説明

テラヘルツ波発生素子、テラヘルツ波検出素子、およびテラヘルツ時間領域分光装置

【課題】発生するテラヘルツ波を比較的高いスピードで変調することが可能な電気光学結晶を含むテラヘルツ波発生素子などを提供する。
【解決手段】テラヘルツ波発生素子の一例は、光を伝播させる電気光学結晶4を含む導波路と、導波路を伝播する光から発生するテラヘルツ波を空間に取り出す光結合部材7と、少なくとも2つの電極6a、6bを備える。電極6a、6bは、導波路に電界を印加することにより、電気光学結晶4の1次電気光学効果により導波路を伝播する光の伝播状態に変化を与える機能を有する。導波路の電気光学結晶4の結晶軸は、2次非線形過程により発生するテラヘルツ波と導波路を伝播する光との位相整合が取れる様に設定される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ミリ波帯からテラヘルツ波帯(30GHz〜30THz)までの周波数領域の電磁波成分を含むテラヘルツ波を発生するテラヘルツ波発生素子、テラヘルツ波を検出するテラヘルツ波検出素子、及び、それらのうち少なくとも一方を用いたテラヘルツ時間領域分光装置に関する。特には、レーザ光照射により前記周波数帯のフーリエ成分を含む電磁波の発生または検出を行う電気光学結晶を含む発生または検出素子、及びそれを用いたテラヘルツ時間領域分光法(THz-TDS)によるトモグラフィ装置などに関する。
【背景技術】
【0002】
近年、テラヘルツ波を用いた非破壊なセンシング技術が開発されている。この周波数帯の電磁波の応用分野として、X線装置に代わる安全な透視検査装置を構成してイメージングを行う技術がある。また、物質内部の吸収スペクトルや複素誘電率を求めて分子の結合状態などの物性を調べる分光技術、キャリア濃度や移動度、導電率などの物性を調べる計測技術、生体分子の解析技術などが開発されている。テラヘルツ波の発生方法としては、非線形光学結晶を用いる方法が広く用いられている。非線形光学結晶の代表的なものとしては、LiNbOx(以後、LNとも言う)、LiTaOx、NbTaOx、KTP、DAST、ZnTe、GaSe、GaP、CdTeなどがある。テラヘルツ波の発生には2次の非線形現象を用いている。方式としては、周波数差を持つ2レーザ光の入射による差周波発生や光パラメトリック過程による単色テラヘルツ波発生、フェムト秒パルスレーザ光の照射で光整流によりテラヘルツパルスを発生する方式が知られている。
【0003】
この様な非線形光学結晶からテラヘルツ波を発生する過程として、電気光学的チェレンコフ放射が最近注目されている。これは、図8に示す様に、励起源であるレーザ光100の伝播群速度が、発生するテラヘルツ波の伝播位相速度よりも速い場合に、衝撃波の様にテラヘルツ波101が円錐状に放出される現象である。光とテラヘルツ波の媒質(非線形光学結晶)中の屈折率の比により、放射角θcは次式で決まる。
cosθc=vTHz/vg=ng/nTHz
ここで、vg、ngは夫々励起光の群速度、群屈折率、vTHz、nTHzは夫々テラヘルツ波の位相速度、屈折率を表す。これまでに、このチェレンコフ放射現象を用いて、波面を傾斜させたフェムト秒レーザ光をLNに入射させ光整流により高強度のテラヘルツパルスを発生させるという報告がある(非特許文献1参照)。また、波面傾斜の必要をなくすために、発生するテラヘルツ波の波長よりも十分小さい厚さを持つスラブ導波路を用いて、DFG方式により単色テラヘルツ波を発生させるという報告がある(特許文献1、非特許文献2参照)。
【0004】
この様な文献の例は、進行波励起によるテラヘルツ波発生であるため、異なる波源から発生したテラヘルツ波が放射方向で位相整合して強め合うことで取り出し効率を向上させるという提案に係る。この放射方式の特徴としては、非線形光学結晶を用いたものでは比較的高効率にできて高強度のテラヘルツ波を発生できる事、結晶特有のフォノン共鳴によるテラヘルツ領域の吸収を高周波側に選ぶことでテラヘルツ波の帯域を広くできる事などが挙げられる。これらの技術は、光伝導素子によるテラヘルツ波発生に比べて発生帯域を広くでき、光整流を用いるテラヘルツパルス発生の場合にはパルス幅を狭くでき、例えばテラヘルツ時間領域分光装置に利用する場合に装置性能を向上できることが期待されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2010-204488号公報
【非特許文献】
【0006】
【非特許文献1】J.Opt.Soc.Am.B,vol.25,pp.B6−B19,2008.
【非特許文献2】Opt.Express,vol.17,pp.6676−6681,2009.
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、非特許文献1、2に記載された方式は、非線形光学結晶には光をパッシブに照射するのみで、発生するテラヘルツ波に対する変調などを行う調整手段を有していない。そのため、テラヘルツ波の強度を調整するには外部に調整手段が必要になる。例えば、同期検波を行う場合には回転式の光チョッパーを用いることが一般的であるが、これは機械式であるため、変調スピードは高々数kHzであると共に、励起光の50%程度はカットされる。従って、トータルの発生効率低減につながり、テラヘルツ時間領域分光装置のS/N比向上の制約となり得る。
【課題を解決するための手段】
【0008】
上記課題に鑑み、本発明の一側面としてのテラヘルツ波発生素子は、光を伝播させる電気光学結晶を含む導波路と、前記導波路を伝播する光から発生するテラヘルツ波を空間に取り出す光結合部材と、少なくとも2つの電極と、を備える。前記少なくとも2つの電極は、前記導波路に電界を印加することで、前記電気光学結晶の1次電気光学効果により前記導波路を伝播する光の伝播状態に変化を与える機能を有する。更に、前記導波路の前記電気光学結晶の結晶軸は、2次非線形過程により発生する前記テラヘルツ波と前記導波路を伝播する光との位相整合が取れる様に設定されている。
【発明の効果】
【0009】
本発明の一側面としてのテラヘルツ波発生素子では、電気的変調手段である電極により、電気光学結晶を含む導波路に電界を印加して伝播光の伝播状態に1次電気光学効果による変化を与えるので、発生するテラヘルツ波を比較的高いスピードで変調することができる。本発明のその他の側面については、以下で説明する実施の形態で明らかにする。
【図面の簡単な説明】
【0010】
【図1】本発明によるテラヘルツ波発生素子の実施形態1の構造図。
【図2】本発明によるトモグラフィ装置の実施形態の構成図。
【図3】本発明のトモグラフィ装置によりイメージングした断層像の例を示す図。
【図4】本発明によるテラヘルツ波発生素子の実施形態2の構造図。
【図5】本発明によるテラヘルツ波発生素子の実施形態3の構造図。
【図6】本発明によるテラヘルツ波発生素子の実施形態4の構造図。
【図7】本発明によるトモグラフィ装置の他の実施形態の構成図。
【図8】電気光学的チェレンコフ放射の概念図。
【図9】本発明によるテラヘルツ波検出素子の実施形態の構造図。
【発明を実施するための形態】
【0011】
本発明の電気光学結晶を含むテラヘルツ波発生素子は、光を伝播させる導波路への電界印加による電気光学結晶の1次電気光学効果で屈折率変化を起こして伝播光の伝播状態に変化を与え、伝播光から発生するテラヘルツ波を変調させる。また、テラヘルツ波の発生を確保するために、電気光学結晶の結晶軸を、2次非線形過程により発生するテラヘルツ波と伝播光との位相整合が取れる様に設定する。この考え方に基づき、本発明のテラヘルツ波発生素子の基本的な構成は、上述した様な構成を有する。この構成において、前記電極による電界印加で効率良くテラヘルツ波を変調させるために、前記電気光学結晶の結晶軸は、前記電界印加による電気光学結晶の1次電気光学効果が最大になる様に設定されるのが好ましい。また、同じ構成で逆過程によりテラヘルツ波を検出することができる。なお、ここで用いる1次電気光学効果のための電気光学結晶は、2次の非線形性を持つものであり、一般に実用的な電気光学結晶と2次の非線形性を持つ非線形光学結晶はほぼ等価である。
【0012】
以下、図を用いて実施形態及び実施例を説明する。
(実施形態1)
本発明による実施形態1であるLN結晶を用いるテラヘルツ波発生素子について、図1を用いて説明する。図1において、(a)は斜視図、(b)は導波路部におけるA-A’断面図である。LN基板1はYカットニオブ酸リチウムであり、レーザ光の伝播方向をLN結晶のX軸、Y軸及び伝播方向(X軸)と直交する方向をZ軸としている(図1(a)に示した座標軸参照)。この様な構成にすることによって、2次非線形現象である電気光学的チェレンコフ放射を効率良く起こすと共に、1次電気光学効果(ポッケルス効果)で屈折率変化を起こすための電界を印加し易くなっている。詳細には、後述の導波路の電気光学結晶であるLN結晶の結晶軸は、後述の電界印加による1次電気光学効果が最大になって屈折率変化を効率良く起こし伝播光の伝播状態に効率良く変化を与える様に設定されている。これと共に、結晶軸は、2次非線形過程により発生するテラヘルツ波と伝播光との位相整合が取れる様にも設定されている。つまり、2次非線形過程に関与する光波(テラヘルツ波と伝播光)の波数ベクトルの間に位相整合条件が成り立つ様にも、結晶軸は設定されている。
【0013】
LN基板1上には、接着剤2、MgOドープLN結晶層から成る導波層4、低屈折率バッファ層5によって、入射するレーザ光を全反射で伝播させる導波路が形成されている。すなわち、接着剤2と低屈折率バッファ層5の屈折率は導波層4の屈折率よりも低くしている。接着剤2は、張り合わせ法で作製した場合に必要であって、拡散などでドープ層を形成する場合には必ずしも必要ではない。この場合でも、LN基板1よりはMgOドープLN層の屈折率が高いため導波路として機能する。導波路の構造は、Ti拡散により導波層4を高屈折率化して周囲の領域3と屈折率差を設ける方法や、エッチングによりリッジ形状に導波層4を形成して樹脂等で周囲の領域3を埋め込む方法などにより形成することができる。ここでは、光の閉じ込めを強くするために図示の導波路の様に横方向(Z軸方向)にも導波構造を形成したが、導波路の領域が領域3を含む様に横に均一に広がり、閉じ込め領域のないスラブ導波路としてもよい。導波層4を含む導波路の上には、発生したテラヘルツ波を外部に取り出す光結合部材7、及び導波路に電源8で電圧を印加するための1対の電極6a、6b(以後、まとめて電極6とも記す)が設けられている。光結合部材7としては、プリズム、回折格子、フォトニック結晶等を用いることができる(ここではプリズムを図示)。1対の電極6a、6bは導波路の光の伝播領域の両側に前記X軸の方向に沿って形成されている。
【0014】
図1の導波路にZ軸に平行な偏波すなわち水平偏波でレーザ光を入射させてX軸に沿って伝播させると、背景技術で示した非特許文献2に記載の原理或いは超短パルス光源を用いた光整流により結晶表面からテラヘルツ波が発生する。光結合部材7を介してそのテラヘルツ波を空間に取り出すことができる。LNでの光/テラヘルツ波の屈折率差で決まるチェレンコフ放射角はおよそ65度であり、プリズム7の場合、導波路でテラヘルツ波が全反射せずに空気中に取り出せるプリズム材料としては、例えばテラヘルツ波の損失が少ない高抵抗Siが好適である。この場合、テラヘルツ波が基板表面とのなす角θclad(図1(b)参照)はおよそ49度である。ここで、特許文献1または非特許文献2に記載のように周波数の異なる2つのレーザ光を入射させれば、DFG方式として単色テラヘルツ波が発生する。一方、1つの超短パルス光源(パルスレーザ光源)からの1つのレーザ光(パルスレーザ光)を入射させれば、短パルスのテラヘルツ波を発生させることができる。導波路にパルスレーザ光を入射させるためには、非特許文献1のような波面傾斜の必要がなく、レンズ等の光学素子を用いた集光光学系でパルスレーザ光を集光して導波路に結合させことになるが、波面傾斜が必要なくなる導波路の厚さの条件については後述する。
【0015】
本実施形態では、前述した様に、LNのパイロ軸の方向であるZ軸方向すなわち電気光学定数が最も大きい方向に電極6a、6bで電圧を印加できる様になっており、電圧変調により導波層4の屈折率を変調してテラヘルツ波の位相を効率良く変調できる。屈折率の変化によりテラヘルツ波の出射方向の角度θcladも変化し得るが、一般的には0.1%以下の屈折率変化のため、テラヘルツ波から得る信号情報に影響を与える様な支配的な変化ではない。フェムト秒レーザ光照射でテラヘルツパルスを発生する場合には、パルス時間位置の変調が可能となる。電極6は例えばTi/Auの積層構造であり、LN表面に直接形成してもよいし、SiOなどのスペーサ層(不図示)を形成してからその上に形成してもよい。ただし、この電極6は光結合部材7には直接接触せず、電気的に接触しない様に構成されている。これには、電極、或いは電極+スペーサ層の厚さを1μm以下とし、導波路形成のための低屈折率バッファ層5を3μm程度とする。すなわち、光結合部材7の底面を電極6よりも高い位置にして空隙を作ることで達成される。こうすることで、2電極6a、6b間の電圧は主に導波路に効率良く印加される。この低屈折率バッファ層5の厚さは導波層4をレーザ光が伝播する際のクラッド層として機能するのに十分厚く、かつ光結合部材7でテラヘルツ波を外部に放射する際に多重反射や損失の影響が無視できる程度に薄いことが望ましい。前者に関しては、高屈折率層である導波層4をコアとし、低屈折率層2、5をクラッドとした導波路において、光結合部材7との界面でコア領域の光強度の1/e2以下になる様な厚さ以上であることが望ましい。ただし、eは自然対数の底である。また後者については、外部に放射させる最大周波数におけるテラヘルツ波の低屈折率バッファ層5における等価波長λeq(THz)に対して、1/10程度の厚さ以下になっていることが望ましい。波長の1/10のサイズの構造体は一般的にその波長の電磁波に対して反射、散乱、屈折などの影響が無視できるとみなされるからである。ただし、前記望ましい厚さの範囲外でも、本発明のテラヘルツ波発生素子からのテラヘルツ波発生は可能である。
【0016】
以上の様に、導波路の構成、電気光学結晶の軸方向、電極の構成を設定することで、チェレンコフ放射によるテラヘルツ波を発生させると共に、発生するテラヘルツ波の変調を効率良く行うことができる。すなわち、光励起により効率良く高強度のテラヘルツ波を発生させ、かつ発生するテラヘルツ波を高いS/N比で検出するなどのために設けられた電気的変調手段(電極)を含む発生素子を提供できる。
【0017】
上記素子をテラヘルツ波発生素子として用いて構成したテラヘルツ時間領域分光システム(THz-TDS)によるトモグラフィックイメージング装置の例を図2(a)に示す。ここでは、励起光源として光ファイバを含むフェムト秒レーザ20を用い、分岐器21を介してファイバ22及びファイバ23から出力を取り出す。典型的には、中心波長1.55μmでパルス幅20fs、繰り返し周波数50MHzのものを用いたが、波長は1.06μm帯などでもよく、パルス幅、繰り返し周波数はこれらの値に限らない。また、出力段のファイバ22、23は、最終段の高次ソリトン圧縮のための高非線形ファイバや、テラヘルツ波発生器及び検出器までに至る光学素子等による分散を補償するためのプリチャープを行う分散ファイバを含んでいてもよい。これらは偏波保持ファイバであることが望ましい。
【0018】
テラヘルツ波発生側のファイバ22からの出力は、前述した本発明によるチェレンコフ型の位相整合方式の素子24の導波路に結合させる。その際、ファイバ先端にセルフォックレンズを集積化させたり、先端を加工したピッグテール型としたりして、出力が素子24の導波路の開口数以下になる様に構成して結合効率を上げることが望ましい。勿論、レンズ(不図示)を用いて空間結合にしてもよい。これらの場合に、それぞれの端部に無反射コーティングを施せば、フレネルロスの低減、不要な干渉ノイズの低減につながる。若しくは、ファイバ22と素子24の導波路のNA及びモードフィールド径が近くなる様に設計すれば、突き当てによる直接結合(バットカップリング)として接着してもよい。この場合は、接着剤を適切に選ぶことで、反射による悪影響を低減することができる。なお、前段のファイバ22やファイバレーザ20で、偏波保持でないファイバ部分が含まれる場合、インライン型の偏波コントローラによりチェレンコフ放射型素子24への入射光の偏波を安定化させることが望ましい。ただし、励起光源はファイバレーザに限るものではなく、その場合には偏波の安定化などのための対策は軽減される。
【0019】
発生したテラヘルツ波は、図2(a)に示したTHz-TDS法による構成によって検出される。すなわち、放物面鏡26aによって平行ビームにしてビームスプリッタ25で分岐し、一方は、放物面鏡26bを介してサンプル30に照射する。サンプル30から反射されたテラヘルツ波は放物面鏡26cで集光され、光伝導素子による検出器29に到達し受信される。光伝導素子は、典型的には低温成長GaAsにダイポールアンテナを形成したものを用い、光源20が1.55μmであれば、不図示のSHG結晶を用いて倍波を生成して検出器29のプローブ光とする。このとき、パルス形状を維持するために、0.1mm程度の厚さのPPLN(周期的極性反転リチウムナイオベイト)を用いることが望ましい。光源20が1μm帯の場合には、InGaAs単層或いはMQWで構成した光伝導素子の検出器29において、倍波を生成することなく、基本波をプローブ光に利用することが可能である。本装置では、素子24の導波路に電圧を印加する電源部31と、検出器29から増幅器34を介して検出信号を取得する信号取得部32とを用いて同期検波できる様に組まれている。そして、データ処理・出力部33では、PCなどを用いて遅延部である光学遅延器27を移動させながらテラヘルツ信号波形を取得する様になっている。遅延部は、発生手段(発生部)である素子24におけるテラヘルツ波発生時と検出手段(検出部)である検出器29におけるテラヘルツ波検出時との間の遅延時間を調整できれば、どの様なものでもよい。以上に述べた様に、本装置は、テラヘルツ波を発生するための本発明のテラヘルツ波発生素子を含む発生手段と、発生手段から放射されたテラヘルツ波を検出するための検出手段と、遅延部を備える。そして、この装置は、検出手段が、発生手段から放射されサンプルで反射されて来たテラヘルツ波を検出し、サンプルからの反射光を分析することでサンプルの内部構造をイメージングするトモグラフィ装置として構成されている。
【0020】
図2(a)に図示の系では、測定対象であるサンプル30からの反射波と照射テラヘルツ波は同軸であり、ビームスプリッタ25の存在でテラヘルツ波のパワーは半減する。よって、図2(b)の様にミラー26の数を増やして非同軸の構成にし、サンプル30への入射角が90度でなくなるものの、テラヘルツ波のパワーを増やす様にしてもよい。
【0021】
本装置を用いて、サンプル30の内部に材料の不連続部があれば、取得する信号において、不連続部に相当する時間位置に反射エコーパルスが現れ、サンプル30を1次元でスキャンすれば断層像が得られ、2次元スキャンすれば3次元像を得ることができる。非線形光学結晶を用いたテラヘルツ波発生素子20で、上記の如く電極6を設けてテラヘルツ波を変調できる様にしたことで、機械的な光チョッパーなどで変調する場合に比べて、10倍以上の50kHz〜1MHzの周波数で変調可能である。これにより、同期検波周波数が向上し、光学遅延器27を高速に走査して信号波形の積算回数を増大することができ、結果としてS/N比を向上させられる。従って、従来のものと比較して、より微小な信号でも検出可能となり、例えばトモグラフィではサンプル30の深さ方向の浸透厚さを増大することができる。また、モノパルスで300fs以下の比較的細いテラヘルツパルスを得ることができるので、奥行き分解能を向上させられる。更に、ファイバを用いた励起レーザを照射手段とできるので、装置の小型、低コスト化が可能となる。
【0022】
なお、サンプルによっては反射信号の強度が強くS/N比が十分な場合があり、電極6による変調でなく従来のように光チョッパ(不図示)などの他の変調手段を用いてもよい。その場合でも、本発明の特徴となる300fs以下のテラヘルツパルス発生および高い奥行き分解能をもつトモグラフィ装置として動作させることができる。
【0023】
ここでは、材料としてLN結晶を用いたが、その他の電気光学結晶として、背景技術のところで述べたLiTaOx、NbTaOx、KTP、DAST、ZnTe、GaSe、GaP、CdTeなどを用いることもできる。このとき、LNではテラヘルツ波と励起光に対して背景技術で説明した屈折率差がありノンコリニアで発生するテラヘルツ波が取り出せるが、他の結晶では必ずしも差が大きくないので、取り出しが難しい場合がある。しかし、電気光学結晶よりも大きい屈折率を持つプリズム(例えばSi)を用いればチェレンコフ放射の条件(vTHz<vg)を満たし、テラヘルツ波を外部に取り出すことができる。
【0024】
(実施例1)
実施形態1に対応するより具体的な実施例1を説明する。本実施例では、図1に示した素子構造において、屈折率nがおよそ1.5の光学接着剤層2が厚さ3μmで形成され、MgOドープの導波層4が厚さ3.8μmで形成されている。
【0025】
この導波層4の厚さの決定は次のように行った。まず、得たいテラヘルツパルス(テラヘルツ波)からそのテラヘルツパルスの最大周波数fmaxが決まる。この最大周波数fmaxは、得たいテラヘルツパルスをフーリエ変換したときの最大周波数に相当する。そして、最大周波数fmaxの導波層4の電気光学結晶中の等価波長(実効波長)の半分以下で、かつ、入射するパルスレーザ光の結合および伝播損失の小さいシングルモード条件が成立するように、導波層4の厚さを設定する。本実施例では例えば7.5THzまで対応するとして自由空間での波長はおよそ40μmになり、LN導波層のテラヘルツの屈折率5.2とすると、導波層の厚さはλeq(THz)/2(=40/5.2/2)≒3.8μm以下が望ましいことになる。一方、本実施例の光導波路としては入射レーザ光の中心波長1.55μmの場合で厚さおよそ5μmが結合効率・伝播ロスの観点で望ましい(導波路シミュレーション結果)。しかし、より薄い方の条件、すなわちテラヘルツ波の帯域確保を優先的に選択して3.8μmと決定した。ここで、本実施例でのfmax=7.5THzはLN結晶のLOフォノン吸収の周波数に相当し、その周波数近傍で顕著にテラヘルツ波が吸収されて放射されないために設定した。入射レーザ光のパルス幅によってはLOフォノンの吸収帯よりも周波数の高い、例えば10THz以上の放射が可能な場合があり、その際にはそれに合わせてさらに光導波路厚を薄くすることで対応する。また、入射レーザ光の中心波長が1μmの場合には最適厚さはシミュレーションにより約3.6μmとなり、この場合にはこちらの厚さで決まる。このようにテラヘルツの必要帯域が異なる場合や、入射レーザ光の結合効率・伝播ロスが小さくなる要件との関係から導波層4の厚さを決定することが重要であり、両者の薄い方をベストモードとして選択することが望ましい。
【0026】
一方、幅5μmの低屈折率バッファ層5が、厚さ2μmで、光学接着剤層2と同様の光学接着剤で形成されている。同様に7.5THzまで対応するとして、等価波長を低屈折率層の屈折率1.5で除した値と仮定すると実施形態1のところで説明したようにλeq/10(=40/1.5/10)≒2.7μmの厚さ以下になるように2μmとしている。更に、高抵抗Siによる図1(b)のθが50度のプリズム7が接着されている。この場合、θの角度とテラヘルツ波の放射角はほぼ同じになり、テラヘルツ波は、プリズム7の傾斜面からほぼ垂直に出射する。ただし、θについては必ずしもθcladと等しい必要は無く、またテラヘルツ波の出射も垂直でなくてもよい。
【0027】
本実施例の駆動条件について述べる。LNの電気光学(EO)係数γはZ軸方向が最大でγ〜30pm/Vであり、1次電気光学効果であるポッケルス効果による屈折率変化Δnは次式で与えられる。
Δn≒1/2・n3・γ・E
ここで、n=2.2(LN:MgO)、Eは印加電界である。いま、+/-30Vの矩形で電圧を変化した場合、幅5μmの導波路の場合にはΔnはおよそ0.002となる。素子の電極6を備えた導波路長を10mmとした場合、屈折率は1/1000の変化なので、伝播するレーザ光の伝播距離にしておよそ10μmの差となって表れる。これは、時間差において30fs程度、すなわち想定するテラヘルツパルスの300fsパルス幅のおよそ10%にあたる。
【0028】
この様なテラヘルツパルスの位相変調を行いながら位相モードで同期検波を行い、図2のシステムでサンプル30の断層像の取得を行った。この場合、位相モードで僅かな差を捉えるため、ピーク位置検出すなわち断層像取得には有効であるが、テラヘルツパルスの全体形状の取得すなわちスペクトル解析には誤差が大きくなる。サンプルに照射したテラヘルツパルス波形の例と取得した断層像の例を図3に示す。図3(a)より、パルス幅270fs程度のモノパルスが得られていることが分かる。また、図3(b)は、厚さおよそ90μmの紙を3枚重ねたサンプルで1方向のスキャンを行って得た断層像である。6つの層(白線)が見えるのは、各紙が空気を挟んで隙間があり、各紙の表裏が界面として捉えられたためである。勿論、電極長を更に長くして位相差を更に大きくできる様にしてもよい。
【0029】
(実施形態2)
本発明の実施形態2を図4を用いて説明する。本実施形態では、基板40上で、レーザ光を伝播させる導波路42がサンドイッチ型のスラブ導波路になっていると共に、電圧印加用電極45(45a、45b)が光の伝播方向に対して垂直になり、レーザ光の伝播方向と電界印加の方向が同じになっている。そこで、本実施形態の場合には、Yカット、Z軸方向伝播となっており、X軸が入射レーザ光の偏波方向と一致することになる。
【0030】
図4の構造で、41は、実施形態1と同様の接着剤層である。導波路長は例えば5mmとなっている。電極45a、45bは図4の様に入射側と終端側に設置されており、電源47より電圧を印加することで、発生するテラヘルツ波を変調する。光結合部材46は、電極45の表面にSiOなどの絶縁膜48a、48bを成膜して貼り付けることで、電極45と直接接触しない様になっている。この場合、光結合部材46は2つの絶縁膜48a、48bにブリッジ状に固定することができ、導波路42と光結合部材46の間に空隙部44が形成される。そのため、実施形態1の様な低屈折率バッファ層がなくてもレーザ光は導波路42を伝播することができる。
【0031】
ここで、入射する光は、符号43で示す様に楕円状であってもよい。その場合には、レーザ光源からの光を結合させるためのレンズには棒状のロッドレンズを用いて、導波路42の層構造の垂直方向のみ光を絞る形にしてもよい。本実施形態では、スラブ導波路42への幅の広い入射ビームに対応するために、電極45を導波路に沿った方向ではなく、図4の様に設置した。本実施形態では、変調電圧は実施形態1よりも高くなるが、テラヘルツ波の発生する空間的な領域を広くすることができる。
【0032】
(実施形態3)
本発明による実施形態3は、図5の平面図に示す様に、2つのY分岐部すなわちY分岐器とY合波器を持つマッハツェンダ干渉計型強度変調部54を前段に備え、後段にテラヘルツ波発生部55を設けた集積型素子である。材料は、これまでと同様にLNを始めとした非線形光学結晶50を用いることができる。マッハツェンダ干渉計型強度変調部54に2つの電極52が設けられて、伝播する光の強度変調を可能としている。
【0033】
前段は一般に知られた変調器であって、Y分岐導波路により入射レーザ光51を2つに分ける。また、電極52に電圧Vπ(2つのY分岐部間にπの位相差を発生させる電圧)を印加することで、実施形態1と同様に、伝播光の伝播状態に影響を及ぼす非線形光学結晶50の屈折率を変化させて位相を変化させ、合波時点で位相が互いに反転する様に調整する。印加電圧がVπのときに打ち消しあって、テラヘルツ波発生部55に伝播するレーザ光が消失する。一方、電圧印加が0の場合若しくはVπよりも小さい場合には、Y合波器で重ね合わされて励起レーザ光がテラヘルツ波発生部55に入射し、光結合部材53によりテラヘルツ波が上方に出射される。この様に、導波路を伝播する強度変調された光からテラヘルツ波が発生する。本実施形態では、テラヘルツ波の強度の変調になり、同期検波する場合に振幅モードで容易に同期することができる。
【0034】
(実施形態4)
これまでは、主に、励起光にフェムト秒レーザ光を用いて光整流によりテラヘルツパルスを発生させる例を説明してきた。これに対して、実施形態4では、2つの異なる発振周波数ν1、ν2を持つレーザ光を入射させ、差周波に相当する単色のテラヘルツ波を出射する。レーザ光源としては、Nd:YAGレーザ励起のKTP-OPO(Optical-Parametric-Oscillator)光源(これは2波長の光を出力する)や、2台の波長可変レーザダイオードを用いることができる。
【0035】
図6は本実施形態の断面図である。LN基板60上に、接着剤層61、MgOドープLN導波層62、低屈折率バッファ層63が積層されている。実施形態1と同様に、5μm幅の導波路とその両側に電圧印加のための電極も形成されている(不図示)。本実施形態では、テラヘルツ波の出力を大きくするために、導波路長を40mmとして、複数の光結合部材64が備えられている。各光結合部材64は例えばほぼ1cmの長さで、図6のように4つを配することができる。複数の光結合部材64で光結合部材を構成することでその全体の容積が小さくなり、テラヘルツ波が光結合部材を透過する距離を低減できて損失をより少なくできる。
【0036】
本実施形態において、入射する光の周波数差を0.5THzから7THzとしたとき、その範囲で放射テラヘルツ波の周波数を可変にできる。本実施形態では、特定のテラヘルツ帯の周波数で検査やイメージングを行う応用、例えば、医薬品の特定物質の吸収スペクトルに周波数を合わせてその物質の含有量を調べるなどの検査が可能となる。
【0037】
(実施形態5)
これまでの実施形態や実施例では、図7に示す様なLNによるテラヘルツ波発生素子71の導波路の終端部80は、そこから出る光がノイズ源にならない様に、粗面にしたり、斜めカットして光を外部に取り出したり、ARコーティングしたりしている。これに対して、実施形態5では、終端部80に斜めカットやARコーティングなどの処理を施して、終端部80から出射される光をプローブ光として再利用する。すなわち、本実施形態では、テラヘルツ波発生素子71の導波路終端部80からの光を検出手段へのプローブ光として利用し、遅延部は、テラヘルツ波発生素子71の導波路への光の到達時間と検出手段へのプローブ光の到達時間との間の遅延時間を調整する。
【0038】
図7は、図2と同様にTHz-TDS方式のトモグラフィ装置を示す図であって、電気システム部は省略してある。図2の実施形態と異なる点は、ファイバ分岐部を備えず、ファイバを含む励起レーザ70の出力を全てテラヘルツ波発生素子71に入射していることである。テラヘルツ波発生素子71から発生したテラヘルツ波は、図2の実施形態と同様に放物面鏡、ハーフミラー77を通してサンプル78に照射される。サンプル78からの反射光はテラヘルツ波検出部74に入射し、信号取得が行われる。一方、テラヘルツ波発生素子71を伝播したレーザ光の一部は、終端部80から再び出射し、ミラー72、遅延部73、レンズ75を通して検出部74のプローブ光として利用される。
【0039】
この様な形態にした場合、励起レーザ光の分岐部を必要としないので構成点数を減らすことができると共に、効率良く励起レーザ70のパワーを利用することができる。
【0040】
(実施形態6)
本実施形態では、同構造の素子をテラヘルツ波の検出素子として機能させるものである。すなわち図9に示すように、LN基板81上に接着剤82、MgOドープLN結晶層から成る導波層84、低屈折率バッファ層85によって、入射するレーザ光を全反射で伝播させる導波路が形成される。さらに電極86a、86b、光結合部材87を備えてチェレンコフ放射によりテラヘルツ波が出射される構造になっている。ここでは、超短パルスレーザ光をこれまでの実施形態とは反対側の面から、偏波89を直線偏光で結晶のZ軸から傾けて(例えば45度)入射させる。その場合、出射されたレーザ光は、電気光学結晶の複屈折性によって電界のZ軸成分とY軸成分には位相差が生じて、出射された空間では楕円偏波となって伝播する。このような自然複屈折による位相差は結晶の種類や入射偏波方向、導波路長さによって異なり、位相差ゼロの構成にすることもできる。電極86a、86bに印加する静電界によってこの位相差を静的に調整して、テラヘルツ電界がゼロのときに位相差ゼロに調整することも可能である。
【0041】
ここに、光結合部材、例えばSiプリズム87によって偏波の主軸がZ軸のテラヘルツ波が実施形態1〜5で出射していた面から入射すると、テラヘルツ波発生の逆過程で、導波路を伝播する超短パルスレーザ光とテラヘルツ波の相互作用を導波路全体に渡って行わせることが可能となる。相互作用としては、テラヘルツ波電磁界が電気光学結晶に与える1次電気光学効果(ポッケルス効果、即ち2次非線形過程の一種の効果)により、導波路のZ軸の屈折率が変化して伝播光の偏波状態が変化することである。具体的にはレーザ光の電界のZ軸成分とY軸成分の位相差が誘導複屈折により変化し、楕円偏波の楕円率や主軸の方向が変化する。このレーザ光の伝播状態の変化を外部の偏光素子91および光検出器92、93で検出すれば、テラヘルツ波の電界振幅の大きさを検出できることになる。本実施形態では、前記のように電極86a、86bに印加する静電界によって自然複屈折率を補償し、ウォラストンプリズム91で2つの偏光を分離して、2つの光検出器92、93の差動増幅によりS/N比を向上させている。差動増幅は必須のものではなく、91を偏光板として1つの光検出器のみで強度を検出してもよい(不図示)。
【0042】
前記自然複屈折の補償の安定化のために、電極86a、86bに印加する電圧には低周波の正弦波信号を重畳してウォブリング技術によりオフセットの変動を抑えることも可能である。また、導波路長さによっては印加電圧のみでは補償ができない場合があり、その際は位相補償板(λ/4板など、不図示)を出射端と偏光素子91との間に追加してもよい。さらにこの電極による変調によってテラヘルツ波の検出信号そのものに変調を与え、同期検波することもできる。前記ウォブリングの変調周波数と周波数分離すれば両方の制御を同時に行うことも可能である。例えば、この同期検波周波数を1MHz、ウォブリング変調周波数を1kHzとすればよい。
【0043】
このような同期検波を行うことで、これまでの実施形態で説明したようなテラヘルツ時間領域分光装置、およびトモグラフィ装置を構築することができる。その際の発生素子は、本発明のようなチェレンコフ型の位相整合方式を使用した素子でもよいし、従来の光伝導素子等を用いた発生素子など、何でもよい。
【0044】
本実施形態では、光入射を、発生とは逆側の端部より行ったが、発生と同じ側から入射してもよい。その場合は整合する長さが小さくなるため信号強度が小さくなる。光導波路の形態としては、実施形態1のようなリッジ形状としたが、実施形態2のようなスラブ導波路としてもよい。また、パルスレーザ光でテラヘルツパルスを検出する事例について説明したが、実施形態4のように2つの周波数のレーザ光を入射させてその差周波成分の単色のテラヘルツ波を検出することもできる。その場合は、差周波を変化させれば、所望の周波数のテラヘルツ波をフィルタのように切り出して電界振幅を検出することができる。
【0045】
テラヘルツ波の検出の仕方としては、結合したテラヘルツ波による1次電気光学効果で光の偏波状態が変化するのを検出する方式について述べた。しかし、光の伝播状態の変化として導波路を伝播する光の位相変化や、導波路を伝播する光の周波数と、結合したテラヘルツ波の周波数との差周波の光信号を検出する、すなわち光のビート信号を検出する方式でもよい。
【0046】
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形および変更が可能である。また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時の請求項に記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
【符号の説明】
【0047】
1‥基板、4‥電気光学結晶の導波層(導波路)、6a、6b‥電極、7‥光結合部材

【特許請求の範囲】
【請求項1】
電気光学結晶を含む導波路と、
前記導波路を光が伝播することで前記電気光学結晶から発生するテラヘルツ波を空間に取り出す光結合部材と、
前記導波路に電界を印加することで、前記電気光学結晶の1次電気光学効果により、前記導波路を伝播する前記光の伝播状態に変化を与える少なくとも2つの電極と、
を備え、
前記導波路の前記電気光学結晶の結晶軸は、2次非線形光学過程により発生する前記テラヘルツ波と前記導波路を伝播する前記光との位相整合が取れる様に設定されていることを特徴とするテラヘルツ波発生素子。
【請求項2】
前記電気光学結晶の結晶軸は、前記電極の電界印加による前記電気光学結晶の1次電気光学効果が最大になる様に設定されていることを特徴とする請求項1に記載のテラヘルツ波発生素子。
【請求項3】
前記電極は、前記光結合部材とは電気的に接触しない様に設けられていることを特徴とする請求項1または2に記載のテラヘルツ波発生素子。
【請求項4】
前記導波路及び前記電気光学結晶の結晶軸の方向は、電気光学的チェレンコフ放射により前記テラヘルツ波が発生する様に設定されていることを特徴とする請求項1乃至3の何れか1項に記載のテラヘルツ波発生素子。
【請求項5】
前記電気光学結晶はYカットニオブ酸リチウムを含み、
前記導波路の光の伝播方向をX軸、Y軸及び光の伝播方向と直交する方向をZ軸として、前記2つの電極は前記導波路の光の伝播領域の両側にX軸の方向に沿って形成されていることを特徴とする請求項1乃至4の何れか1項に記載のテラヘルツ波発生素子。
【請求項6】
前記電気光学結晶はYカットニオブ酸リチウムを含み、
前記導波路の光の伝播方向をZ軸、Y軸及び光の伝播方向と直交する方向をX軸として、前記2つの電極は前記導波路の光の伝播領域の入射側と終端側に夫々形成されていることを特徴とする請求項1乃至4の何れか1項に記載のテラヘルツ波発生素子。
【請求項7】
前記導波路は、2つのY分岐部を持つマッハツェンダ干渉計型強度変調部を含み、
前記2つの電極は、前記マッハツェンダ干渉計型強度変調部に設けられて、伝播する光の強度変調を可能とし、
前記導波路を伝播する前記強度変調された光から前記テラヘルツ波が発生することを特徴とする請求項1乃至4の何れか1項に記載のテラヘルツ波発生素子。
【請求項8】
電気光学結晶を含む導波路と、
前記導波路を光が伝播することで前記電気光学結晶から発生するテラヘルツ波を空間に取り出す光結合部材と、を備え、
前記光および前記テラヘルツ波は、短パルスであることを特徴とするテラヘルツ波発生素子。
【請求項9】
前記導波路は、前記光に対してコアとなる高屈折率層と前記光に対してクラッドとなる低屈折率層とを含み、
前記高屈折率層の厚さは、空間に取り出す前記テラヘルツ波の最大周波数に相当する波長の前記電気光学結晶における等価波長の半分以下であることを特徴とする請求項8に記載のテラヘルツ波発生素子。
【請求項10】
前記導波路は、前記光に対してコアとなる高屈折率層と前記光に対してクラッドとなる低屈折率層とを含み、
前記低屈折率層は、前記高屈折率層及び前記光結合部材に挟まれており、
前記低屈折率層の厚さdは、前記光の前記コアにおける光強度の1/e2(eは自然対数の底)になる厚みをa、空間に取り出された前記テラヘルツ波の最大周波数に相当する波長の前記低屈折率層における等価波長をλeqとしたとき、
a<d<λeq/10
を満たすことを特徴とする請求項8に記載のテラヘルツ波発生素子。
【請求項11】
テラヘルツ波発生装置であって、
パルスレーザ光発生手段と、
前記パルスレーザ光を伝搬させる電気光学結晶を含む導波路と、
前記導波路を伝搬する光から電気光学的チェレンコフ放射により発生するテラヘルツ波パルスを空間に取り出す光結合部材と、
を備えた素子と、
前記レーザ光を前記導波路に結合する手段を備え、
前記導波路は伝搬する光に対してコアとなる高屈折率層とクラッドとなる低屈折率層を含み、前記低屈折率層の少なくとも1つは前記高屈折率層と前記光結合部材にそれぞれ接して挟まれ、かつその厚さdは前記導波路を伝搬する光のコアにおける光強度の1/e2(eは自然対数の底)になる厚みをa、空間に取り出すテラヘルツ波の最大周波数における前記低屈折率層での等価波長をλeqとしたとき、
a<d<λeq/10
であることを特徴とするテラヘルツ波発生装置。
【請求項12】
前記導波路のコアとなる高屈折率層の厚さは、前記取り出すテラヘルツ波パルスのフーリエ変換周波数の最大周波数に相当する波長の前記電気光学結晶における実効波長の半分か、前記パルスレーザ光の前記導波路への結合および伝搬損失が少ないシングルモード条件を満たす厚さのいずれか薄い方であることを特徴とする請求項11に記載のテラヘルツ波発生装置。
【請求項13】
電気光学結晶を含む導波路と、
前記導波路に空間からテラヘルツ波を入射させる光結合部材と、
前記導波路に電界を印加することで、前記電気光学結晶の1次電気光学効果により、前記導波路を伝播する光の伝播状態に変化を与える少なくとも2つの電極と、
を備え、
前記導波路の前記電気光学結晶の結晶軸は、該導波路に前記テラヘルツ波が入射することで、該電気光学結晶の1次電気光学効果により、前記導波路を伝播する光の伝播状態が変化する様に設定されていることを特徴とするテラヘルツ波検出素子。
【請求項14】
テラヘルツ波検出装置であって、
光結合部材により空間のテラヘルツ波をチェレンコフ配置で請求項13に記載のテラヘルツ波検出素子の導波路に入射させ、
前記導波路を伝搬する光の伝搬状態の変化を検出する手段を備えたことを特徴とするテラヘルツ波検出装置。
【請求項15】
テラヘルツ波を発生する発生部と、
前記発生部から発生したテラヘルツ波を検出する検出部と、
前記発生部におけるテラヘルツ波発生時と前記検出部におけるテラヘルツ波検出時との間の遅延時間を調整するための遅延部と、
を備えたテラヘルツ時間領域分光装置であって、
前記発生部が、請求項1乃至10の何れか1項に記載のテラヘルツ波発生素子を有するもしくは請求項11または12に記載のテラヘルツ波発生装置を含むことを特徴とするテラヘルツ時間領域分光装置。
【請求項16】
テラヘルツ波を発生する発生部と、
前記発生部から発生したテラヘルツ波を検出する検出部と、
前記発生部におけるテラヘルツ波発生時と前記検出部におけるテラヘルツ波検出時との間の遅延時間を調整するための遅延部と、
を備えたテラヘルツ時間領域分光装置であって、
前記検出部が、請求項13に記載のテラヘルツ波検出素子もしくは請求項14に記載のテラヘルツ波検出装置を含むことを特徴とするテラヘルツ時間領域分光装置。
【請求項17】
前記検出部は、前記発生部から発生しサンプルで反射された前記テラヘルツ波を検出し、
前記検出部の検出結果を分析することで前記サンプルの内部構造をイメージングするトモグラフィ装置として構成されていることを特徴とする請求項15または16に記載のテラヘルツ時間領域分光装置。
【請求項18】
前記テラヘルツ波発生素子の導波路終端部からの光を前記検出部へのプローブ光として利用し、
前記遅延部は、前記テラヘルツ波発生素子の前記導波路への前記光の到達時間と前記検出部への前記プローブ光の到達時間との間の遅延時間を調整することを特徴とする請求項15または17に記載のテラヘルツ時間領域分光装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2011−203718(P2011−203718A)
【公開日】平成23年10月13日(2011.10.13)
【国際特許分類】
【出願番号】特願2011−22706(P2011−22706)
【出願日】平成23年2月4日(2011.2.4)
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.セルフォック
【出願人】(000001007)キヤノン株式会社 (59,756)
【Fターム(参考)】