロゲン原子、置換もしくは無置換のアリール基、置換もしくは無置換の複素環基、置換もしくは無置換のアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアルキニル基、置換もしくは無置換のアルコキシル基、置換もしくは無置換のカルボニル基、置換もしくは無置換のエステル基、置換もしくは無置換のアミド基、置換もしくは無置換のイミノ基、置換もしくは無置換のスルフィド基、置換もしくは無置換のスルホキシド基、置換もしくは無置換のスルホニル基、置換もしくは無置換のシリル基、カルボキシル基、ヒドロキシル基、ニトロ基、ニトリル基、メルカプト基のうち、少なくとも一つを含んでいる。
【0011】
なお、置換基RからR12の好ましい例は、水素原子、フッ素原子、アリール基、複素環基、アルキル基、アルケニル基、アルキニル基である。
【0012】
置換基Rから R12における、ハロゲン原子はフッ素、塩素、臭素、ヨウ素であり、好ましい例はフッ素原子である。
【0013】
置換基RからR12における、アリール基は特に限定されず、例えば、フェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、2−ヘプチルフェニル基、3−ヘプチルフェニル基、4−ヘプチルフェニル基、2−オクチルフェニル基、3−オクチルフェニル基、4−オクチルフェニル基、4−メトキシフェニル基、4−フルオロフェニル基、ペンタフルオロフェニル基、4−(トリフルオロメチル)フェニル基、ナフチル基、ビフェニル基、ターフェニル基などが挙げられる。
【0014】
置換基RからR12における、複素環基は特に限定されず、2−チエニル基、5−(1−フプチル)−2−チエニル基、2−ベンゾチエニル基、5’−ヘキシルー2,2’−ビチエノ−5−イル基、2−フリル基、1−メチル−2−ピロリル基、2−ピリジル基、2−ビピリジル基などが挙げられる。
【0015】
置換基RからR12における、アルキル基は特に限定されず、直鎖型、分岐型、環状型のアルキル基であり、例えば、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ウンデシル基、n−ドデシル基、n−トリデシル基、イソプロピル基、tert−ブチル基、シクロペンチル基、シクロヘキシル基、アダマンチル基、フェニルエチル基、(p−ヘキシルフェニル)エチル基、ナフチルエチル基、ビフェニルエチル基、ターフェニルエチル基、トリフルオロメチル基、パーフルオロオクチル基、パーフルオロドデシル基などが挙げられる。
【0016】
置換基RからR12における、アルケニル基は特に限定されず、例えば、エテニル基、メチルエテニル基、ヘキシルエテニル基、フェニルエテニル基、(o−ヘキシルフェニル)エテニル基、(m−ヘキシルフェニル)エテニル基、(p−ヘキシルフェニル)エテニル基、(p−ヘプチルフェニル)エテニル基、(p−オクチルフェニル)エテニル基、ナフチルエテニル基、ビフェニルエテニル基、ターフェニルエテニル基、パーフルオロフェニルエテニル基などが挙げられる。
【0017】
置換基RからR12における、アルキニル基は特に限定されず、例えば、エチニル基、メチルエチニル基、オクチルエチニル基、フェニルエチニル基、(o−ヘキシルフェニル)エチニル基、(m−ヘキシルフェニル)エチニル基、(p−ヘキシルフェニル)エチニル基、(p−ヘプチルフェニル)エチニル基、(p−オクチルフェニル)エチニル基、ナフチルエチニル基、ビフェニルエチニル基、ターフェニルエチニル基、パーフルオロフェニルエチニル基、トリメチルシリルエチニル基、トリエチルシリルエチニル基、トリプロピルシリルエチニル基、トリイソプロピルシリルエチニル基などが挙げられる。
【0018】
置換基RからR12における、カルボニル基は特に限定されず、例えば、アルデヒド基、エタノン、エタナール、1−プロパノン、2−プロパノン、プロパナール、1−オクタノン、(p−オクチルフェニル)エタノンなどが挙げられる。
【0019】
置換基RからR12における、アミド基は特に限定されず、例えば、アセトアミド基、プロピルアミド基、ブチルアミド基、イソブチルアミド基、ペンチルアミド基、イソペンチルアミド基、sec−ペンチルアミド基、tert−ペンチルアミド基、各種ヘプチルアミド基、各種ペンチルアミド基、各種オクチルアミド基等が挙げられる。
【0020】
置換基RからR12における、スルフィド基は特に限定されず、例えば、メチルスルフィド基、エチルスルフィド基、プロピルスルフィド基、イソプロピルスルフィド基、ブチルスルフィド基、イソブチルスルフィド基、sec−ブチルスルフィド基、tert−ブチルスルフィド基、各種ペンチルスルフィド基、各種ヘキシルスルフィド基、各種ヘプチルスルフィド基、各種オクチルスルフィド基、フェニルスルフィド基、o−ヘキシルフェニルスルフィド基、m−ヘキシルフェニルスルフィド基、p−ヘキシルフェニルスルフィド基等が挙げられる。
【0021】
置換基RからR12における、スルホキシド基は特に限定されず、例えば、メチルスルホキシド基、エチルスルホキシド基、プロピルスルホキシド基、イソプロピルスルホキシド基、ブチルスルホキシド基、イソブチルスルホキシド基、sec−ブチルスルホキシド基、tert−ブチルスルホキシド基、各種ペンチルスルホキシド基、各種ヘキシルスルホキシド基、各種ヘプチルスルホキシド基、各種オクチルスルホキシド基、フェニルスルホキシド基、o−ヘキシルフェニルスルホキシド基、m−ヘキシルフェニルスルホキシド基、p−ヘキシルフェニルスルホキシド基等が挙げられる。
【0022】
置換基RからR12における、スルホニル基は特に限定されず、例えば、メチルスルホニル基、エチルスルホニル基、プロピルスルホニル基、イソプロピルスルホニル基、ブチルスルホニル基、イソブチルスルホニル基、sec−ブチルスルホニル基、tert−ブチルスルホニル基、各種ペンチルスルホニル基、各種ヘキシルスルホニル基、各種ヘプチルスルホニル基、各種オクチルスルホニル基、フェニルスルホニル基、o−ヘキシルフェニルスルホニル基、m−ヘキシルフェニルスルホニル基、p−ヘキシルフェニルスルホニル基等が挙げられる。
【0023】
置換基RからR12における、シリル基は特に限定されず、例えば、トリメチルシリル基、トリエチルシリル基、トリブチルシリル基、トリイソブチルシリル基、トリプロピルシリル基、トリイソプロピルシリル基、トリsec−ブチルシリル基、トリtert−ブチルシリル基等が挙げられる。
【0024】
続いて、第2の発明は、化学式〔化1〕中のR、Rが水素原子以外の同一の置換基であることを特徴とする第1の発明に記載の有機半導体材料である。
【0025】
続いて、第3の発明は、化学式〔化1〕中のR、R12が水素原子以外の同一の置換基であることを特徴とする第1の発明に記載の有機半導体材料である。
【0026】
第4の発明は、請求項1から請求項3のいずれかの有機半導体材料、あるいは、いずれかの有機半導体材料の複数を組み合わせてからなる有機電子デバイスである。
【0027】
ここでいう有機電子デバイスとは、本化合物の電気特性を利用した電子デバイスのことであり、具体的には、有機トランジスタ、有機レーザー、有機薄膜太陽電池、有機メモリーなどが挙げられる。
【0028】
本発明の化合物をこれら有機電子デバイスに利用するにあたって、高純度化のために不純物の除去等の精製が必要になるが、本発明の化合物は、液体クロマトグラフィー法、昇華法、ゾーンメルティング法、ゲルパーミネーションクロマトグラフィー法、再結晶法、熱洗浄法などによって精製できる。
【0029】
また、本発明の化合物を有機電子デバイスに利用するにあたって、主として薄膜の形態で用いられるが、その薄膜作製法として、ウェットプロセスとドライプロセスどちらを使用してもよい。本発明の化合物は、有機溶媒等へ溶解させることにより、産業上メリットの大きいウェットプロセスに適応できる。
【0030】
ここで、有機溶媒としては、例えば、ジクロロメタン、クロロホルム、クロロベンゼン、シクロヘキサノール、トルエン、キシレン、ニトロベンゼン、メチルエチルケトン、ジグライム、テトラヒドロフランなど、これまで公知のものが使用できる。また、本発明の化合物を有機溶媒等へ溶解させる場合、温度や圧力に特に制限は無いが、溶解させる温度に関しては、0〜200℃の範囲が好ましく、さらに好ましくは、10〜150℃の範囲である。また、溶解させる圧力に関しては、0.1〜100MPaの範囲が好ましく、さらに好ましくは、0.1〜10MPaの範囲である。また、有機溶媒の代わりに、超臨界二酸化炭素のようなものを用いることも可能である。
【0031】
ここで言うウェットプロセスとは、スピンコート法、ディップコート法、バーコート法、スプレーコート法、インクジェット法、スクリーン印刷法、平板印刷法、凹版印刷法、凸版印刷法などを示しており、これら公知の方法が利用できる。
さらに、ここで言うドライプロセスとは、真空蒸着法、スパッタリング法、CVD法、レーザー蒸着法、分子線エピタキシャル成長法、気相輸送成長法などを示しており、これら公知の方法が利用できる。
【0032】
本発明の化合物を使用した有機電子デバイスの使用例を、図1及び図2に示す。図1では、電界効果型トランジスタ(以下FETとする)での使用例を挙げている。FETはその特徴から、スイッチング素子や増幅素子として利用される。ゲート電流が低いことに加え、構造が平面的であるため、ウェットプロセスによる作製や集積化が容易であり大面積化を可能とする。ここでは、本発明の化合物は、主にp型半導体として利用されているが、置換基、溶剤によってn型半導体として機能する場合もある。
【0033】
また、図2では有機薄膜太陽電池での使用例を挙げている。図2に示す共蒸着層とは、p型とn型を一緒に蒸着させた層であり、この層で太陽光により正孔と電子により分離させやすくするためである。
【発明の効果】
【0034】
第1の発明では、大気中での取り扱いが容易で、かつ置換基の種類を変更することで、ドライプロセスにもウェットプロセスにも適応可能な、有機半導体電子デバイスを製造しやすい有機半導体材料を提供することができる。
【0035】
第2の発明では、置換基を同一にすることにより、その合成過程が容易になり、特にRとRに同一置換基にすることにより、ドライプロセスに適し、かつトランジスタ特性に優れた材料が提供できる。
【0036】
第3の発明では、置換基を同一にすることにより、その合成過程が容易になる。特にRとR12に同一置換基にすることにより、ウェットプロセスに適し、かつトランジスタ特性に優れた材料が提供できる。
【0037】
第4の発明では、第1の発明から第3の発明の有機半導体材料を有機電子デバイスに利用することを可能とする。
【発明を実施するための最良の形態】
【0038】
代表的な実施例を以下に示す。
【実施例1】
【0039】
本発明の化学式〔化1〕の合成過程の一例を〔合成経路〕に示し、その詳細を次に説明する。しかし下記の合成法は特に限定されるものではなく、公知の反応を組み合わせて合成することが可能である。なお、各化合物に,・・・の符号を付す。
〔合成経路〕

【0040】
上記〔合成経路〕を用いて本発明をさらに詳しく説明する。(化合物の合成)
(1)化合物の合成
窒素雰囲気下、冷却管付1LGLフラスコ中に4−ブロモけい皮酸103g(455mmol)、硫酸4.5g(46mmol)、メタノール1Lを加え、60℃で12時間攪拌した。反応終了後、室温まで冷却し、水1.2Lを加え、結晶を濾過した。得られた粗結晶を再結晶し、化合物を得た。
【0041】
(2)化合物の合成
窒素雰囲気下、冷却管付3LGLフラスコ中にアルミニウム29g(1058mmol)、メタノール600mL、よう素55g(216mmol)を加え、室温にて1時間攪拌した。0℃以下に冷却し、化合物104g(432mmol)、メタノール600mLを加えた後、サマリウム56g(371mmol)を加えた。ゆっくりと室温まで戻し、室温で15時間攪拌した。反応終了後、トルエン800mLを加えてセライト濾過した。濾液は希塩酸、重曹水、食塩水の順に洗浄後、硫酸マグネシウムで乾燥し、減圧濃縮した。得られた粗結晶をカラムクロマトグラフィーで精製し、化合物を得た。
【0042】
(3)化合物の合成
窒素雰囲気下、冷却管付1LGLフラスコ中に化合物32g(66mmol)、トリフルオロメタンスルホン酸250mLを加え、40℃で17時間攪拌した。反応終了後、5℃に冷却し、水300mLを滴下後、結晶を濾過した。得られた粗結晶はカラムクロマトグラフィーで精製し、化合物を得た。
【0043】
(4)化合物の合成
窒素雰囲気下、冷却管付2LGLフラスコ中に化合物9.5g(23mmol)、イソプロパノール760mL、水素化ホウ素ナトリウム3.1g(84mmol)、水30mLを加え、40℃で17時間攪拌した。反応終了後、10℃に冷却し、水1Lを加えた。結晶を濾過し、得られた化合物の粗結晶は精製せずに次の反応へ使用した。
【0044】
(5)化合物の合成
窒素雰囲気下、冷却管付1LGLフラスコ中に化合物8.6g(20mmol)、パラトルエンスルホン酸一水和物3.9g(20mmol)、トルエン430mLを加え、110℃で24時間攪拌した。反応終了後、室温まで冷却し、水200mL、n−ヘプタン200mLを加えて濾過した。得られた粗結晶は、カラムクロマトグラフィーを行った後、再結晶して精製し、化合物を得た。
【0045】
(6)化合物の合成
窒素雰囲気下、冷却管付30mLGLフラスコ中に化合物500mg(1.3mmol)、フェニルボロン酸470mg(3.9mmol)、テトラキストリフェニルホスフィンパラジウム30mg(0.03mmol)、炭酸カリウム1070mg(7.8mmol)、トルエン10mL、水3mLを加え、80℃で16時間攪拌した。反応終了後、室温まで冷却し、水を加えて結晶を濾過した。得られた粗結晶は熱洗浄にて精製し、化合物を得た。化合物のマススペクトルを図4に示す。
【0046】
(7)化合物の合成
窒素雰囲気下、冷却管付500mLGLフラスコ中にクリセン1.00g(4.4mmol)、クロロホルム250mLを加えて60℃に加熱し、続いて臭素1.8g(11.0mmol)を加えて60℃で24時間攪拌した。反応終了後、硫酸水素ナトリウム水溶液を加え、結晶を濾過した。得られた粗結晶は再結晶にて精製し、化合物を得た。
【0047】
(8)化合物の合成
窒素雰囲気下、冷却管付30mLGLフラスコ中に金属マグネシウム130mg(5.4mmol)、テトラヒドロフラン2.6mLを加えた後、1−ブロモオクタン1000mg(5.2mmol)を滴下し、40℃で1時間攪拌してグリニャール試薬を調整した。
窒素雰囲気下、30mLGLフラスコ中に化合物500mg(1.3mmol)、ジフェニルホスフィノプロパンジクロロニッケル28mg(0.05mmol)、テトラヒドロフラン8mLを加え、0℃まで冷却した。続いて先に調整した1−ブロモオクタンのグリニャール試薬を加え、0℃で4時間攪拌した。反応終了後、希塩酸および、トルエンを加え、室温まで暖めた。有機層は重曹水、食塩水で洗浄した後、硫酸マグネシウムで乾燥して減圧濃縮した。得られた粗結晶は、カラムクロマトグラフィーを行った後、再結晶して精製し、化合物を得た。化合物のNMRスペクトルを図5及び図6に示す。
【実施例2】
【0048】
有機薄膜トランジスタの作製(単結晶貼り付け)
上記実施例1にて作製した2,8−ジフェニルクリセン(化合物F)を用いて、図1に示す構造の薄膜デバイスを作製した。具体的には、厚さ210nmの熱酸化膜を形成したシリコンウェハーに、ポリメチルメタクリレート(PMMA)のトルエン溶液(3wt%)を大気下にてスピンコート(回転数2000rpm、30sec)し、窒素雰囲気下にて70℃で一晩、続けて100℃で3時間熱処理をおこなうことでPMMA絶縁膜を作製した。この上に2,8−ジフェニルクリセン(化合物F)の薄片単結晶を貼り付け、結晶の両端に金ペーストを塗布し電界効果トランジスタ素子を作製し、評価を行った。
その結果、電界効果移動度は0.91cm/V・sで、On/Off電流比は10であった。
【0049】
有機薄膜トランジスタの作製(蒸着)
厚さ210nmの熱酸化膜を形成したシリコンウェハー上に、基板温度60℃にて、2,8−ジフェニルクリセン(化合物F)を真空蒸着し、その上から、ソース・ドレイン電極となる金を電子ビーム法にて80nm蒸着することで、TOPコンタクト型素子を作製し、評価をおこなった。
その結果、電界効果移動度は4.1×10−2cm/V・sで、On/Off電流比は10であった。
【0050】
有機薄膜トランジスタの作製(塗布:キャスト)
厚さ210nmの熱酸化膜を形成したシリコンウェハー上に、6,12−ジオクチルクリセン(化合物H)のクロロホルム溶液(0.4wt%)を大気下にてキャストし、薄膜を作製した。その上から、ソース・ドレイン電極となる金を電子ビーム法にて80nm蒸着することで、TOPコンタクト型素子を作製し、評価をおこなった。
その結果、電界効果移動度は、1.2×10−3cm/V・sで、On/Off電流比は10であった。
【0051】
(比較例)
本発明の化合物に代えて、比較化合物として、以下に示すペンタセン(化合物)を用い、上記実施例と同様にして比較素子を作製した。
その結果、ペンタセン(化合物I)の単結晶を貼り付けた素子では、電界効果移動度は0.27cm/V・sで、On/Off電流比は10であった。
また、ペンタセンを蒸着した素子では、電界効果移動度は、0.15cm/V・sで、On/Off電流比は10であった。塗布による素子は、ペンタセンの溶解性が乏しいため試料溶液が調整できなかった。また、ペンタセン誘導体である以下に示す2,9−ジオクチルペンタセン(化合物)では、クロロホルム溶液(0.4wt%)を調整後に大気中にて速やかに酸化劣化が見られたため、デバイスを作製することが困難であった。


【実施例3】
【0052】
図7,図8に、それぞれペンタセン(化合物)、6,12−ジオクチルクリセン(化合物H)を有機溶媒1,1,2,2−テトラクロロエタンに溶解させた直後、24時間後及び、48時間後の可視紫外吸収スペクトルの経時変化を示す。図7より、ペンタセン(化合物)は溶液調整直後と24時間後のスペクトルの形状が酸化劣化により大きく変化している。一方で図8より、6,12−ジオクチルクリセン(化合物H)は溶液調整直後から48時間経過後までスペクトルの形状が一致しており、溶液状態で非常に安定である。
【0053】
なお、MSスペクトルは、島津製作所製 GCMS−QP2010で、直接試料導入装置DI−2010を用いたEIイオン化法にて測定した。
NMRスペクトルは、VARIAN社製 VARIAN Mercury Plus 400MHz(重クロロホルム溶媒)で測定した。
可視紫外吸収スペクトルは、日立社製U−3310形分光光度計で測定した。
【産業上の利用可能性】
【0054】
本発明の化合物を用いた有機トランジスタは、単結晶の貼り付け法、真空蒸着法、塗布法と多様な製造プロセスに適応でき、特に安価とされる塗布法にて作製された素子においては、大気中で薄膜を形成することが可能である。そのため、産業上非常に有用な有機半導体であって、今後広くこの分野で使用されることが期待される。
【図面の簡単な説明】
【0055】
【図1】有機半導体を使用したFET
【図2】有機薄膜太陽電池デバイス
【図3】薄膜デバイス
【図4】化合物のマススペクトル
【図5】化合物H−NMRスペクトル
【図6】化合物13C− NMRスペクトル
【図7】ペンタセン(化合物)の可視紫外光吸収スペクトルの経時変化
【図8】化合物の可視紫外光吸収スペクトルの経時変化
【符号の説明】
【0056】
1 有機半導体を使用したFET
2 有機半導体
3 絶縁膜
4 ゲート 41 ゲート絶縁膜
5 ドレイン
6 ソース
7 エミッター
8 コレクター
9 ベース
10 基板(プラスチック) 11電極 12 n型半導体 13 p型半導体
14 共蒸着層 15 ITO(Indium Tin Oxide)
20 薄膜デバイス 21 Source 22 Drain
23 PMMA Dielectric Layer 24 Si/SiO Substrate
25 Gate 26 Organic Single Crystal

【特許請求の範囲】
【請求項1】
下記の化学式〔化1〕で示されるような、クリセン骨格を特徴とする有機半導体材料。
〔化1〕

ただし、化学式〔化1〕中の置換基RからR12は、それぞれ独立に、水素原子及びハロゲン原子、置換もしくは無置換のアリール基、置換もしくは無置換の複素環基、置換もしくは無置換のアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアルキニル基、置換もしくは無置換のアルコキシル基、置換もしくは無置換のカルボニル基、置換もしくは無置換のエステル基、置換もしくは無置換のアミド基、置換もしくは無置換のイミノ基、置換もしくは無置換のスルフィド基、置換もしくは無置換のスルホキシド基、置換もしくは無置換のスルホニル基、置換もしくは無置換のシリル基、カルボキシル基、ヒドロキシル基、ニトロ基、ニトリル基、メルカプト基のうち、少なくとも一つを含んでいる。
【請求項2】
化学式〔化1〕中のR、Rが水素原子以外の同一の置換基であることを特徴とする請求項1に記載の有機半導体材料。
【請求項3】
化学式〔化1〕中のR、R12が水素原子以外の同一の置換基であることを特徴とする請求項1に記載の有機半導体材料。
【請求項4】
請求項1から請求項3のいずれかに記載の有機半導体材料、あるいは、いずれかの有機半導体材料の複数を組み合わせてからなる、有機電子デバイス。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2010−118415(P2010−118415A)
【公開日】平成22年5月27日(2010.5.27)
【国際特許分類】
【出願番号】特願2008−289317(P2008−289317)
【出願日】平成20年11月12日(2008.11.12)
【出願人】(000125369)学校法人東海大学 (352)
【出願人】(506103636)ウシオケミックス株式会社 (10)
【Fターム(参考)】