説明

プラズマ源,それを用いた高周波イオン源,負イオン源,イオンビーム処理装置,核融合用中性粒子ビーム入射装置

【課題】放電管の内部表面でのプラズマ損失を低減できるプラズマ源,それを用いた高周波イオン源,負イオン源,イオンビーム処理装置,核融合用中性粒子ビーム入射装置を提供することにある。
【解決手段】絶縁物で構成された放電管5と、放電管5の周囲に配置されたコイル3とを有する。コイル3に高周波を印加することで、放電管5の内部にプラズマを生成する。導体であるファラデーシールド4は、放電管5とコイル3の間に設置されるとともに、複数のスリット4Sを有する。複数の永久磁石6は、複数のスリットの間であって、ファラデーシールド4の外側に設置され、放電管5の内部に多極磁場Bを生成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、プラズマ源,それを用いた高周波イオン源,負イオン源,イオンビーム処理装置,核融合用中性粒子ビーム入射装置に関する。
【背景技術】
【0002】
従来のプラズマ源としては、高周波放電を用いたものとして、例えば、非特許文献1に示されたものが知られている。
【0003】
【非特許文献1】Review of Scientific Insturments, vol. 69 (1998), pp.956
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかしながら、従来の高周波放電を用いたプラズマ源では、放電管の内壁上でプラズマ損失が生じるという問題があった。このプラズマ損失により、次のような問題が生じる。(1)プラズマ生成効率(生成されるプラズマ密度/高周波電力)が低い。(2)放電管内のプラズマ密度の不均一性が大きく、イオン源のビーム均一性が低下する。(3)放電に必要なガス圧が高い。(4)放電の点火が困難である。ファラデーシールド4を取り除いた場合、高周波電界は直接放電管内部に侵入し放電が点火し易くなるが、プラズマ中のイオンがコイルの高周波電圧により加速されるため、イオンのエネルギーが高くなり、放電管内壁がイオンの衝撃により損傷を受けたり、プラズマと接する金属表面から金属がスパッタされ金属膜が放電管内壁に付着し放電管内部への高周波電カ供給が困難となる等の問題が生ずる。
【0005】
本発明の目的は、放電管の内部表面でのプラズマ損失を低減できるプラズマ源,それを用いた高周波イオン源,負イオン源,イオンビーム処理装置,核融合用中性粒子ビーム入射装置を提供することにある。
【課題を解決するための手段】
【0006】
(1)上記目的を達成するために、本発明は、絶縁物で構成された放電容器と、この放電容器の周囲に配置されたコイルとを有し、前記コイルに高周波を印加して前記放電容器内にプラズマを生成するプラズマ源において、前記放電容器と前記コイルの間に設置されるとともに、複数のスリットを有する導体と、前記複数のスリットの間であって、前記導体の外側に設置され、前記放電容器の内部に多極磁場を生成する磁石とを備えるようにしたものである。
かかる構成により、放電管の内部表面でのプラズマ損失を低減できるものとなる。
【0007】
(2)上記(1)において、好ましくは、前記磁石の周囲を設けられ、高周波をシールドする材料からなるケースを備えるようにしたものである。
【0008】
(3)上記(1)において、好ましくは、前記導体は、前記放電容器の内側に設置されるとともに、前記磁石は、前記放電容器の外側に設置されるものである。
【0009】
(4)上記(3)において、好ましくは、 前記導体と前記放電容器の間に設けられ、両者の間隔を調整するスペーサーを備えるようにしたものである。
【0010】
(5)上記目的を達成するために、本発明は、絶縁物で構成された放電容器と、この放電容器の周囲に配置されたコイルとを有し、前記コイルに高周波を印加して前記放電容器内にプラズマを生成するプラズマ源と、このプラズマ源で発生したイオンをイオンビームとして引き出す電極とを有する高周波イオン源において、前記プラズマ源は、前記放電容器と前記コイルの間に設置されるとともに、複数のスリットを有する導体と、前記複数のスリットの間であって、前記導体の外側に設置され、前記放電容器の内部に多極磁場を生成する磁石とを備えるようにしたものである。
かかる構成により、放電管の内部表面でのプラズマ損失を低減でき、イオンビームの生成効率を向上できるものとなる。
【0011】
(6)上記目的を達成するために、本発明は、絶縁物で構成された放電容器と、この放電容器の周囲に配置されたコイルとを有し、前記コイルに高周波を印加して前記放電容器内にプラズマを生成するプラズマ源と、このプラズマ源で発生したイオンをイオンビームとして引き出す電極と、 前記放電容器のイオンビームを引き出す電極側の端部に設けられ、前記放電容器の軸に垂直な方向の磁場を発生させる磁場発生手段とを有し、負イオンビームを引き出す負イオン源において、前記プラズマ源は、前記放電容器と前記コイルの間に設置されるとともに、複数のスリットを有する導体と、前記複数のスリットの間であって、前記導体の外側に設置され、前記放電容器の内部に多極磁場を生成する磁石とを備えるようにしたものである。
かかる構成により、放電管の内部表面でのプラズマ損失を低減でき、イオンビームの生成効率を向上できるものとなる。
【0012】
(7)上記(6)において、好ましくは、前記放電容器のイオンビームを引き出す電極側の端部に設置されたメッシュ状の仕切り板を備えるようにしたものである。
【0013】
(8)上記目的を達成するために、本発明は、試料にイオンビームを照射し、試料を処理するイオンビーム処理装置において、(5)若しくは(6)記載のイオン源又は(7)記載の負イオン源を用いるものである。
【0014】
(9)上記目的を達成するために、本発明は、中性粒子ビームを核融合装置に入射する核融合用中性粒子ビーム入射装置において、(5)若しくは(6)記載のイオン源又は(7)記載の負イオン源を用いるものである。
【発明の効果】
【0015】
本発明によれば、放電管の内部表面でのプラズマ損失を低減し得るものとなる。
【発明を実施するための最良の形態】
【0016】
最初に、図1及び図2を用いて、本発明の第1の実施形態によるプラズマ源を用いた高周波イオン源の構成について説明する。
図1及び図2は、本発明の第1の実施形態によるプラズマ源を用いた高周波イオン源の構成を示す断面図である。図1は、イオン源の中心軸に垂直なプラズマ源の断面を示している。図2は、イオン源の中心軸を含む断面を示している。
【0017】
図1及び図2に示すように、高周波発振器1で発生した高周波は、整合器2を介して、放電管5(石英やセラミックなどの材質の絶縁管)の周囲に設置したコイル3に印加される。放電管5の内部には、真空引きの後、放電に必要なガス(例えばAr)を導入管5を通して導入される。コイル3に印加された高周波によって、放電管5の内部に高周波放電が発生し、放電管5の内部に導入したガスが電離されプラズマが生成される。コイル3の高周波電流により発生する誘導電流が放電管5の内部のプラズマ中に流れることによって、高周波電力がプラズマに供給される。
【0018】
図2に示す例では、コイル3の巻数は4ターンであるが、放電管とコイルの寸法,高周波の周波数等に応じて、1ターンから20ターン程度まで適切に調整する。高周波の周波数は、数100kHz〜数10MHzの範囲で、装置構造,高周波整合他により適切な周波数に設定する。
【0019】
放電管5とコイル3の間には、スリット4Sを設けた導体(ファラデーシールド)4が設置され、コイル3の高周波電界の放電管5の内部への侵入が低減される。
【0020】
また、本実施形態では、ファラデーシールド4の隣接するスリットの間であって、ファラデーシールド4の外周側に、複数の永久磁石6を設置している。なお、隣り合った磁石6の極性は、逆に設定されている。これにより、放電管5の内部の表面上には、図1に示すように、壁近傍に局在した多極磁場Bが発生する。
【0021】
ここで、放電管5の内径R1は、例えば、50mm〜500mm程度である。例えば、図1に示すように、スリット4Sの数が16個で、永久磁石6の数が16個の場合、放電管5の内径R1を160mmとすると、隣接する永久磁石6の中心間の距離L1は、30mm程度となる。また、スリット4Sの幅W1は、1〜3mmである。
【0022】
永久磁石6によって形成される磁場Bは、放電管5の内壁に近いところが強く、放電管5の中心に近づくに従って低下する。永久磁石6の表面磁場強度を数KGとし、隣接する永久磁石6の中心間の距離L1を30mm程度とすると、放電管5の内壁から中心側にL1(=30mm)離れた位置での磁場Bは、10G程度となる。磁場強度の高い位置には、プラズマが生成されにくいため、プラズマは、放電管5の内壁から中心側にL1(=30mm)離れた位置よりも内側の、磁場Bの弱い領域に一様に生成される。
【0023】
以上のように、放電管の外周に複数の永久磁石を配置して、放電管の内部に多極磁場を形成することで、プラズマが、放電管の内壁に拡散することによるプラズマ損失を低滅することができる。これによって、プラズマの生成効率が向上し、プラズマ密度が上昇するとともに、プラズマの均一性が向上する。また、放電に必要なガス圧が低下し、ガス流量を低減でき、真空ポンプの排気容量を下げられる。
【0024】
永久磁石6は、金属製のケース7で覆われており、高周波誘導電流による磁石6の加熱を防止している。また、プラズマによる永久磁石6の加熱を防ぐため、ファラデーシールド4を冷却管により、直接又は間接的に冷却している。ケース7は、熱伝導性と導電性の良い銅等の金属で製作され、必要に応じて冷却管で冷却される。
【0025】
図2に示すように、放電管5はフランジ8とフランジ9の間に挟まれて固定され、両端部付近で真空シールされる。フランジ8とフランジ9の外側には、シールド筒10を取り付け、コイルをフランジ8,9とシールド筒10によって覆う構造にし、放電容器の周囲への高周波の漏洩を低減している。
【0026】
また、フランジ8とフランジ9を水冷し、高周波誘導電流による加熱を防止している。磁石のケース7のフランジ8側の面とフランジ8にはフタ11を取り付け、その内部には絶縁板12(材質は石英やセラミックなど)を設置している。この絶縁板12によって、プラズマによるフタ11の内面のスパッタが抑えられ、金属スパッタ粒子による放電管内壁の汚損を防止している。また、スパッタ粒子のイオン化による金属イオンビームの発生を抑えている。フタ11の上には放電管上と同様の多極磁場を発生するための磁石6Bを取り付けている。フタ11の中心に放電管にガスを導入するポート13を設置している。放電管5の内部のプラズマと接する電極14aを含む3枚の電極14a,14b,14cを設置し、電極にイオンを引き出す孔14eを設け、加速電源15aによって電極14aと電極14cの間に引き出し電圧を印加し、減速電源15bによって電極14bと電極14cの間に減速電圧を印加した場合、孔14eを通してイオンが静電的に引出され、イオンビーム16が生成される。各電極に引き出し孔14eを複数設けることによって、大面積のマルチイオンビーム16を引き出すことができる。
【0027】
本実施形態のプラズマ源はプラズマ生成効率が向上するため、高周波イオン源としてはイオン密度が高くでき、イオンビーム電流および電流密度を高くできる。また、プラズマ均一性の向上により、高周波イオン源として、大面積ビームの均一性を向上できる。
【0028】
なお、以上の説明では、放電容器は、図1に示したような円筒形状の放電管5としてるが、必要に応じて放電容器の形状を矩形,楕円他の断面の他の形状にすることも可能である。また、永久磁石の個数は、16個に限らず、放電管5の内径R1が大きい場合には、さらに、個数を増やし、例えば、18個,36個とすることもできる。
【0029】
本実施形態によれば、高周波プラズマ源,イオン源のプラズマ,ビームの生成効率が向上する。また、プラズマ密度およびビームの均一性が向上する。
【0030】
次に、図3を用いて、本発明の第2の実施形態によるプラズマ源を用いた高周波イオン源の構成について説明する。
図3は、本発明の第2の実施形態によるプラズマ源を用いた高周波イオン源の要部の構成を示す断面図である。図3は、イオン源の中心軸に垂直なプラズマ源の断面を示している。なお、イオン源の中心軸を含む断面構成は、図2に示したものと同様である。
【0031】
本実施形態では、ファラデーシールド4のスリット4SWの幅W2は、図1に示したスリット4Sの幅W1よりも広くしたものである。例えば、スリット4Sの幅W1を1〜3mmとしたとき、本実施形態では、スリット4SWの幅W2は5〜20mm(導体4の厚みの2〜10倍程度)としている。このように、スリットの幅を広げることで、放電管5の内部に若干高周波電場を侵入させ、プラズマの点火を容易にしている。一方、永久磁石6により多極磁場Bを形成することで、イオン(図示の例では、アルゴンイオンAr+)が偏向され、スリット4SWの近傍にイオンが接近しないため、イオンは高周波電場で加速されず、イオン加速に伴う放電管の損傷や、金属スパッタによる放電管汚損を防止できる。すなわち、プラズマ点火を容易に行えることと、プラズマ源の長寿命化の両立を図ることができる。また、金属スパッタ粒子のイオン化によるプラズマヘの不純物イオンの混入を防止できる。
【0032】
以上説明したように、本実施形態によれば、ファラデーシールドのスリットの幅を広げることで、プラズマ点火を容易にするとともに、高周波電界のイオン加速を抑え、放電管の損傷と金属付着を低減し、イオン源の動作安定性を向上し、長寿命化することができる。
【0033】
次に、図4を用いて、本発明の第1の実施形態によるプラズマ源を用いたイオンビーム処理装置の構成について説明する。
図4は、本発明の第1の実施形態によるプラズマ源を用いたイオンビーム処理装置の構成を示す断面図である。図4は、イオン源の中心軸を含む処理装置の断面を示している。なお、図1,図2と同一符号は、同一部分を示している。
【0034】
図示の例は、図1,図2に示したイオン源を用いたイオンビーム加工装置(ミリング,エッチング他)の構成を示している。イオン源で生成した大面積のマルチイオンビーム16は、処理室17に設置した試料19に照射され、試料の微細加工が行われる。処理室17には真空排気系18が設置され、処理室17とイオン源内部を真空引きする。
【0035】
本実施形態のイオン源を使用した場合、イオンビーム電流および電流密度を高くできるとともに、保守周期を長くできるため、単位時間の加工処理量(スループット)を向上できる。
また、ビームの均一性向上により、加工の均一性が向上される。
さらに、イオン源の保守費用を低減できるので、加工処理を低コスト化できる。
またさらに、大電流のイオンビームを安定に発生でき、放電管汚損による電流低下も防止できるので、装置の信頼性を向上できる。
また、イオンによるスパッタ粒子や不純物イオンによる試料の汚損の問題が無い。
【0036】
なお、微細加工の応用の具体的な適用対象としては、ハードディスクの磁気ヘッド、機械部品の微細加工、半導体メモリーの微細構造形成他の多くの対象がある。また、通常はアルゴンガスを使用して発生するアルゴンイオンビームを使用しているが、酸素、フッ素、塩秦又はそれらの化合物のガス(CF等)を使用することによつて必要に応じて加工のスループットを向上できる。
【0037】
なお、以上は、イオンビームにより試料を加工するイオンビーム加工装置への適用について説明しているが、薄膜生成、スパッタ、イオン注入他のイオンビームプロセスによる半導体の生成、材料の改質、滅菌他を行うような、イオンビームにより試料を処理するイオンビームプロセス装置にも同様に適用できるものである。
【0038】
以上説明したように、本実施形態によれば、イオンビーム処理装置におけるスループットを向上できる。また、処理装置における加工他のプロセスの均一性を向上することができる。
【0039】
次に、図5を用いて、本発明の第3の実施形態によるプラズマ源を用いた高周波イオン源の構成について説明する。
図5は、本発明の第3の実施形態によるプラズマ源を用いた高周波イオン源の要部の構成を示す断面図である。図5は、イオン源の中心軸に垂直なプラズマ源の断面を示している。なお、イオン源の中心軸を含む断面構成は、図2に示したものと基本的に同様である。
【0040】
本実施形態では、図1に示したイオン源に対して、ファラデーシールド4’と、放電管5’の設置位置を変更している。すなわち、放電管5’の内側に、ファラデーシールド4’を設置している。
【0041】
この場合、ファラデーシールド4’を水冷することによって、プラズマからの熱負荷をファラデーシールド4’で吸収できるので、放電管5’が加熱されるのを防止することができる。このため、高周波電力を高くし、プラズマ密度を上昇させた場合に放電管5’の温度が上昇せず、放電管5’が熱歪みで損傷したり、放電管5’の真空シール部に使用するパッキングが損傷し真空リークが起こる等の問題が発生することを防止できる。
【0042】
なお、本実施形態では、ファラデーシールド4’がプラズマと接触するため、イオンによりファラデーシールド4’の表面がスパッタされ、金属粒子や金属イオンが発生し、それらが放電管5’の表面に付着する恐れがある。ファラデーシールド4’のスリット4Sの部分が放電管5’の表面の付着物により短絡されると、ファラデーシールド4’に高周波誘導電流が流れ、そこで高周波電力が消費されるため、その内部のプラズマに高周波電力が注入されなくなり、プラズマの生成を維持できなくなる。そこで、本実施形態では、放電管5’とファラデーシールド4’の間にスペーサー4Gを挿入し、放電管5’とファラデーシールド4’の間に隙間(1−2mm程度)を設け、この付着物による短絡を防止している。また、隙間を適切に制御することによって、ファラデーシールド4’の裏側の放電管表面への金属の付着を抑え、放電管表面の金属による短絡を防止できる。
【0043】
本実施形態によれば、高周波プラズマ源,イオン源のプラズマ,ビームの生成効率が向上する。また、プラズマ密度およびビームの均一性が向上する。さらに、放電管が加熱されるのを防止することができる。
【0044】
次に、図6を用いて、本発明の第1の実施形態によるプラズマ源を用いた負イオン源の構成について説明する。
図6は、本発明の第1の実施形態によるプラズマ源を用いた負イオン源の構成を示す断面図である。図6は、イオン源の中心軸を含む断面を示している。なお、本実施形態の負イオン源の中心軸に垂直なプラズマ源の断面構成は、図1に示したものと同様である。
【0045】
本実施形態では、高周波放電でプラズマを発生する放電管5の周辺の構造は、図1の場合と同じである。放電管の電極14aの側に、磁気フィルター磁石21を挿入した磁気フィルターフランジ20を設置し、磁気フィルター磁場Bfを発生する。これにより、プラズマ中の高エネルギーの電子が、電極14aの近傍には到達せず、電極14aの近傍に電子温度の低い負イオンを生成するために適する領域ができる。この領域において、低エネルギーの電子が原子や分子に付着し負イオンが生成される。また、高エネルギー電子との衝突による負イオンの消滅も少ない。このため、その領域の負イオンの密度が高くなる。
【0046】
生成された負イオンは、3枚の電極14a,14b,14cと、電極14aと電極14bの間に引出電圧を印加する引出電源15cと、電極14bと電極14cの間に加速電圧を印加する加速電源15dと、電極14aと磁気フィルターフランジ20の間にバイアス電圧を印加するバイアス電源15eとによって、静電的に引き出され、負イオンビーム16Nが生成される。
【0047】
負イオンとともにプラズマ中から引き出される電子は、磁場Bf又は、電極14bに設置された磁石(図示せず)による電子偏向磁場により偏向され、負イオンビームから分離される。
【0048】
本実施形態の負イオン源では、正イオン源の場合と同様にイオンビーム電流および電流密度を高くできるとともに、保守周期を長くできる。また、動作ガス圧を低減できるので、引き出し電極間のガス圧が低減され引出し中の負イオンのガスとの衝突による消滅が低減され、負イオンビームの生成効率を上げることができる。
【0049】
次に、図7を用いて、本発明の第1の実施形態によるプラズマ源を用いた第2の例の負イオン源の構成について説明する。
図7は、本発明の第1の実施形態によるプラズマ源を用いた第2の例の負イオン源の構成を示す断面図である。図7は、イオン源の中心軸を含む断面を示している。なお、本実施形態の負イオン源の中心軸に垂直なプラズマ源の断面構成は、図1に示したものと同様である。
【0050】
本実施形態では、図6の構成に加えて、放電管5の電極側端部にメッシュ状仕切り板22を設け、コイルによる高周波誘導電磁場が電極14a近傍の負イオン生成領域に影響しないように、高周波シールドをしている。これにより、負イオン生成領域における高周波による電子加速が抑えられ、高周波により加速された高エネルギー電子による負イオンの消滅が防止される。これによって、負イオンビームを生成する効率を向上できる。
【0051】
本実施形態の負イオン源では、正イオン源の場合と同様にイオンビーム電流および電流密度を高くできるとともに、保守周期を長くできる。また、動作ガス圧を低減できるので、引き出し電極間のガス圧が低減され引出し中の負イオンのガスとの衝突による消滅が低減され、負イオンビームの生成効率を上げることができる。さらに、負イオンビームを生成する効率を向上できる。
【0052】
次に、図8を用いて、本発明の第1の実施形態によるプラズマ源を用いた第2の例の負イオン源を用いた核融合装置用の中性粒子ビーム装置の構成について説明する。
図8は、本発明の第1の実施形態によるプラズマ源を用いた第2の例の負イオン源を用いた核融合装置用の中性粒子ビーム装置の構成を示す断面図である。なお、図7と同一符号は、同一部分を示している。
【0053】
本実施形態では、図7に示した負イオン源を用い、放電管5に導入するガスの種類を代えることにより、必要なイオン種の負イオンビームが得られる。例えば、核融合装置用の中性粒子ビーム装置用負イオン源とする場合、水素又は重水素又は三重水素のガスを導入することにより、水素又は重水素又は三重水素の負イオンビームが得られる。
【0054】
本実施形態の負イオン源は、中性粒子入射装置の真空容器23に設置され、負イオンビーム16Nは、中性化セル24で中性化され入射ボート25より、核融合装置27に入射される。ビームの入射効率を向上するため、入射ボート25内の焦点26に向け負イオンビームは集束されるように、負イオン源の電極が設計される。
【0055】
ビーム加工装置に使用する場合、例えばフッ素ガスやCFを導入するとフッ素またはフッ素化合物の負イオンビームが生成される。この場合、負イオンビームは絶縁物製の試料に照射された場合にも、試料に帯電を起こさないため、帯電に起因した試料の破損が起こることが無く、試料表面の帯電中和装置が不要である。また、応用の用途に応じて酸素ガスを用いた酸素負イオンビーム生成、塩素ガスやその化合物を用いた塩素負イオンビームの生成等多くのイオン種の負イオンビームの生成が可能である。
【図面の簡単な説明】
【0056】
【図1】本発明の第1の実施形態によるプラズマ源を用いた高周波イオン源の構成を示す断面図である。
【図2】本発明の第1の実施形態によるプラズマ源を用いた高周波イオン源の構成を示す断面図である。
【図3】本発明の第2の実施形態によるプラズマ源を用いた高周波イオン源の要部の構成を示す断面図である。
【図4】本発明の第1の実施形態によるプラズマ源を用いたイオンビーム処理装置の構成を示す断面図である。
【図5】本発明の第3の実施形態によるプラズマ源を用いた高周波イオン源の要部の構成を示す断面図である。
【図6】本発明の第1の実施形態によるプラズマ源を用いた負イオン源の構成を示す断面図である。
【図7】本発明の第1の実施形態によるプラズマ源を用いた第2の例の負イオン源の構成を示す断面図である。
【図8】本発明の第1の実施形態によるプラズマ源を用いた第2の例の負イオン源を用いた核融合装置用の中性粒子ビーム装置の構成を示す断面図である。
【符号の説明】
【0057】
1…高周波発振器
2…高周波整合器
3…コイル
4…ファレデーシールド
5…放電管
6,21…永久磁石
14…電極
16…イオンビーム

【特許請求の範囲】
【請求項1】
絶縁物で構成された放電容器と、この放電容器の周囲に配置されたコイルとを有し、前記コイルに高周波を印加して前記放電容器内にプラズマを生成するプラズマ源において、
前記放電容器と前記コイルの間に設置されるとともに、複数のスリットを有する導体と、
前記複数のスリットの間であって、前記導体の外側に設置され、前記放電容器の内部に多極磁場を生成する磁石とを備えることを特徴とするプラズマ源。
【請求項2】
請求項1記載のプラズマ源において、
前記磁石の周囲に設けられ、高周波をシールドする材料からなるケースを備えることを特徴とするプラズマ源。
【請求項3】
請求項1記載のプラズマ源において、
前記導体は、前記放電容器の内側に設置されるとともに、
前記磁石は、前記放電容器の外側に設置されることを特徴とするプラズマ源。
【請求項4】
請求項3記載のプラズマ源において、
前記導体と前記放電容器の間に設けられ、両者の間隔を調整するスペーサーを備えることを特徴とするプラズマ源。
【請求項5】
絶縁物で構成された放電容器と、この放電容器の周囲に配置されたコイルとを有し、前記コイルに高周波を印加して前記放電容器内にプラズマを生成するプラズマ源と、
このプラズマ源で発生したイオンをイオンビームとして引き出す電極とを有する高周波イオン源において、
前記プラズマ源は、
前記放電容器と前記コイルの間に設置されるとともに、複数のスリットを有する導体と、
前記複数のスリットの間であって、前記導体の外側に設置され、前記放電容器の内部に多極磁場を生成する磁石とを備えることを特徴とする高周波イオン源。
【請求項6】
絶縁物で構成された放電容器と、この放電容器の周囲に配置されたコイルとを有し、前記コイルに高周波を印加して前記放電容器内にプラズマを生成するプラズマ源と、
このプラズマ源で発生したイオンをイオンビームとして引き出す電極と、
前記放電容器のイオンビームを引き出す電極側の端部に設けられ、前記放電容器の軸に垂直な方向の磁場を発生させる磁場発生手段とを有し、負イオンビームを引き出す負イオン源において、
前記プラズマ源は、
前記放電容器と前記コイルの間に設置されるとともに、複数のスリットを有する導体と、
前記複数のスリットの間であって、前記導体の外側に設置され、前記放電容器の内部に多極磁場を生成する磁石とを備えることを特徴とする負イオン源。
【請求項7】
請求項6記載の負イオン源において、
前記放電容器のイオンビームを引き出す電極側の端部に設置されたメッシュ状の仕切り板を備えることを特徴とする負イオン源。
【請求項8】
試料にイオンビームを照射し、試料を処理するイオンビーム処理装置において、
請求項5記載のイオン源又は請求項6若しくは請求項7記載の負イオン源を用いることを特徴とするイオンビーム処理装置。
【請求項9】
中性粒子ビームを核融合装置に入射する核融合用中性粒子ビーム入射装置において、
請求項5記載のイオン源又は請求項6若しくは請求項7記載の負イオン源を用いることを特徴とする核融合用中性粒子ビーム入射装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2008−128887(P2008−128887A)
【公開日】平成20年6月5日(2008.6.5)
【国際特許分類】
【出願番号】特願2006−315619(P2006−315619)
【出願日】平成18年11月22日(2006.11.22)
【出願人】(506391679)AE機器エンジニアリング株式会社 (4)
【Fターム(参考)】