説明

ハイブリッド車両の制御装置

【課題】クルーズ走行中に設定車速が低下し、その設定車速が達成されるときの違和感を抑制する。
【解決手段】HEVモードを維持している状態で、運転者がステアリングスイッチ28を操作し、コースト操作を行ったら(S13の判定が“Yes”)、コーストフラグをFc=1にセットし(S18)、禁止フラグをFNG=1にセットする(S19)。設定車速Vsを達成するまでは、クルーズ要求トルクTcは負値へと転じ、停止判定閾値TOFFよりも小さくなり、エンジン停止要求となるが(S30の判定が“No”)、禁止フラグがFNG=1にセットされていることで(S25の判定が“No”)、エンジン1はON状態を維持する(S28)。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ハイブリッド車両の制御装置に関するものである。
【背景技術】
【0002】
ハイブリッド車両において、エンジンを駆動した状態で適宜モータを駆動するHEVモードで走行しているときに、ドライバがアクセルペダルを放したら、低燃費化のためにエンジンを停止し、モータのみを駆動するEVモードに切り替えて走行するものがあった(特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2005−160252号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、クルーズコントロール装置には、設定車速を低下させるためのコーストスイッチが設けられており、例えばスイッチを押している時間や、スイッチを押した回数に応じて、設定車速を低下させるように構成されている。このように、コーストスイッチが操作されると設定車速が低下し、その設定車速が達成されるまでは、自車両を減速させるコースト期間となる。
【0005】
したがって、HEVモードでコースト期間に入った場合には、低燃費化のためにエンジンを停止することでEVモードへ切り替え、自車両が設定車速まで減速してコースト期間が終了したらエンジンを再始動することが考えられる。
このように、クルーズ走行中に設定車速を低下させてから、その設定車速を達成するまでの短時間のうちに、エンジンの停止と始動が行われると、運転者に違和感を与えてしまう可能性がある。
本発明の課題は、クルーズ走行中に設定車速が低下し、その設定車速が達成されるときの違和感を抑制することである。
【課題を解決するための手段】
【0006】
本発明に係るハイブリッド車両の制御装置は、運転者のスイッチ操作によって設定可能な設定車速に応じて、エンジン及び前記モータの少なくとも一方を駆動する。そして、少なくともエンジンで車輪を駆動している状態で、運転者のスイッチ操作によって設定車速が低下したら、この設定車速を達成するまでは、エンジンの停止を禁止する。
【発明の効果】
【0007】
本発明に係るハイブリッド車両の制御装置によれば、エンジンで車輪を駆動している状態で、設定車速が低下したときに、この設定車速を達成するまでは、エンジンの停止を禁止するので、短時間のうちに、エンジンの停止と始動を行うことがない。したがって、クルーズ走行中に設定車速が低下し、その設定車速が達成されるときの違和感を抑制することができる。
【図面の簡単な説明】
【0008】
【図1】ハイブリッド車両の概要構成図である。
【図2】制御システムの概略構成図である。
【図3】制御システムにおける制御指令の主な流れを示す図である。
【図4】制御システムにおける主な機能ブロックを示す図である。
【図5】目標駆動トルク演算部を示すブロック線図である。
【図6】エンジン始動停止判定処理を示すフローチャートである。
【図7】従来技術の問題点を示すタイムチャートである。
【図8】本実施形態の動作を示すタイムチャートである。
【発明を実施するための形態】
【0009】
以下、本発明の実施形態を図面に基づいて説明する。
《第一実施形態》
《構成》
図1は、ハイブリッド車両の概要構成図である。
ここでは、後輪駆動のハイブリッド車両を例示しているが、勿論、前輪駆動のハイブリッド車両であってもよい。
先ず、動力系(パワートレーン)の構成について説明する。
エンジン1から左右後輪(駆動輪)までのトルク伝達経路の途中には、モータジェネレータ(以下、単にモータと称す)2、及び自動変速機(トランスミッションT/M)3が介装される。エンジン1とモータ3との間には、第1クラッチ4が介装され、モータ3と駆動輪7との間のトルク伝達経路には、第2クラッチ5が介装される。ここでは、第2クラッチ5が自動変速機3に内臓された構成を例示している。自動変速機3は、プロペラシャフト、ディファレンシャルギヤ6、及びドライブシャフトを介して駆動輪7に接続される。
【0010】
エンジン1は、ガソリンエンジンやディーゼルエンジンである。エンジン1は、後述するエンジンコントローラ22からの制御指令に基づき、スロットルバルブのバルブ開度等が制御可能となっている。なお、エンジン1の出力軸に、フライホイールが設けられていてもよい。
モータ2は、例えばロータに永久磁石を埋設しステータにステータコイルを巻き付けた同期型モータである。モータ2は、後述するモータコントローラ23からの制御指令に基づき、後述のインバータ8で作り出した三相交流を印加することで制御される。モータ2は、後述のバッテリ9からの電力の供給を受けて回転駆動する電動機として動作することもできる(この状態を「力行」と称す)。また、モータ2は、ロータが外力により回転している場合には、ステータコイルの両端に起電力を生じさせる発電機として機能してバッテリ9を充電することもできる(この動作状態を「回生」と称す)。このモータ2のロータは、図外のダンパーを介して自動変速機3の入力軸に連結される。
【0011】
第1クラッチ4は、エンジン1とモータ2との間に介装された油圧式単板クラッチである。第1クラッチ4は、後述するATコントローラ24からの制御指令に基づいて、目標クラッチ伝達トルクとなるように、第1クラッチ油圧ユニットが作り出した制御油圧により、締結状態又は開放状態となる。なお、締結状態及び開放状態には、何れも滑り状態(半クラッチ状態)を含むものとする。
第2クラッチ5は、油圧式多板クラッチである。第2クラッチ5は、後述するATコントローラ24からの制御指令に基づき、目標クラッチ伝達トルクとなるように、第2クラッチ油圧ユニットで作り出した制御油圧により、締結状態又は開放状態となる。なお、締結状態及び開放状態には、何れも滑り状態(半クラッチ状態)を含むものとする。
【0012】
自動変速機3は、例えば、前進7速・後退1速や、前進6速・後退1速等の有段階の変速比を、車速や後述の統合コントローラ21から入力した変速用アクセル開度等に応じて自動的に切り換える変速機である。第2クラッチ5は、専用クラッチとして新たに追加したものではなく、自動変速機3の各変速段にて締結される複数の摩擦締結要素のうち、幾つかの摩擦締結要素を流用して構成される。
なお、本実施形態では、第2クラッチ5を自動変速機3の一部として構成する場合を例示しているが、これに限定されるものではない。他にも、第2クラッチ5を、モータ2と自動変速機3との間や、自動変速機3とディファレンシャルギヤとの間に配置する構成でもよい。
【0013】
各輪は、夫々ブレーキユニット(図示省略)を備える。各ブレーキユニットは、例えばディスクブレーキやドラムブレーキからなる。各ブレーキユニットは、油圧ブレーキ装置であっても、電動ブレーキ装置であってもよい。各ブレーキユニットは、ブレーキコントローラ25からの指令に応じて、対応する車輪に制動力を付与する。なお、ブレーキユニットは、全ての車輪に設ける必要はない。
【0014】
図1において、符号14は電動サブオイルポンプを示し、符号15は機械式オイルポンプを示す。これらのオイルポンプ14、15は、各クラッチのための油圧を発生する。また、符号10はエンジン1の回転数を検出するエンジン回転センサを示し、符号11はモータ2の回転を検出するレゾルバ等のモータ回転センサを示す。また、符号12は変速機の入力軸の回転を検出するAT入力回転センサを示し、符号13は変速機の出力軸の回転を検出するAT出力回転センサを示す。また、符号27は車輪の回転を検出する車輪速センサを示す。なお、車輪速センサ27は従動輪(前輪)にも設けてあり、各車輪速に基づいて車速Vが演算される。
【0015】
図2は、制御システムの概略構成図である。
符号33は運転者によって操作されるアクセルペダル33である。このアクセルペダル33のアクセル開度APOは、アクセルセンサ20によって検出され、アクセルセンサ20は、検出したアクセル開度APO情報を統合コントローラ21に出力する。
また、符号34はペダルアクチュエータ34である。ペダルアクチュエータ34は、車間制御コントローラ31からの指令に応じたペダル反力をアクセルペダル33に付与するアクチュエータである。
【0016】
また符号32は、先行車検出手段を構成するレーダーユニット32である。レーダーユニット32は、車両前方の先行車両を検出し、検出した先行車両情報を車間制御コントローラ31に出力する。
また符号27は車輪速センサである。車輪速センサ27は、検出した車輪速情報をブレーキコントローラ25に出力する。また、車輪速情報から求まる車速情報は、ブレーキコントローラ25から統合コントローラ21及び車間制御コントローラ31に出力される。
【0017】
また符号35は、運転者に走行状態を提示するためのメータである。メータ35は、クルーズ制御の情報などを表示する。
また符号29はブレーキスイッチ29である。ブレーキスイッチ29は、ブレーキペダル(図示省略)の操作を検出する。
符号28は、ステアリングスイッチである。ステアリングスイッチ28は、ステアリングホイール部に設けられ、クルーズコントロールの起動や走行条件(設定車速等)の変更指示を運転者が行うための操作部である。本実施形態のクルーズコントロールとは、設定車速を維持する定速クルーズコントロール(ASCD:Auto Speed Control Device)、及び車間距離に応じて設定車速を自動調整する車間距離クルーズコントロール(ACC:Adaptive Cruise Control)の双方を含む。
【0018】
ステアリングスイッチ28は、設定車速調節部(図示省略)を有し、この設定車速調節部のスイッチ操作に応じて設定車速Vsが調節される。例えば、設定車速調節部を第一の方向(例えば上方向)に押し続けると、その時間に応じて設定車速Vsを増加させることができ、また第一の方向に短く押すと(タップアップ)所定量(例えば約1.5km/h)ずつ設定車速Vsを増加させることができる。こられ第一の方向への操作を総称してアクセル機能操作と称す。また、設定車速調節部を第二の方向(例えば下方向)に押し続けると、その時間に応じて設定車速Vsを減少させることができ、第二の方向に短く押すと(タップダウン)所定量(例えば約1.5km/h)ずつ設定車速Vsを減少させることができる。これら第二の方向への操作を総称してコースト機能操作と称す。
【0019】
符号30は、ブレーキペダルに設けられたクルーズキャンセルスイッチである。クルーズキャンセルスイッチ30は、クルーズコントロールの終了を指示するための操作子である。なお、ステアリングスイッチ28にもクルーズコントロールの終了を指示するスイッチが存在する。このスイッチも含めクルーズキャンセルスイッチ30と称す。
符号18はバッテリ9の電圧を検出する電圧センサである。符号19はバッテリ9の電流を検出する電流センサである。
【0020】
次に、制御系の構成について説明する。
ハイブリッド車両の制御系は、エンジンコントローラ22と、モータコントローラ23と、インバータ8と、バッテリコントローラ26と、ATコントローラ24と、ブレーキコントローラ25と、統合コントローラ21と、車間制御コントローラ31と、を備えている。
なお、エンジンコントローラ22と、モータコントローラ23と、ATコントローラ24と、ブレーキコントローラ25と、車間制御コントローラ31と、統合コントローラ21とは、CAN通信によって情報の授受が行われる。
【0021】
エンジンコントローラ22には、エンジン回転数センサ10からのエンジン回転数情報が入力される。そして、エンジンコントローラ22は、統合コントローラ21からの目標エンジントルク等に応じ、エンジン動作点(Ne、Te)を制御する指令を例えばスロットルバルブアクチュエータへ出力する。なお、エンジン回転数Neの情報は、CAN通信を介して統合コントローラ21から取得する。
【0022】
モータコントローラ23には、モータ2のロータ回転位置を検出するモータ回転センサ11からの情報が入力される。そして、モータコントローラ23は、統合コントローラ21からの目標モータトルクや回転数指令等に応じ、モータ2のモータ動作点(Nm、Tm)を制御する指令をインバータ8へ出力する。
バッテリコントローラ26は、バッテリ9の充電状態を示すSOCを監視している。バッテリコントローラ26は、SOC情報を、モータ2の制御情報等として、CAN通信を介して統合コントローラ21へ供給する。
【0023】
ATコントローラ24には、車輪速情報と第1及び第2クラッチ油圧センサからのセンサ情報が入力される。そして、ATコントローラ24は、統合コントローラ21からのアクセル開度APO状態、第1及び第2クラッチ制御指令(目標第1クラッチトルク、目標第2クラッチトルク)に応じ、変速制御における第2クラッチ制御に優先し、第2クラッチ5の締結・開放を制御する指令をAT油圧コントロールバルブ内の第2クラッチ油圧ユニットに出力すると共に、第1クラッチ4の締結・開放を制御する指令を第1クラッチ油圧ユニットに出力する。
【0024】
ブレーキコントローラ25には、4輪の各車輪速を検出する車輪速センサ27とブレーキストロークセンサからのセンサ情報が入力される。ブレーキコントローラ25は、予め設定した制御サイクルで、ブレーキペダルのストローク量や車間制御コントローラ31などからの制動要求量、及び車速に基づいて、目標減速度を演算する。そして、ブレーキコントローラ25は、回生協調ブレーキ制御として、目標減速度を回転制動力としての協調回生ブレーキ要求トルクと、機械制動力(油圧制動力)としての目標油圧制動力とに制動力配分を行う。このとき、協調回生ブレーキ要求トルクは、統合コントローラ21を介してモータコントローラ23へ出力され、一方の目標油圧制動力は、油圧制動力装置へ出力される。例えば、ブレーキペダルのストローク量から求められる要求制動力に対し、回生制動力だけでは賄えない場合に、その不足分を機械制動力で補うように、回生協調ブレーキ制御を行う。
【0025】
車間制御コントローラ31には、運転者が設定したステアリングスイッチ28の情報、クルーズ制御作動許可状態、その他の必要情報が、統合コントローラ21を介して入力される。車間制御コントローラ31は、統合コントローラ21からの情報に基づき、先行車両に対して車間距離制御を要すると判断すると、自車速、並びに先行車両との車間距離や相対速度等に基づき、先行車両に対して目標車間距離や目標車間時間とするための目標加速度や目標減速度を演算する。そして、目標加速度については、車間距離クルーズ要求トルクとして統合コントローラ21に出力し、目標減速度については、制動要求トルクとしてブレーキコントローラ25に出力する。
【0026】
車間制御コントローラ31は、DCA(Distance Control Assist)制御部31Aを備える。DCA制御部31Aは、統合コントローラ21から取得するアクセル開度APO情報、車輪速センサ27の検出に基づく車速情報、及びレーダーユニット32からの情報に基づきペダル反力指令を演算する。そして、DCA制御部31Aは、先行車との車間を保つための運転者への支援情報として、演算した反力指令をペダルアクチュエータ34に出力する。ペダルアクチュエータ34は、アクセルペダル33に対して反力を付与する。
【0027】
統合コントローラ21は、車両全体の消費エネルギーを管理し、最高効率で車両を走行させるための機能を担う。
統合コントローラ21には、エンジン回転数Neを検出するエンジン回転数センサ10、モータ回転数Nmを検出するモータ回転センサ11、変速機入力回転数を検出するAT入力回転センサ12、及び変速機出力回転数を検出するAT出力回転センサ13からの各種情報が入力される。さらに、統合コントローラ21には、アクセルセンサ20からアクセル開度APO情報、バッテリコントローラ26からバッテリ9の蓄電状態SOCの情報が入力される。一方、統合コントローラ21は、CAN通信を介して、各種情報の出力も行う。
統合コントローラ21は、エンジンコントローラ22への制御指令によりエンジン1の駆動制御を実行し、モータコントローラ23への制御指令によりモータ2の駆動制御を実行し、ATコントローラ24への制御指令により第1クラッチ4及び第2クラッチ5の駆動制御を実行する。
【0028】
次に、ハイブリッド車両における基本動作について説明する。
車両停止中において、バッテリSOCの低下時であれば、エンジン1を始動して発電を行い、バッテリ9を充電する。そして、バッテリSOCが通常範囲になれば、第1クラッチ4を締結状態とし、第2クラッチ5を開放状態としたままエンジン1を停止する。
エンジン1による発進時には、アクセル開度APOやバッテリSOC状態に応じて、モータ2を力行運転や発電運転に切り替える。
モータ走行時(EVモード)には、エンジン始動に必要なクランキングトルクとバッテリ出力を確保する必要があり、不足する場合にはエンジン走行に移行する。また、予め設定したマップ等に基づき所定車速以上となるときに、モータ走行(EVモード)からエンジン走行(HEVモード)へと移行する。
【0029】
エンジン走行時には、アクセル踏み込み時のレスポンス向上のために、エンジントルクの遅れ分をモータ2によってアシストする。すなわち、エンジン走行中は、エンジン1の駆動力だけで走行する場合と、エンジン1の駆動力とモータ2の駆動力との双方で走行する場合とがある。
ブレーキ操作による減速時には、運転者のブレーキ操作に応じた減速トルクを回生協調ブレーキ制御によって実現する。
エンジン走行やモータ走行中における変速時には、加減速中の変速に伴う回転数合わせのために、モータ2を発電運転や力行運転に切り替えて、トルクコンバータ無しでのスムーズな変速を行う。
【0030】
図3は、制御システムにおける制御指令の主な流れを示す図である。
図4は、制御システムにおける主な機能ブロックを示す図である。
次に、統合コントローラ21で実行する主な制御処理について説明する。
統合コントローラ21は、図4に示すように、要求発電トルク演算部21Aと、要求エンジントルク演算部21Bと、モータ出力可能トルク演算部21Cと、目標駆動トルク演算部21Dと、車両状態モード決定部21Eと、エンジン始動制御部21Fと、エンジン停止制御部21Gと、目標エンジントルク算出部21Hと、目標モータトルク算出部21Jと、目標クラッチトルク算出部21Kと、を備える。
【0031】
要求発電トルク演算部21Aは、車速情報やバッテリコントローラ26からのSOCなどのバッテリ情報などに基づき、モータ2で発電すべき要求発電トルクを演算する。
要求エンジントルク演算部21Bは、アクセル開度APOや車速V、また要求発電トルク演算部21Aが演算した要求発電トルク等に基づき、エンジン1で発生すべき要求エンジントルクを演算する。
モータ出力可能トルク演算部21Cは、バッテリコントローラ26からのSOCなどのバッテリ情報や、車速Vなどに基づき、モータ2が出力可能なモータ出力可能トルクを演算する。
目標駆動トルク演算部21Dは、目標駆動トルクを演算する。
【0032】
図5は、目標駆動トルク演算部を示すブロック線図である。
目標駆動トルク演算部21Dは、アクセル要求トルク演算部21Daと、クルーズ要求トルク演算部21Dbと、基本目標駆動トルク演算部21Dcと、車速リミッタトルク演算部21Ddと、最終目標駆動トルク演算部21Deと、を備える。
アクセル要求トルク演算部21Daは、少なくともアクセルペダル33のアクセル開度APO情報及び車速に基づき、アクセル要求トルクを演算する。アクセル要求トルク演算部21Daは、図3に示す例では、アクセル開度APO及び変速機入力回転数を入力し、ベーストルクマップを参照して基本アクセル要求トルクを演算する。また、車速Vに基づき、クリープ・コースト駆動力テーブルを参照して第1の補正トルクを演算する。また、アクセル開度APO情報、変速機入力回転数、SOC等に基づく電力制限情報に基づき、MGアシストトルクMAPを参照して、第2の補正トルクを算出する。そして、アクセル要求トルク演算部21Daは、演算した基本アクセル要求トルク、第1の補正トルク、及び第2の補正トルクに基づき、最終的なアクセル要求トルクを求める。
【0033】
クルーズ要求トルク演算部21Dbは、ステアリングスイッチ28及びACC許可信号を車間制御コントローラ31に出力すると共に、車間制御コントローラ31から車間制御クルーズ要求トルク(ACC要求トルク)を入力する。また、クルーズ要求トルク演算部21Dbは、ステアリングスイッチ28によって設定された設定車速Vs、及び現在の車速V(n)に基づき、設定車速Vsにフィードバック制御するための定速クルーズ要求トルクを演算する。そして、車間制御のON/OFFに応じて、車間制御クルーズ要求トルク及び定速クルーズ要求トルクのうち、何れか一方を最終的なクルーズ要求トルクTcとして選択して出力する。具体的には、車間制御がONであれば(ACC作動)、車間制御クルーズ要求トルクが優先され、定速クルーズ要求トルクではなく、車間制御クルーズ要求トルクが最終的なクルーズ要求トルクTcとして選択される。
【0034】
基本目標駆動トルク演算部21Dcは、アクセル要求トルク演算部21Daが演算したアクセル要求トルクと、クルーズ要求トルク演算部21Dbが演算したクルーズ要求トルクとのうち、大きい方を基本目標駆動トルクとして出力する(セレクトハイ)。
車速リミッタトルク演算部21Ddは、ステアリングスイッチ28によって設定される設定車速Vs及び現在の車速V(n)に基づき、上限車速VMAX以下とするための車速リミッタトルクを演算する。
【0035】
最終目標駆動トルク演算部21Deは、基本目標駆動トルク演算部21Dcが出力する基本目標駆動トルクと、車速リミッタトルク演算部21Ddが演算した車速リミッタトルクとのセレクトローを実施する。すなわち、基本目標駆動トルクを車速リミッタトルクで制限して、最終目標駆動トルクを求める。
一方、車両状態モード決定部21Eは、アクセル開度APO、車速情報(又は変速機出力回転数)、モータ出力可能トルク、要求エンジントルク、及び目標駆動トルクに基づき、車両状態モード領域マップ(EV−HEV遷移マップ)などを参照し、目標車両状態モード(EVモード又はHEVモード)を決定する。
【0036】
例えば、目標駆動トルクにエンジン1の始動に必要なクランキングトルクを加えたトルクが、モータ2で出力可能な範囲にあれば、目標車両状態モードがEVモードに設定される。また、バッテリSOCの要求などによって要求発電トルクがあれば、目標車両状態モードがHEVモードに設定される。
そして、現在の車両状態モードがEVモードであり、目標車両状態モードがHEVモードである場合には、エンジン始動シーケンスの処理を行う。逆に、現在の車両状態モードがHEVモードであり、目標車両状態モードがEVモードである場合には、エンジン停止シーケンスの処理を行う。
【0037】
すなわち、HEVモードからEVモードへ移行する際には、エンジン停止シーケンス処理が実行され、このエンジン停止シーケンス処理は、エンジンの停止が完了するまでの処理である。また、EVモードからHEVモードへ移行する際には、エンジン始動シーケンス処理が実行され、このエンジン始動シーケンス処理は、エンジンの始動が完了するまでの処理である。
車両状態モード決定部21Eは、後述するエンジン始動停止判定処理を実行し、エンジンの始動及び停止を判定する。
エンジン始動制御部21Fは、車両状態モード決定部21EからエンジンON指令を受けると、EVモードからHEVモードへ移行するためにエンジン1を始動したり、HEVモードを維持するために、エンジン1の駆動状態を維持する。
【0038】
ここで、EVモードからのエンジン始動について説明する。
エンジン始動制御部21Fは、先ず目標第2クラッチトルク指令TCL2をATコントローラ24に出力し、第2クラッチ5を目標クラッチ伝達トルクに制御する。目標第2クラッチトルク指令TCL2は、エンジン始動処理前の出力トルク相当のトルクを伝達可能なトルク指令であって、モータ2が出力する駆動力を増大したとしても出力軸トルクに影響を与えない範囲とする。ATコントローラ24は、指令に応じたクラッチ油圧が発生するように第2クラッチ油圧ユニットを制御する。
【0039】
エンジン始動制御部21は、次にモータコントローラ23に、モータ2を回転数制御する指令を出力する。なお、モータ2の実トルクはモータ2に作用する負荷によって決定される。
エンジン始動制御部21は、次に目標第1クラッチトルク指令TCL1をATコントローラ24に出力し、第1クラッチ4をエンジンクランキングトルクとなる目標クラッチ伝達トルクに制御する。
【0040】
エンジン始動制御部21は、次にエンジン回転数とモータ回転数とが同期したことを検知してから、クランキング処理の終了として第1クラッチ4を完全締結とする指令を出力する。この同期判定は、実モータ回転と実エンジン回転の差回転が規定値以下の状態が規定時間経過したときに同期したと判定する。この規定値は、第1クラッチ4のトルク制御中から完全締結移行時の応答無駄時間相当の差回転に設定される。そして、エンジン回転数が始動可能回転数以上になったことを検知したら、エンジンコントローラ22に対してエンジン始動指令を出力する。
一方、エンジン停止制御部21Gは、車両状態モード決定部21EからエンジンOFF指令を受けると、HEVモードからEVモードへ移行するためにエンジン1を停止したり、EVモードを維持するために、エンジン1の停止状態を維持する。なお、本実施形態におけるエンジン停止とは、フェールカットを指す。
【0041】
ここで、HEVモードからのエンジン停止について説明する。
エンジン停止制御部21Gは、先ず目標第1クラッチトルク指令TCL1をATコントローラ24に出力し、第1クラッチ4を滑り状態にする予め定められた目標クラッチ伝達トルクに制御する。
エンジン停止制御部21Gは、次に同期をとってモータコントローラ23に、モータ2を回転数制御する指令を出力する。これによって、第1クラッチ4によるエンジン1からのトルクを減少しつつ、モータトルクを増大して、目標駆動トルクを得る。
【0042】
エンジン停止制御部21Gは、目標モータトルクが目標駆動トルクとなったら、目標第1クラッチトルク指令TCL1=0とし、その後、エンジンコントローラ22に対する目標エンジントルクをゼロにする。これによって、エンジン1はフューエルカット(F/C)され、エンジンは空回りしている状態となる。
一方、目標エンジントルク算出部21Hは、車両状態モード決定部21Eが決定した目標車両状態モード、車速などの走行状態情報、目標駆動トルク、発電のために要求される要求エンジントルクに基づき、目標エンジントルクを算出する。なお、目標車両状態モードがEVモードである場合には、エンジントルクは不要であるので、目標エンジントルクは、ゼロ又は負値となる。また、予め設定したフューエルカット条件を満足している場合には、エンジンに対してフューエルカットを指示し、エンジンは空回りしている状態になっている。
【0043】
目標モータトルク算出部21Jは、車両状態モード決定部21Eが決定した目標車両状態モード、車速などの走行状態情報、目標駆動トルク、要求発電トルクに基づき、目標モータトルクを算出する。例えば、目標駆動トルクから、目標エンジントルクに遅れ補正を施したトルク値を減算した値を目標モータトルクとする。なお、他の制御部から回生ブレーキ要求トルク(<0)の入力がある場合には、目標モータトルクにその回生ブレーキ要求トルク分を足した値を最終的な目標モータトルクとする。
【0044】
目標クラッチトルク算出部21Kは、車両状態モード決定部21Eが決定した目標車両状態モード、エンジン1及びモータ2の発生トルクに基づき、第1クラッチ4及び第2クラッチ5の目標クラッチトルク指令を算出する。なお、EVモードの場合には、通常、ATコントローラ24に第1クラッチ4の開放指令を出力すると共に、ATコントローラ24に第2クラッチ5の締結指令を出力することで、第1クラッチ4を開放状態とすると共に、第2クラッチ5を締結状態とする。また、HEVモード状態の場合には、通常、ATコントローラ24に第1クラッチ4の締結指令を出力すると共に、ATコントローラ24に第2クラッチ5の締結指令を出力することで、第1クラッチ4を締結状態とすると共に、第2クラッチ5を締結状態とする。その他、エンジン始動時やエンジン停止時には、前述したように目標クラッチトルク指令を算出する。
なお、図3のVAPO演算部21Lは、クルーズ要求トルクから逆算して対応する推定アクセル開度を演算して、演算した推定アクセル開度を変速用アクセル開度としてATコントローラ24に出力する。
【0045】
次に、車両状態モード決定部21Eで所定時間毎に実行されるエンジン始動停止判定処理について説明する。
図6は、エンジン始動停止判定処理を示すフローチャートである。
先ずステップS11では、クルーズコントロールがONに設定されているか否かを判定する。ここで、クルーズコントロールがONに設定されていれば、後述するステップS13に移行する。一方、クルーズコントロールがOFFに設定されていれば、ステップS12に移行する。
ステップS12では、禁止フラグをFNG=0にリセットしてから後述するステップS24に移行する。この禁止フラグFNGは、エンジン停止を禁止するためのフラグであり、FNG=0のときには、エンジン停止の禁止をせず、FNG=1のときには、エンジン停止を禁止する。
【0046】
一方、ステップS13では、運転者によってコースト操作がなされたか否かを判定する。ここで、コースト操作がなされていれば、後述するステップS17に移行する。一方、コースト操作がなされていれば、ステップS14に移行する。
ステップS14では、コーストフラグがFc=0にリセットされているか否かを判定する。このコーストフラグは、コースト期間中であることを示すフラグであり、Fc=0のときには、コースト期間中ではなく、Fc=1のときには、コースト期間中であることを示す。初期設定では、Fc=0にリセットされている。ここで、判定結果が『Fc=1』であれば、後述するステップS20に移行する。一方、判定結果が『Fc=0』であれば、ステップS15に移行する。
【0047】
ステップS15では、下記に示すように、現在の車両状態モードM(n)をコースト前車両状態モードMfとし、記憶を更新する。車両状態モードは、モータのみで走行するEVモードと、エンジンを駆動しながら適宜モータを駆動して走行するHEVモードと、がある。
Mf ← M(n)
続くステップS16では、禁止フラグをFNG=0にリセットしてから後述するステップS24に移行する。
【0048】
一方、ステップS17では、コースト前車両状態モードMfがHEVモードに設定されているか否かを判定する。ここで、判定結果が『Mf:EV』であれば、元々、エンジン1は停止されているので、エンジン1の停止は禁止するまでもないと判断して、前記ステップS12に移行する。一方、判定結果が『Mf:HEV』であれば、コースト期間中におけるエンジン1の停止を禁止する必要があると判断してステップS18に移行する。
ステップS18では、コーストフラグをFc=1にセットする。
続くステップS19では、禁止フラグをFNG=1にセットする。
【0049】
続くステップS20では、現在の車速V(n)がクルーズコントロールの設定車速Vsより大きいか否か、つまり設定車速Vsを未達成であるか否かを判定する。ここで、判定結果が『V(n)>Vs』であれば、コースト期間は終了していないと判断して、禁止フラグFNGの前回値を保持したまま後述するステップS24に移行する。一方、判定結果が『V(n)≦Vs』であれば、コースト期間が終了したと判断してステップS21に移行する。
ステップS21では、コースト前車両状態モードMfの記憶をリセットする。
続くステップS22では、コーストフラグをFc=0にリセットする。
【0050】
続くステップS23では、禁止フラグをFNG=0にリセットしてからステップS24に移行する。
ステップS24では、クルーズコントロールがONに設定されているか否かを判定する。ここで、クルーズコントロールがONに設定されていれば、後述するステップS29に移行する。一方、クルーズコントロールがOFFに設定されていれば、ステップS25に移行する。
ステップS25では、禁止フラグがFNG=0にリセットされているか否かを判定する。ここで、判定結果が『FNG=1』であれば、エンジン停止が禁止されているので後述するステップS28に移行する。一方、判定結果が『FNG=0』であれば、エンジン停止は禁止されていないのでステップS26に移行する。
【0051】
ステップS26では、下記1〜3に示すような、エンジン始動要求が非出力状態であるか否かを判定する。
1.アクセル開度によるエンジン始動要求
ここでは、アクセル開度APOが予め定められた始動判定閾値より大きいか否かを判定し、アクセル開度APOが閾値より大きいときに、エンジン始動要求が出力状態となる。閾値は車速Vに応じて設定されてもよい。
2.システムによるエンジン始動要求
ここでは、SOCが低下したり、水温が低下したり、EV走行禁止車速に達したりしたときに、エンジン始動要求が出力状態となる。
3.クルーズ制御によるエンジン始動要求
ここでは、クルーズ要求トルクTcが予め定められた始動判定閾値より大きいか否かを判定し、クルーズ要求トルクTcが始動判定閾値より大きいときに、エンジン始動要求が出力状態となる。
【0052】
上記1〜3に示すようなエンジン始動要求があれば、後述するステップS28に移行する。一方、上記1〜3に示すようなエンジン始動要求がなければ、ステップS27に移行する。
ステップS27では、エンジン停止制御部21Gに対してエンジンOFF指令を出力してから所定のメインプログラムに復帰する。
一方、ステップS28では、エンジン始動制御部21Fに対してエンジンON指令を出力してから所定のメインプログラムに復帰する。
一方、ステップS29では、エンジン1が駆動状態にあるか否かを判定する。ここで、エンジン1が停止状態であれば、後述するステップS31に移行する。一方、エンジン1が駆動状態であれば、ステップS30に移行する。
【0053】
ステップS30では、クルーズ要求トルクTcが、予め定められた停止判定閾値TOFF以上であるか否かを判定する。ここで、判定結果が『Tc<TOFF』であれば、エンジン1に対する停止要求であると判断して前記ステップS25に移行する。一方、判定結果が『Tc≧TOFF』であれば、エンジン1に対する停止要求はないと判断して前記ステップS28に移行する。
【0054】
一方、ステップS31では、クルーズ要求トルクTcが、予め定められた始動判定閾値TON以上であるか否かを判定する。この始動判定閾値TONは、前述した停止判定閾値TOFFよりも大きな値であり、始動判定閾値TONと停止判定閾値TOFFとの間にヒステリシスを設けているのはハンチングを防止するためである。ここで、判定結果が『Tc<TON』であれば、エンジン1に対する始動要求はないと判断して前記ステップS25に移行する。一方、判定結果が、『Tc≧TON』であれば、エンジン1に対する始動要求であると判断して前記ステップS28に移行する。
【0055】
《作用》
図7は、従来技術の問題点を示すタイムチャートである。
クルーズ要求トルクTcに従ってクルーズ走行しているときに、ドライバが減速を望んでコースト操作を行うと、コースト期間が始まる。コースト期間とは、自車速Vを低下させる期間のことであり、駆動力を低減したり制動力を作用させることによって実現される。コースト期間の開始時には、クルーズ要求車速(例えば設定車速Vs)よりも高い車速となっているので(目標車速<実車速)、速やかにクルーズ車速まで減速させようとして、クルーズ要求トルクTcは負値へと転じる。
【0056】
このとき、低燃費化のためにエンジン1を停止することでEVモードへ切り替え、自車両が設定車速Vsまで減速してコースト期間が終了したらエンジン1を再始動することが考えられる。このように、クルーズ走行中に設定車速Vsを低下させてから、その設定車速Vsを達成するまでの短時間のうちに、エンジン1の停止と始動が行われると、運転者に違和感を与えてしまう可能性がある。特に、エンジン1を再始動する際のショックは小さくない。
【0057】
図8は、本実施形態の動作を示すタイムチャートである。
そこで、少なくともエンジン1を駆動している状態で、運転者によってコースト操作がなされ設定車速Vsが低下したら、この設定車速Vsを達成するまでは、エンジン1の停止を禁止する。
ここで、上記の動作を詳述する。
HEVモードで、クルーズ要求トルクTcがアクセル要求トルクTaよりも大きいときには、クルーズ要求トルクTcに従ったクルーズ要求車速でのクルーズ走行をしている。このとき、定速クルーズ要求トルクが最終的なクルーズ要求トルクTcとして選択されているとすると、自車速は略一定の車速(設定車速Vs)を維持している。また、このときの車両状態モードが加速前車両状態モードMfとして記憶され(S15)、禁止フラグはFNG=0にリセットされている(S16)。
【0058】
そして、HEVモードを維持したまま、運転者がステアリングスイッチ28を操作し、コースト操作を行うと(S13の判定が“Yes”)、設定車速Vsが低下するので、この設定車速Vsの達成に向けて、車両を減速させるコースト期間が開始される。コースト期間とは、自車速Vを低下させる期間のことであり、駆動力を低減したり制動力を作用させることによって実現される。このとき、このとき、コーストフラグがFc=1にセットされ(S18)、禁止フラグはFNG=1にセットされる(S19)。
【0059】
この時点では、設定車速Vsよりも高い車速となっているので(目標車速<実車速)、速やかに設定車速Vsまで減速させようとして、クルーズ要求トルクTcは負値へと転じる。したがって、クルーズ要求トルクTcは停止判定閾値TOFFよりも小さくなり、エンジン停止要求となるが(S30の判定が“No”)、禁止フラグがFNG=1にセットされていることで(S25の判定が“No”)、エンジン1は停止されることがない(S28)。つまり、エンジン1はON状態を維持するので、エンジンブレーキ作用によって車両は減速してゆく。このコースト期間中は、禁止フラグがFNG=1を保持するので(S20の判定が“Yes”)、エンジン1もON状態を維持したままとなる(S28)。
【0060】
そして、車速Vが設定車速Vsまで減少したら(S20の判定が“No”)、コースト期間が終了したと判断して、コースト前車両状態モードMfをリセットし(S21)、コーストフラグをFc=0にリセットし(S22)、禁止フラグをFNG=0にリセットする(S23)。
こうして、コースト期間もエンジン1はON状態を維持しているので、コースト期間が終了したときにもエンジン1は既にON状態にある。これにより、コースト期間が終了したときに、エンジン1を再始動しなくて済むので、短時間のうち、エンジンの停止と始動を行うことがない。したがって、クルーズ走行中に設定車速Vsが低下し、その設定車速Vsが達成されるときの違和感を抑制することができる。特に、エンジン1を再始動する際のショックを無くすことができる。
【0061】
《効果》
以上より、基本目標駆動トルク演算部21Dc、エンジンコントローラ22、モータコントローラ23、及びATコントローラ24が「駆動制御手段」に対応する。
(1)車輪を駆動可能なエンジンと、車輪を駆動可能なモータと、運転者のスイッチ操作によって設定可能な設定車速に応じて、前記エンジン及び前記モータの少なくとも一方を駆動する駆動制御手段と、を備え、前記駆動制御手段は、少なくとも前記エンジンで車輪を駆動している状態で、運転者のスイッチ操作によって前記設定車速が低下したら、当該設定車速を達成するまでは、前記エンジンの停止を禁止することを特徴とする。
このように、エンジンで車輪を駆動している状態で、設定車速が低下したときに、この設定車速を達成するまでは、エンジンの停止を禁止するので、短時間のうちに、エンジンの停止と始動を行うことがない。したがって、クルーズ走行中に設定車速が低下し、その設定車速が達成されるときの違和感を抑制することができる。
【符号の説明】
【0062】
1 エンジン
2 モータ
4 第1クラッチ
5 第2クラッチ
7 駆動輪
20 アクセルセンサ
21 統合コントローラ
21A 要求発電トルク演算部
21B 要求エンジントルク演算部
21C モータ出力可能トルク演算部
21D 目標駆動トルク演算部
21Da アクセル要求トルク演算部
21Db クルーズ要求トルク演算部
21Dc 第1目標駆動トルク演算部
21Dd 車速リミッタトルク演算部
21De 最終目標駆動トルク演算部
21E 車両状態モード決定部
21F エンジン始動制御部
21G エンジン停止制御部
21H 目標エンジントルク算出部
21J 目標モータトルク算出部
21K 目標クラッチトルク算出部
21L VAPO演算
22 エンジンコントローラ
23 モータコントローラ
24 ATコントローラ
25 ブレーキコントローラ
26 バッテリコントローラ
28 ステアリングスイッチ
30 クルーズキャンセルスイッチ
31 車間制御コントローラ

【特許請求の範囲】
【請求項1】
車輪を駆動可能なエンジンと、
車輪を駆動可能なモータと、
運転者のスイッチ操作によって設定可能な設定車速に応じて、前記エンジン及び前記モータの少なくとも一方を駆動する駆動制御手段と、を備え、
前記駆動制御手段は、
少なくとも前記エンジンで前記車輪を駆動している状態で、運転者のスイッチ操作によって前記設定車速が低下したら、当該設定車速を達成するまでは、前記エンジンの停止を禁止することを特徴とするハイブリッド車両の制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2012−86802(P2012−86802A)
【公開日】平成24年5月10日(2012.5.10)
【国際特許分類】
【出願番号】特願2010−237567(P2010−237567)
【出願日】平成22年10月22日(2010.10.22)
【出願人】(000003997)日産自動車株式会社 (16,386)
【Fターム(参考)】