説明

ディジタル位相同期ループ(DPLL)の時間対ディジタル変換器(TDC)のパワーオンゲーティング窓を較正するためのシステム及び方法

ディジタル位相同期ループ(DPLL)の時間対ディジタル変換器(TDC)のパワーオンゲーティング窓を較正するのに関係するシステム及び方法が開示される。ゲーティング窓は同時に電力の効率的方法でTDCを動作させながらDPLLの適切な動作を保証するために較正される。特に、その技術はTDCゲーティング窓の幅を既定値に設定すること;制御ループが実質的にロックされるまで、DPLLを動作させること;DPLLの位相誤差デバイスによって生成される位相誤差信号をモニターしながら、TDCゲーティング窓の幅を所定の量だけ減少させること;位相誤差が所定の閾値に実質的に到達するか、或いは横切るときにTDCゲーティング窓の現在の幅を決定すること;及びTDCゲーティング窓の動作幅の誤差のマージンに組込む所定の量だけTDCゲーティング窓の現在の幅を増加させることを要する。

【発明の詳細な説明】
【技術分野】
【0001】
本開示は一般に位相同期ループ(phase locked loops:PLL)に関係し、そして特にディジタル位相同期ループ(digital phase locked loop:DPLL)の時間対ディジタル変換器(time-to-digital converter:TDC)のパワーオンゲーティング窓(power-on gating window)を較正(calibrate)するためのシステム及び方法に関する。
【背景技術】
【0002】
通信デバイスは同期的に他の遠隔通信デバイスへ信号を伝送し、そしてそこから信号を受取るための局部発振器(local oscillator:LO)を一般的に含む。しばしば、これらの信号は定義された周波数チャネルによって送られ、或いは受取られる。特定の周波数チャネルを選択するために、LOの周波数は選択されたチャネルを介して信号を適切に送り、或いは受取るために一般的に変更される。しばしば、位相同期ループ(PLL)、例えばディジタルPLL(DPLL)、がLO周波数の変更を行うために使用される。
【0003】
一般的なDPLLは入力累算器(input accumulator)、位相誤差加算デバイス、低域フィルター(low pass filter:LPF)(しばしば「ループ・フィルター」と云われる)、ディジタル制御発振器(digital controlled oscillator:DCO)、ラッチ回路を含むDCO累算器、 時間対ディジタル変換器(time-to-digital converter:TDC)、フィードバック位相加算デバイス、及びその他のディジタル・デバイスといった、いくつかのデバイスを含む。入力累算器は入力位相信号を生成する。位相誤差加算デバイスは入力位相信号とフィードバック位相信号との間の位相差を表す位相誤差信号を生成する。ループ・フィルターは位相誤差信号を濾過することによってDCOの制御信号を生成する。DCOはDPLLがロック(lock)されるとき入力位相信号に関係する位相を持つ出力信号を生成する。ラッチを含むDCO累算器はDCOの出力信号の位相の粗測定(coarse measurement)を表す信号を生成する。TDCはDCOの出力信号の位相の微測定(fine measurement)を表す信号を生成する。そして、フィードバック加算デバイスはフィードバック位相信号を生成するために粗位相信号と微位相信号を加算する。
【0004】
TDCは一般的に一連の遅延素子(例えば、インバーター)、複数のDフリップ−フロップ回路、及び復号器(decoder)を含む。DCOの出力信号からの、またはそこから得られた出力クロックは一連の遅延素子の入力に適用される。遅延素子はそれぞれのDフリップ−フロップのデータ入力に連結される。基準クロック(reference clock)はDフリップ−フロップのクロック入力に適用される。Dフリップ−フロップのQ−出力は温度計対二値復号器(thermometer-to-binary decoder)のような復号器の入力に連結される。反転基準クロックは復号器のクロック入力に適用される。そして、復号器の出力は出力クロックと基準クロックとの間の位相差の部分的位相を表す二値出力を生成する。
【0005】
一般的に、出力の周波数は基準クロックの周波数より相当に高く、例えば、10倍以上ある。一般に、基準クロックの端(edge)が到達するとき、位相測定が行われる。基準クロックの隣接端の間で、出力クロックはまだ一連の遅延素子に適用されつつある。これによって遅延素子は位相測定が行われていない時間に相当な量の電力を不必要に消費する。従って、TDCのパワーオンゲーティング(power-on gating)は基準クロックの端周辺の比較的小さな窓のみ出力クロックを一連の遅延素子に適用するために開発されてきた。しかしながら、製造工程、環境温度、及び電力供給電圧における変動により、動作上及び電力消費目的のためのゲーティング窓(gating window)に適したサイズは一般に確かめにくい。
【発明の概要】
【0006】
ディジタル位相同期ループ(DPLL)の時間対ディジタル変換器(TDC)のパワーオンゲーティング窓の較正に関係するシステム及び方法が開示される。ゲーティング窓は同時に電力の効率的方法でTDCを動作させながらDPLLの適切な動作を保証するために較正される。特に、その技術はTDCゲーティング窓の幅を既定値(default value)に設定すること;制御ループが実質的にロックされるまでDPLLを動作させること;DPLLの位相誤差デバイスによって発生する位相誤差信号をモニターしながら、TDCゲーティング窓の幅を所定の量だけ減少させること;位相誤差が所定の閾値に実質的に達するか、或いは横切る時間にTDCゲーティング窓の現在の幅を決定すること;及びTDCゲーティング窓の動作幅について誤差のマージンに組込むべき所定の量だけTDCゲーティング窓の現在の幅を増加することを要する。
【0007】
開示の別の形態はディジタルPLL(DPLL)のような位相同期ループ(PLL)の位相誤差デバイスから位相誤差信号を受信するように適応された制御ユニットを含む装置に関係し、そして時間対ディジタル(TDC)変換器のゲーティドクロック信号の幅を位相誤差信号に基づいて動作値に設定する。別の形態では、制御ユニットはゲーティドクロック信号の幅を既定値に設定し、位相誤差デバイスからの位相誤差信号をモニターし、そして位相誤差信号が所定の閾値に実質的に達し、或いは横切るまでゲーティドクロック信号の幅を減少させるように適応される。さらに別の形態では、制御ユニットはさらに誤差のマージンをゲーティドクロック信号の幅の動作値に与えるために位相誤差信号が所定の閾値に実質的に達し、或いは横切る時間にゲーティドクロック信号の幅を増加させるように適応される。
【0008】
開示の別の形態では、制御ユニットは第一のゲーティング信号を生成するように適応された第一発生器、及び第二のゲーティング信号を生成するように適応された第二発生器を含み、そこでは第一及び第二のゲーティング信号はゲーティドクロック信号の幅を制御するそれぞれの端を含む。さらに別の形態では、制御ユニットは第一及び第二のゲーティング信号及び、DPLLの出力の位相に関係する位相を持つ出力クロック信号からゲーティドクロック信号を生成するように適応された論理を含む。さらに別の形態では、第一の発生器は第一マルチプレクサーの入力に連結されたそれぞれの出力を持つ第一の一連の遅延素子を含み、そしてそこでは第一の一連の遅延素子は未加工(raw)の基準クロックを受取るように適応される。別の形態では、第二の発生器は第二マルチプレクサーの入力に連結されたそれぞれの出力を持つ第二の一連の遅延素子を含み、そしてそこでは第二の一連の遅延素子は第一の一連の遅延素子の出力に連結される。
【0009】
別の形態では、制御ユニットはさらに第一のゲーティング信号として第一の一連の遅延素子の出力信号の一つを第一マルチプレクサーに選択させる第一の選択信号を生成するように適応された制御器を含む。同様に、別の形態では、制御器は第二のゲーティング信号として第一の一連の遅延素子の出力信号の一つを第二マルチプレクサーに選択させる第二選択信号を生成するように適応される。さらに別の形態では、制御ユニットはさらに制御器に応答して第一の選択信号を生成するように適応された第一のプログラム可能カウンター、及び制御器に応答して第二の選択信号を生成するように適応された第二のプログラム可能カウンターを含む。
【0010】
上で論じた装置はディジタル位相同期ループ(DPLL)に使用される。この点に関して、その装置はさらに位相誤差信号に基づいて発振器制御信号を生成するように適応されたフィルター;発振器制御信号に基づいて出力信号を生成するように適応された発振器(そこではゲーティドクロック信号の位相は出力信号の位相に関係する);出力信号の粗位相測定に関係する第一のフィードバック位相信号を生成するように適応された第一の累算器(そこではTDCは出力信号の微位相測定に関係する第二のフィードバック位相信号を生成する);第一及び第二のフィードバック位相信号を結合することによって全体のフィードバック位相信号を生成するように適応された加算デバイス;及び入力位相信号を生成するように適応された第二の累算器(そこでは位相誤差デバイスによって生成された位相誤差信号は入力位相信号と全体のフィードバック位相信号との間の差分に関係する)を含む。
【0011】
本開示の他の形態、利点及び新規の特徴は付随の図と共に考察されるとき、次の開示の詳細な記述から明白になるであろう。
【図面の簡単な説明】
【0012】
【図1】開示の形態による典型的なディジタル位相同期ループ(DPLL)の図式/ブロック図を例示する。
【図2】開示の別の形態による典型的なDPLLの典型的なクロック制御ユニットの図式/ブロック図を例示する。
【図3】開示の別の形態による典型的なクロック制御ユニットの中で生成された典型的な信号のタイミング図を例示する。
【図4】開示の別の形態による典型的なDPLLの典型的な時間対ディジタル変換器(TDC)のパワーオンゲーティング窓を較正する典型的な方法のフロー・チャートを例示する。
【図5】開示の別の形態による典型的な時間対ディジタル変換器(TDC)の図式/ブロック図を例示する。
【図6】開示の別の形態による典型的な時間対ディジタル変換器(TDC)の中で生成された典型的な信号のタイミング図を例示する。
【図7】開示の別の形態による典型的な通信デバイスの図式/ブロック図を例示する。
【発明を実施するための形態】
【0013】
図1は開示の形態による典型的なディジタル位相同期ループ(DPLL)100の図式/ブロック図を例示する。要するに、DPLLは同時に電力の効率的方法でTDCを動作させながらDPLLの適切な動作を達成するために、時間対ディジタル変換器(TDC)のパワーオンゲーティング窓を較正するための技術を提供する。特に、その技術はパワーオンゲーティング窓を既定値に設定すること、制御ループが実質的にロックされるまでDPLLを動作させること、位相誤差加算デバイスからの位相誤差信号をモニターしながらパワーオンゲーティング窓を減少させること、位相誤差が所定の閾値を横切るとき実質的に現在のパワーオン窓を選択すること、及び誤差のマージンを現在のパワーオン窓に適用することを含む。
【0014】
特に、DPLLは入力累算器102、第一(位相誤差)加算デバイス104、低域(LPF)またはループ・フィルター106、ディジタル制御発振器(DCO)108、周波数分割器110、クロック制御ユニット112、ラッチ116を含むDCO累算器114、時間対ディジタル変換器(TDC)118、及び第二(フィードバック位相)加算デバイス120を含む。
【0015】
入力累算器102はPLL入力及び基準クロックREF2を受取り、そして入力位相信号を生成する。本質的に、入力累算器102はPLL入力によって指示された数によって基準クロックREF2の期間を計数するカウンターを含む。例えば、PLL入力が10であるならば、カウンターは10毎(例えば、0、10、20、30、等)に計数する。PLL入力はDCO出力の周波数の基準クロックREF2の周波数に対する比率に関係する。例えば、基準クロックの周波数が100MHzであり、そしてPLL入力が10であるならば、DCO出力の周波数は(ループがロックされるとき)約1GHzである。
【0016】
第一(位相誤差)加算デバイス104は入力累算器102から入力位相信号、及び第二(フィードバック位相)加算デバイス120からフィードバック位相信号を受取り、そして入力位相信号とフィードバック位相信号との間の位相差に関係する位相誤差信号を生成する。タイミング及び誤差訂正のために、第一加算デバイス104は基準クロックREF2を受取る。例えば、入力累算器102及び第二加算デバイス120から位相信号を受取った後、第一加算デバイス104は基準クロックREF2の位相誤差信号一(1)クロック期間を生成する。REF2クロックの周波数、即ち、クロック期間はプログラムされるので、第一加算デバイス104は位相誤差信号を出力するために適切な遅延を設定する目的で基準クロックREF2を受取る。
【0017】
LPFまたはループ・フィルター106はDCO 108の周波数制御信号を生成するために第一加算デバイス104からの位相誤差信号を濾過する。ループ・フィルター106の伝達関数は基準クロックREF2の周波数に依存する。従って、ループ・フィルター106はまた基準クロックREF2の現在の周波数をそれに通知するために基準クロックREF2を受取る。ループ・フィルター106は基準クロックREF2の現在の周波数に従ってその伝達関数を調整するためにこの情報を使用する。
【0018】
DCO 108はループ・フィルター106からの周波数制御信号、及び基準クロックREF2を受取り、そして制御ループがロックされるとき入力位相信号との特定の位相関係を持つPLL出力信号を生成する。随意的に、周波数分割器110は処理をさらによく促進するために低減された周波数を持つ出力クロックを生成するためにDCO 108の出力信号の周波数を分割するのに用意される。DCO累算器114は出力クロックの位相(それはPLL出力信号の位相に関係する)の粗測定を表す信号を生成する。本質的に、DCO累算器114は出力クロックの期間を増分的に計数するカウンターを含む。ラッチ116は基準クロックREF2の始動端に応答して粗位相情報を出力する。
【0019】
下記でさらに詳細に論じられるように、クロック制御ユニット112は周波数分割器110からの出力クロック、及び未加工の基準クロックREF0を受取り、そしてDPLLの様々な成分の基準クロックREF2及びTDC 118のゲーティドクロックを生成する。ゲーティドRFクロックは基準クロックREF2のそれぞれの始動端の両側に時宜的に位置するRFクロック信号の一以上の期間を含む。クロック制御ユニット112はさらに同時に電力の効率的方法でTDC 118を動作させながら、DPLL 100の適切な動作を保証するために出力クロックの幅(パワーオンゲーティング窓)を決定する較正手続きを行う。特に、その技術はパワーオンゲーティング窓を既定値に設定すること、制御ループが実質的にロックされるまでDPLL 100を動作させること、第一加算デバイス104からの位相誤差信号をモニターしながらパワーオンゲーティング窓を減少させること、位相誤差信号が所定の閾値を横切るとき実質的にパワーオンゲーティング窓を選択すること、及び誤差のマージンを現在のパワーオンゲーティング窓に適用することを含む。
【0020】
TDC 118は出力クロックの位相(前に論じたように、それはPLL出力信号の位相と関係する)の微測定を示す信号を生成する。特に、TDC 118はゲーティドクロックを受取る一連の遅延素子を含む。遅延素子の出力はDフリップ−フロップのデータ入力にそれぞれ連結される。Dフリップ−フロップは基準クロックREF2によってクロック動作する。Dフリップ−フロップのQ−出力は温度計−対−二値復号器(それはRFクロックと基準クロックREF2との間の部分的差分を表す信号を生成する)に連結される。TDC 118の電力消費はパワーオンゲーティング窓の幅に関係する。従って、パワーオンゲーティング窓が広いほど、TDCは多くの電力を消費する。逆に、パワーオンゲーティング窓が狭いほど、TDCは少ない電力を消費する。さらに、上で論じたように、クロック制御ユニット112は電力の効率的方法でTDC 118を動作させながら、DPLL 100の適切な動作を保証するようにパワーオンゲーティング窓の幅を較正する。
【0021】
第二加算デバイス120は粗及び微位相信号をラッチ116及びTDC 118からそれぞれ受取り、そしてPLL出力信号の位相に関係するフィードバック位相信号を生成する。タイミング及び誤差訂正のために、第二加算デバイス120は基準クロックREF2を受取る。例えば、ラッチ116及びTDC 118から位相情報を受取った後、第二加算デバイス120は基準クロックREF2のフィードバック位相信号一(1)クロック期間を生成する。基準クロックREF2の周波数、即ち、クロック期間はプログラム可能であるので、第二加算デバイス120は基準クロックREF2の現在の周波数をそれに通知するために基準クロックREF2を受取る。第二加算デバイス120はフィードバック位相信号を出力するため適切な遅延を選択するためにこの情報を使用する。
【0022】
図2は開示の別の形態によるクロック制御ユニット200の図式/ブロック図を例示する。クロック制御ユニット200は前に論じたクロック制御ユニット112の詳細な実施の単なる一つの例である。特に、クロック制御ユニット200はTDC 118のゲーティドクロックを生成する回路構成を含む。クロック制御ユニット200はさらにDPLL 100の適切な動作を保証し、同様に電力の効率的方法でTDC 118を動作させるためゲーティドクロックの幅を較正するための回路構成を含む。その上、同じ回路構成はまた前に論じたDPLL 100の多数の構成要素によって使用される基準クロックREF2を造出する。
【0023】
特に、クロック制御ユニット200は第一の一連の遅延素子202、第一マルチプレクサー(MUX)204、第二の一連の遅延素子206、第二MUX 208、インバーター210、第一及び第二のANDゲート212及び214、TDCゲーティング較正制御器216、第一プログラム可能カウンター218、及び第二プログラム可能カウンター220を含む。第一の一連の遅延素子202は未加工の基準クロックREF0を受取るように適応された入力を含む。一連の遅延素子202の出力は第一MUX 204の入力にそれぞれ連結される。第二の一連の遅延素子206は直接または一以上の遅延素子経由のいずれかにより第一の一連の遅延素子202の出力にそれぞれ連結される。一連の遅延素子206の出力は第二MUX 208の入力にそれぞれ連結される。
【0024】
第一プログラム可能カウンター218から受取られた選択信号に応答して、第一MUX 204は第一ゲーティドクロックREF1を生成するために一連の遅延素子202の一つの出力からクロック信号の一つを選択する。下記でさらに詳細に論じられるように、第一ゲーティドクロックREF1の端(例えば、上昇端)はパワーオンゲーティング窓の始まりを定義する。その上、第二プログラム可能カウンター220から受取られた選択信号に応答して、第二MUX 208は第二ゲーティドクロックREF3を生成するために一連の遅延素子206の一つの出力からクロック信号の一つを選択する。下記でさらに詳細に論じられるように、第二ゲーティドクロックREF3の端(例えば、上昇端)はパワーオンゲーティング窓の終わりを定義する。DPLLの基準クロックREF2は第一及び第二の一連の遅延素子202及び206の間の遅延素子によって生成される。基準クロックREF2はその始動端が第一ゲーティドクロックREF1の端と第二ゲーティドクロックREF3の端との間の実質的に中間にあるように選択される。
【0025】
第一MUX 204の出力はANDゲート212の入力に連結され、そして第二MUX 208の出力はインバーター210を介してANDゲート212の他の入力に連結される。ANDゲート212はパワーオンゲーティング窓の幅を定義するイネーブル信号をその出力において造出する。例えば、イネーブル(ENABLE)信号はパワーオンゲーティング窓の始まりを定義する上昇端、及びパワーオンゲーティング窓の終わりを定義する下降端を含む。ANDゲート212の出力はANDゲート214の入力に連結される。ANDゲート214の他の入力は分割器110から、或いは分割器が使用されなければ直接DCO 108から出力クロックを受取るように適応される。本質的に、イネーブル信号はゲーティドクロックがANDゲート214の出力で生成されるように出力クロックをゲートする。
【0026】
図3は開示の別の形態による典型的なクロック制御ユニット200の中で生成される典型的な信号のタイミング図を例示する。例示した一番上の信号は第一ゲーティドクロックREF1、例示した中間の信号はDPLLの基準クロックREF2、そして例示した一番下の信号は第二ゲーティドクロックREF3である。図が示すように、第一MUX 204によって実施された選択に基づいて、第一ゲーティドクロックREF1のタイミングはパワーオンゲーティング窓の開始を定義するために選択的に遅延される。この例では、パワーオンゲーティング信号の開始は第一ゲーティドクロックREF1の上昇端によって設定される。同様に、第二MUX 208によって施された選択に基づいて、第二ゲーティドクロックREF3のタイミングはパワーオンゲーティング窓の終わりを定義するために選択的に遅延される。この例では、パワーオンゲーティング信号の終わりは第二ゲーティドクロックREF3の上昇端よって設定される。
【0027】
また、図で示したように、基準クロックREF2の始動端(例えば、上昇端)は第一ゲーティドクロックREF1の端と第二ゲーティドクロックREF3の端との間の中間に実質的にあるように構成される。その上、図で示したように、第一ゲーティドクロックREF1が最小に遅延され、そして第二ゲーティドクロックREF3が最大に遅延されるとき、最大のゲーティングが発生する。同様に、第一ゲーティドクロックREF1が最大に遅延され、そして第二ゲーティドクロックREF3が最小に遅延されるとき、最小のゲーティングが発生する。
【0028】
図4は開示の別の形態による典型的なDPLLの典型的な時間対ディジタル変換器(TDC)のパワーオンゲーティング窓を較正する典型的方法400のフロー・チャートを例示する。TDC 118のパワーオンゲーティング窓の幅は方法400につきTDCゲーティング制御器216によって較正される。方法400に従って、制御器216はパワーオンゲーティング窓を既定値に設定する(ブロック402)。例えば、制御器216はゲーティング窓をゲーティドクロックREF1及びREF3によって提供された最も広いゲーティング窓に設定する。これは第一MUX 204に一連の遅延素子202の最初の遅延素子(最も左の遅延素子)の出力を選択するように指示する選択信号を第一プログラム可能カウンター218に生成させる制御信号を送り、そして第二MUX 208に一連の遅延素子206の最後の遅延素子(最も右の遅延素子)の出力を選択するように指示する選択信号を第二プログラム可能カウンター220に生成させる制御信号を送る制御器216によって達成される。
【0029】
そして制御ループが実質的にロックされるまで、DPLL 100は作動される(ブロック404)。そこで、制御器216によってパワーオンゲーティング窓の幅は所定の量だけ減少する(ブロック406)。これは第一MUX 204に一連の遅延素子202の次の遅延素子(例えば、二番目)の出力を選択するように指示する選択信号を第一プログラム可能カウンター218に生成させる制御信号を送り、そして第二MUX 208に一連の遅延素子206の前の遅延素子(例えば、最後から二番目)の出力を選択するように指示する選択信号を第二プログラム可能カウンター220に生成させる制御信号を送る制御器216によって達成される。
【0030】
制御器216はそこで第一加算デバイス104によって生成された位相誤差信号をモニターする(ブロック408)。制御器216はそこで位相誤差を所定の閾値と比較する(ブロック410)。位相誤差が所定の閾値より低い(例えば、横切った)ことを制御器216が判定するならば、制御器はブロック406、408、及び410を繰返す。一方、位相誤差が所定の閾値より大きいことを制御器216が判定するならば、制御器216はTDCゲーティング窓の現在の幅を決定する(ブロック412)。そこで、制御器216は所定の誤差のマージンを適用するためにTDCゲーティング窓の現在の幅を増加させる(ブロック414)。このように、TDCゲーティング窓はDPLLの適切な動作を保証するのに十分に広く、そして 電力の効率的方法でTDCを動作させるのに十分に狭い。この例では、クロック制御ユニット200はそれ自身の較正制御器216を含んでいたが、制御器216は検査設備においてパワーオンゲーティング窓を較正するための検査装置の一部のように、DPLL 100の外部に置かれることを理解すべきであろう。
【0031】
図5は開示の別の形態による典型的な時間対ディジタル変換器(TDC)500の図式/ブロック図を例示する。TDC 500は前に論じたTDC 118の一つの典型的な詳細な実施である。要するに、TDC 500はゲーティドクロックの位相を基準クロックREF2の位相に対して比較し、そして多数ビットの分解能を持つ検出位相差分を提供する。
【0032】
TDC 500はN遅延素子502−1〜502−N、 Dフリップ−フロップ504−1〜504−N、インバーター506、及び温度計対二値復号器508を含む。遅延素子502−1〜502−Nはゲーティドクロックを受取る遅延素子502−1と、直列に連結される。各遅延素子は所望の遅延分解能を取得するためにインバーター及び/または他の形式の論理素子と共に実装される。遅延素子502−1〜502−Nはおおよそ一出力クロック・サイクルの全体遅延を行う。例えば、出力クロック周波数が2GHzであるならば、出力クロックの一期間は500ピコ秒(ps)であり、そして各遅延素子はおおよそ500/N psの遅延を行う。
【0033】
Dフリップ−フロップ504−1〜504−Nは遅延素子502−1〜502−Nに連結されたそれらのD入力をそれぞれ持ち、そして基準クロックREF2を受取るそれらのクロック入力を持つ。各Dフリップ−フロップは関連する遅延素子の入力を標本化し(sample)、そして標本化出力を変換器508に提供する。高論理のDフリップ−フロップの数対低論理のDフリップ−フロップの数はゲーティドクロックと基準クロックREF2との間の位相差分を表す。この位相差分は1/N出力クロック・サイクルの分解能を持つ。インバーター506は基準クロックREF2を受取り、そして復号器508へ反転基準クロックREF2を提供する。復号器508はDフリップ−フロップ504−1〜504−NからN出力を受取り、反転基準クロックREF2の端によって始動されたときこれらのN出力を二元値に変換し、そしてTDC出力としてその二元値を提供する。
【0034】
図6は開示の別の形態による典型的な時間対ディジタル変換器(TDC)の中で生成された典型的な信号のタイミング図を例示する。出力クロック及びイネーブル信号は参考までに図の一番上に示される。ゲーティドクロックはイネーブル信号の下に示される。遅延素子502−1〜502−NからのN遅延信号D〜Dはそれぞれゲーティドクロックの下に示される。D〜D信号は基準クロックREF2の前縁によってラッチされ、それはイネーブル信号によって定義されたパワーオンゲーティング窓の間に発生する。Dフリップ−フロップ504−1〜504−NからのNラッチ信号d〜dはそれぞれ復号器508に提供される。
【0035】
図6に示したように、発振器108の位相情報は時間の短期間にただ必要とされるので、TDC 500の機能性は出力クロックをオン/オフにゲートすることによって影響を受けない。ゲーティドクロック及びD〜D信号は基準クロックREF2の前縁の周辺の時間の継続期間について有効である。一般に、ゲーティドクロックは前に論じた較正手続きに応じて、基準クロックREF2の前縁の前のいくつもの数の出力クロック・サイクル及び前縁の後のいくつもの数の出力クロック・サイクルについて有効である。しかしながら、電力消費を低減させるためにゲーティドクロックにおいてクロック・サイクルの数を最小にすることが望ましい。イネーブル信号は単に一または二の出力クロック・サイクルを通すように生成される。一つの設計では、イネーブル信号は較正手続きによって指示された、基準クロックREF2の前縁の前のおおよそ一出力クロック・サイクル及び前縁の後のおおよそ一出力クロック・サイクルを通過させる。TDC 500を動的に制御し、そして必要な時だけTDCを有効にすることによって、電力の大部分(例えば、90%)がTDC 500について節約される。
【0036】
図7は開示の別の形態による送受信器のような、典型的な通信デバイス700のブロック図を例示する。要するに、送受信器700は前に論じたDPLLの一つの典型的な応用として機能する。特に、送受信器700は電力消費目的のためにTDCゲーティングを行うDPLLを含む。DPLLはさらにDPLLの適切な動作を保証し、そして同時に前に論じた電力の効率的方法でTDCを動作させるためにパワーオンゲーティング窓の幅を較正することができるデバイス、例えば前に論じたクロック制御ユニット、を含む。
【0037】
特に、送受信器700はアンテナ702、送信/受信(TX/RX)分離デバイス704、受信器706、前に論じたDPLLを含む局部発信器(local oscillator:LO)708、及び送信器712を含む。アンテナ702は無線メディアを介して一以上の遠隔通信デバイスから無線周波数(RF)信号を受信し、そして無線メディアを介して一以上の遠隔通信デバイスへRF信号を伝送する機能を果たす。TX/RX分離デバイス704は受信信号を受信器706に転送し、そして受信器706の入力を伝送信号から実質的に分離しながら伝送信号をアンテナ702へ転送する機能を果たす。受信器706は受信RF信号を中間周波数(IF)またはベースバンド信号に低位変換する機能を果たす。送信器712はIFまたはベースバンド信号をRF信号に高位変換する機能を果たす。上で論じたDPLLを含む局部発振器(LO)708は受信器706に受信局部発振源LOを提供し、従ってそれはその低位変換機能を実行する。同様に、局部発振器(LO)708は送信器712に送信局部発振源LOを提供し、従ってそれはその高位変換機能を実行する。送受信器700はDPLLの一つの応用を例示するために使用されるが、DPLLは受信器、送信器、クロック及びデータ再生回路、等といった、他のアプリケーションに使用されることを理解すべきであろう。
【0038】
一以上の典型的な実施例において、述べた機能はハードウェア、ソフトウェア、ファームウェア、またはその任意の組合せにおいて実施される。ソフトウェアにおいて実施されたならば、その機能はコンピューター可読メディア上に命令またはコードとして記憶され、或いは伝送される。コンピューター可読メディアは一つの場所から別の場所へのコンピューター・プログラム転送を容易にする任意のメディアを含むコンピューター記憶メディア及び通信メディアの両方を含む。記憶メディアは多目的または特定目的コンピューターによってアクセスされる任意の利用可能メディアである。例として、そして制限ではなく、そのようなコンピューター可読メディアはRAM、ROM、EEPROM、CD−ROMまたは他の光ディスク記憶、磁気ディスク記憶または他の磁気記憶デバイス、或いは命令またはデータ構造の形式で所望のプログラム・コード手段を運び、または記憶し、そして多目的または特定目的コンピューター、或いは多目的または特定目的プロセッサーによってアクセスされる任意の他のメディアを含む。また、任意の接続もまさしくコンピューター可読メディアと称される。例えば、ソフトウェアが同軸ケーブル、光ファイバー・ケーブル、撚り対線、ディジタル加入回線(digital subscriber line:DSL)、或いは赤外線、無線、及びマイクロ波といった無線技術を使用してウェブサイト、サーバー、または他の遠隔源から伝送されるならば、同軸ケーブル、光ファイバー・ケーブル、撚り対線、DSL、或いは赤外線、無線、及びマイクロ波といった無線技術はメディアの定義に含まれる。ここに使用されるディスク(disk)及びディスク(disc)はコンパクト・ディスク(CD)、レーザー・ディスク(登録商標)、光ディスク、ディジタル多用途ディスク(DVD)、フロッピー(登録商標)・ディスク、及びブルーレイ・ディスクを含み、ここでディスクは通常は磁気によってデータを再生し、さらにディスク(discs)はレーザーによって光学的にデータを再生する。上記の組合せもまたコンピューター可読メディアの範囲内に含まれるべきである。
【0039】
発明は様々な形態に関連して述べられてきたが、その発明はさらなる修正が可能であることが理解されるであろう。この出願は一般にその発明の原理に従い、そしてその発明に関係する技術の中で既知及び慣例の実践の中に起こる現在の開示からのそのような出発を含む発明の任意の変形、使用、または適応に及ぶことを意図している。

【特許請求の範囲】
【請求項1】
位相同期ループ(PLL)の位相誤差デバイスから位相誤差信号を受取り、そして前記位相誤差信号に基づいて時間対ディジタル変換器(TDC)のゲーティドクロック信号の幅を動作値に設定するように適応された制御ユニットを含む、装置。
【請求項2】
前記制御ユニットは:
前記ゲーティドクロック信号の前記幅を既定値に設定する;
前記位相誤差デバイスからの前記位相誤差信号をモニターする;
前記ゲーティドクロック信号の前記幅を既定値の下に減少させる;そして
所定の閾値に実質的に到達するか、或いは横切る位相誤差信号に応答して前記ゲーティドクロック信号の前記幅を前記動作値に設定する
ように適応された、請求項1記載の装置。
【請求項3】
前記制御ユニットは、誤差のマージンを前記ゲーティドクロック信号の前記幅の前記動作値に与えるために前記位相誤差信号が前記所定の閾値に実質的に到達するか、または横切る時に前記ゲーティドクロック信号の前記幅を増加させるように適応される、請求項2記載の装置。
【請求項4】
前記制御ユニットは:
第一のゲーティング信号を生成するように適応された第一の発生器;及び
第二のゲーティング信号を生成するように適応された第二の発生器;ここでは前記第一のゲーティング信号の第一端及び前記第二のゲーティング信号の第二端は前記ゲーティドクロック信号の前記幅を制御する
を含む、請求項1記載の装置。
【請求項5】
前記制御ユニットはさらに、前記第一及び第二のゲーティング信号と出力クロック信号とから前記ゲーティドクロック信号を生成するように適応された論理を含む、請求項4記載の装置。
【請求項6】
前記第一の発生器は第一マルチプレクサーの入力に連結されたそれぞれの出力を持つ第一の一連の遅延素子を含み、そして前記第一の一連の遅延素子は第一基準クロックを受取るように適応される、請求項4記載の装置。
【請求項7】
前記第二の発生器は第二マルチプレクサーの入力に連結されたそれぞれの出力を持つ第二の一連の遅延素子を含み、そして前記第二の一連の遅延素子は前記第一の一連の遅延素子の出力に連結される、請求項6記載の装置。
【請求項8】
前記制御ユニットはさらに、前記第一のゲーティング信号として使用される前記第一の一連の遅延素子の一つの遅延素子の出力信号を第一マルチプレクサーに選択させる第一の選択信号を生成するように適応された制御器を含む、請求項7記載の装置。
【請求項9】
前記制御器はさらに、前記第二ゲーティング信号として使用される前記第二の一連の遅延素子の一つの遅延素子の出力を第二マルチプレクサーに選択させる第二の選択信号を生成するように適応される、請求項8記載の装置。
【請求項10】
前記制御ユニットはさらに、前記制御器に応答して前記第一の選択信号を生成するように適応された第一のプログラム可能カウンターを含み、そして前記制御器に応答して前記第二の選択信号を生成するように適応された第二のプログラム可能カウンターを含む、請求項9記載の装置。
【請求項11】
前記位相誤差信号に基づいて発振器制御信号を生成するように適応されたフィルター;
前記発振器制御信号に基づいて出力信号を生成するように適応された発振器;ここでは前記ゲーティドクロック信号の位相は前記出力信号の位相に関係する;
前記出力信号の前記位相の粗測定に関係する第一のフィードバック位相信号を生成するように適応された第一累算器;ここでは前記TDCは前記出力信号の前記位相の微測定に関係する第二のフィードバック位相信号を生成するように適応される;
前記第一及び第二のフィードバック位相信号を結合することによってフィードバック位相信号を生成するように適応された加算デバイス;及び
入力位相信号を生成するように適応された第二累算器;ここでは前記位相誤差信号は前記入力位相信号と前記フィードバック位相信号との間の差分に関係する
をさらに具備する、請求項1記載の装置。
【請求項12】
時間対ディジタル変換器(TDC)のゲーティング窓の幅を較正する方法であって、
位相誤差信号を位相同期ループの位相誤差デバイスから受取ること;及び
前記位相誤差信号に基づいてTDCのゲーティング窓の幅を較正すること
を含む、方法。
【請求項13】
前記TDCの前記ゲーティング窓の前記幅を較正することは:
前記ゲーティング窓の前記幅を既定値に設定すること;
実質的にロックされるまで前記位相同期ループを動作させること;
前記ゲーティング窓の前記幅を減少させること;
前記位相誤差信号をモニターすること;及び
実質的に所定の閾値に到達し、或いは横切る前記位相誤差信号に応答してゲーティング窓の前記幅を動作値に設定すること
を含む、請求項12記載の方法。
【請求項14】
前記TDCの前記ゲーティング窓の前記幅を較正することは、誤差のマージンを前記ゲーティング窓の前記幅の動作値に適用するために前記位相誤差信号が所定の閾値に実質的に到達するか、または横切る時に前記ゲーティング窓の前記幅を増加させることをさらに含む、請求項13記載の方法。
【請求項15】
第一ゲーティング信号を生成すること;及び
前記第二ゲーティング信号を生成すること;ここでは前記第一のゲーティング信号の第一端及び前記第二のゲーティング信号の第二端は前記ゲーティング窓の幅を制御する
をさらに含む、請求項12記載の方法。
【請求項16】
位相誤差信号を位相同期ループ(PLL)の位相誤差デバイスから受取るための手段;
前記位相誤差信号に基づいて時間対ディジタル変換器(TDC)のゲーティドクロック信号の幅を動作値に設定するための手段
を具備する、装置。
【請求項17】
前記幅設定手段は;
前記ゲーティドクロック信号の前記幅を既定値に設定するための手段;
前記位相誤差デバイスからの前記位相誤差信号をモニターするための手段;
前記ゲーティドクロック信号の前記幅を前記既定値の下に減少させるための手段;及び
所定の閾値に実質的に到達するか、或いは横切る前記位相誤差信号に応答して前記ゲーティドクロック信号の前記幅を前記動作値に設定するための手段
を具備する、請求項16記載の装置。
【請求項18】
前記幅設定手段は、誤差のマージンを前記ゲーティドクロック信号の前記幅の前記動作値に与えるために前記位相誤差信号が前記所定の閾値に実質的に到達するか、または横切る時に前記ゲーティドクロック信号の前記幅を増加させるための手段をさらに具備する、請求項17記載の装置。
【請求項19】
前記幅設定手段は:
第一のゲーティング信号を生成するための第一の手段;及び
第二のゲーティング信号を生成するための第二の手段;ここでは前記第一のゲーティング信号の第一端及び前記第二のゲーティング信号の第二端は前記ゲーティドクロック信号の前記幅を制御する
を具備する、請求項16記載の装置。
【請求項20】
前記幅設定手段はさらに、前記第一及び第二のゲーティング信号と出力クロック信号とから前記ゲーティドクロック信号を生成するための手段を具備する、請求項19記載の装置。
【請求項21】
前記第一の生成手段は:
明白な遅延クロック信号の第一集合を生成するための手段;及び
前記第一ゲーティング信号として前記第一集合のこれらの明白な遅延クロック信号の一つを選択するための手段
を具備する、請求項19記載の装置。
【請求項22】
前記第二の生成手段は:
明白な遅延クロック信号の第二集合を生成するための手段;及び
前記第二ゲーティング信号として前記第二集合のこれらの明白な遅延クロック信号の一つを選択するための手段
を具備する、請求項21記載の装置。
【請求項23】
前記位相誤差信号に基づいて発振器制御信号を生成するための手段;
前記発振器制御信号に基づいて出力信号を生成するための手段;ここでは前記ゲーティドクロック信号の位相は前記出力信号の位相に関係する;
前記出力信号の前記位相の粗測定に関係する第一のフィードバック位相信号を生成するための手段;ここでは前記TDCは前記出力信号の前記位相の微測定に関係する第二のフィードバック位相信号を生成するように適応される;
前記第一及び第二のフィードバック位相信号を結合することによってフィードバック位相信号を生成するための手段;及び
入力位相信号を生成するための手段;ここでは前記位相誤差信号は前記入力位相信号と前記フィードバック位相信号との間の差分に関係する
をさらに具備する、請求項16記載の装置。
【請求項24】
受信器または送信器;及び
前記受信器または送信器の局部発振源を生成するように適応された局部発振器(LO);ここでは前記局部発振器は位相誤差信号を位相同期ループ(PLL)の位相誤差デバイスから受取り、そして前記位相誤差信号に基づいて時間対ディジタル変換器(TDC)のゲーティドクロック信号の幅を動作値に設定するように適応された制御ユニットを含む
を具備する、通信デバイス。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公表番号】特表2011−518534(P2011−518534A)
【公表日】平成23年6月23日(2011.6.23)
【国際特許分類】
【出願番号】特願2011−506441(P2011−506441)
【出願日】平成21年4月22日(2009.4.22)
【国際出願番号】PCT/US2009/041461
【国際公開番号】WO2009/132147
【国際公開日】平成21年10月29日(2009.10.29)
【出願人】(595020643)クゥアルコム・インコーポレイテッド (7,166)
【氏名又は名称原語表記】QUALCOMM INCORPORATED
【Fターム(参考)】