説明

ロータリー式外燃機関

【課題】 効率の高い熱再生式外燃式機関として従来から開発されるスターリング機関は作動流体が往復動で高速化が困難である。これを回転式(ロータリー式)機構にして循環動にすると解決が期待できるが、類似のエリクソンサイクルでは等温(低温度)圧縮及び等温膨張(高温度)両行程間の連結が等圧のため、機構がより簡単化でき高速回転が実現できる。このためにまったく新規な機構及びシステムの構築が求められる。
【解決手段】 熱再生式エリクソンサイクル方式の熱機関を、主に容積型ロータリー式等温圧縮機構、それを駆動する電動機、加熱用熱交換器(加熱器)、容積型ロータリー式等温膨張機構、それによる動力取り出し機構もしくは発電機、冷却用熱交換器(冷却器)、および制御機構等により構成し、この機構を用いて内封された作動流体を順次等温圧縮、等圧加熱、等温膨張及び等圧冷却して軸出力を得る。圧縮機の駆動には電動機を用い、膨張機の出力は発電機で取り出せるよう適宜電気的制御等を行う。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は理論的にも熱機関として最高効率が期待できる熱再生式エリクソンサイクル外燃機関を容積型回転式(ロータリー式)機関主体に構成し、高効率性に併せて燃料の多様性、静粛性、排気の清浄性、高速性、小型軽量性、簡易構造性等の多くの特性を簡略な構造で得られるように構成し、従来の内燃機関等既存の機関で得られなかった利便性、省エネルギー性や対環境調和性等を必要とするエネルギー機器応用分野全般に貢献できる新技術分野を開拓する。
【背景技術】
【0002】
熱再生式エリクソンサイクル外燃機関は同様の外燃機関の一種であるスターリングサイクルを中心に従来主流の内燃機関では得にくい前述のような優れた特性を期待され実用化が望まれてきた。しかしこれまでスターリング機関は往復動型が主に開発され、外部との熱の授受や内部の熱交換、高圧作動流体の使用など技術的に課題が多く高速化も制限されるため機構全体が複雑でかつ重くなる傾向にあった。このため耐久性や応答性にも改良の余地が多くかつコスト的にも高くつきやすく、競争力に欠けていた。
【発明の開示】
【発明が解決しようとする課題】
【0003】
従来のスターリング等熱再生式外燃機関概念の主流であった往復動型ピストン式は作動流体が往復動するため、主に再生熱交換器内の熱交換速度および作動流体の流体抵抗の制限から毎分1500回転程度の回転速度がほぼ限界であった。この結果、比出力増大のため機構部本体は内封する作動流体の高圧化や発電機の多極化により大型化、大重量化の傾向にあった。また、これを回避する案の一つとして従来の主流であった往復動型ピストン式でなく循環型ピストン式のスターリングサイクル機関の検討もなされているがまったく新規の構造の構築が必要である。本発明はこの点に鑑みさらに実用化が容易と思われる等温圧縮部と等温膨張部をそれぞれ容積型回転動式(ロータリー式)機構の組み合わせを用いて熱再生式エリクソンサイクル外燃機関を構成し、前述の課題を解決し実用化を促進しようとする。
【課題を解決するための手段】
【0004】
本発明は熱再生式エリクソンサイクル方式の熱機関(以下参考図2参照)を構成するため主に等温圧縮機構、加熱用熱交換器(加熱器)、等温膨張機構、冷却用熱交換器(冷却器)を用いて内封された作動流体の状態を、理想的には主に▲1▼低温低圧から低温で等温圧縮して低温高圧に(等温圧縮工程)、▲2▼さらに等圧加熱して高温高圧に(等圧加熱工程)、▲3▼さらに高温で等温膨張して高温低圧に(等温膨張行程)、▲4▼さらに等圧冷却して低温低圧にもどして(等圧冷却工程)一順する4工程で、その圧力および温度に順次変化をさせることにより出力を発生させる原理を基盤とするが、それぞれの機構および熱交換器の構成、構造および結合組み合わせにまったく新規の装置を提供しようとするものである。
【0005】
このため、前項での▲1▼工程の低温での等温圧縮は周囲を冷却できるようにしたロータリー式機構の圧縮機を、▲3▼工程の高温での等温膨張は周囲を加熱できるようにしたロータリー式機構の膨張機を用い、両者の間に加熱器、冷却器を設け上記熱基本サイクルを生成させる。▲1▼工程および▲3▼工程をともに等温度での圧縮、および膨張とするのは熱力学的にいずれも通常の断熱方式に比べて圧縮仕事は最小に、膨張出力は最大に出来るためである。ここに▲2▼工程の初期段階の加熱には同▲4▼工程の初期段階の冷却と相互に熱交換できるように再生熱交換器を設け、▲4▼工程での高温の熱が▲2▼工程の予備加熱に同時に有効に活用(熱再生)できるようにし、これと併せて大きく熱機関の効率を向上できる。この熱交換量には限界があるため、さらに▲2▼工程の加熱および▲4▼工程の冷却を行うため、それぞれの終期段階に別途高温熱源および低温熱源により加熱および冷却を行う加熱器および冷却器を設ける。
【0006】
また、▲1▼の圧縮工程には回転動力が必要で、▲3▼の膨張行程では回転により軸出力が発生する。両者の差が本熱機関の実効軸出力である。この値を最大にするため圧縮、膨張の両工程は熱交換なしで行われる断熱状態でなく、等温度下で行われることが最良で、それぞれ低温、高温が維持されるように各機構に冷却および加熱を適宜行えるよう名構造とする。また、圧縮および膨張両機構の回転は、それぞれの機構の単位時間当たりの吐出、吸入容積が熱サイクルで最適となるように調節されることが必要で、それぞれの軸は両者の容積があらかじめ設定される場合は一体として共通軸にし、そうでない場合それぞれの回転数で調整するため個別に設け両者の間に電気的もしくは機械的な制御機構を介在させる。
【発明の効果】
【0007】
本発明は前述のような手段を用いることにより従来の各種課題を解決できる。具体的には本案の根幹をなす圧縮機構の構造はマルチベーン式、スクロール式、ローリングピストン式等既に冷凍空調用圧縮機では通称「ロータリー式圧縮機」として普及している容積変化型の機構と共通性が高く、膨張機構の構造もこの圧縮機構の作用を逆転させる工夫により得られ、いずれの方式もその簡易性に基づく生産性の良さや低コスト化は容易であることが期待できる。特に本発明において技術基盤とするエリクソンサイクルでは圧縮機構そのものは冷凍空調用とほぼ同様で、これに周囲、特にシリンダー相当部の冷却機構が加えられるだけでよい。膨張機構は原則的に圧縮機構の吸入口および吐出口がそれぞれ逆に吐出口および吸入口となるようにし、圧縮機構の吐出口の吐出弁(バルブ)は除去し回転方向も逆にすることなどで高圧の作動流体が圧縮の逆工程を経ることで膨張作用が生じるように改修すれば比較的容易に得られる。前述の機構以外の熱交換器や制御機器等も従来の製造技術を基本に構成されシステム化も比較的容易に可能となる。
【0008】
以上により得られるロータリー式外燃機関は、圧縮および膨張機構の機能をそれぞれ同期調整させることにより所望の軸動力を自在に取り出すことが可能となり、たとえば圧縮機側の駆動は電動機(モーター)で駆動し、膨張機側の軸動力を発電機の駆動に用い両者の回転力を適宜制御装置で制御することにより正味軸出力が正味発電力として得られる。この結果、内燃機関では得にくい静粛性、高効率性や廃棄の清浄性の性能向上が可能となるのはもとより、加熱用の高温熱源に化石系燃料、バイオ系燃料、廃熱、あるいは太陽熱等自然系の熱を多様に用い得ることにより対環境性に優れた熱機関や発電機が実現できる。具体的な用途の例として、まず工事、撮影等の作業現場、露天の店、レジャー用等で静粛性を希求される発電用途が、次に比出力が大きく取れ燃料の補給で稼動が継続できかつ駆動の開始および停止時間の短さなどが求められるロボット、ゴルフカート等車両の駆動源に、そして通常の内燃機関、スターリングエンジン、ガスタービン等の熱機関あるいは高温型燃料電池などの高温駆動機関の廃熱や工場等の高温廃熱等を高温熱源として発電力や駆動力を得てシステム全体の総合効率を向上させるいわゆる熱のカスケード利用等が上げられる。車両の廃熱によるオルタネータ駆動等では燃費の改善が期待される。また、定置型用途でシステムの廃熱をさらに利用して給湯などに用いればコージェネ設備として活用できる。なお、内封する作動流体は水素、ヘリウム、窒素、二酸化炭素等比較的入手しやすく低価格なものでよい。また、場合によりフロン系冷媒等を用い後述するように、従来のランキンサイクル機関をさらに高効率化する手段としても用いることが出来る。
【0009】
本発明によるロータリー式を基本とする外燃方式の機関では、作動流体は圧縮機構と膨張機構の間を一方向に循環するため、従来の往復動式で作動流体の通過や熱交換のために用いられるメッシュ状の再生熱交換器を必要とせず代わりに膨張機構の吐出口から吐出される高温ガスと圧縮機構の吸入口から吸入される低温ガスとを互いに混合することなく温度差のある顕熱のみを再生熱交換器で熱交換する。この結果作動流体の流速は往復動式に比して相当高速化できる。したがって圧縮機構あるいは膨張機構ともに高速回転して循環流量を向上可能で、各機構の吐出あるいは吸入の単位回転当たりの容積を小さく、換言すれば小型軽量化できる。前述したように従来のスターリングエンジンでの回転数は一般に毎分1500回転程度が最高であったが、本方式では同3000回転以上は可能で、たとえば電動機および発電機ともに交流用同期式では従来の4極(50ヘルツ時)方式から2極(50ヘルツ時)方式へと大幅に小型軽量化でき通常の内燃式発電機と同等となり得る。また、作動流体も従来のスターリングエンジン等では流体抵抗が小さく熱伝達性能に優れる水素やヘリウム等が用いざるを得ず高価で漏れやすく取り扱いにくかったが、前述のように本方式では窒素や二酸化炭素等のありふれたガスでもよく、格段に普及しやすくなる。
【発明を実施するための最良の形態】
【0010】
本発明は既述のごとく、熱再生式エリクソンサイクル方式の熱機関を主にロータリー式等温圧縮機構、それを駆動する電動機、加熱用熱交換器(加熱器)、ロータリー式等温膨張機構、それによる動力取り出し機構もしくは発電機、冷却用熱交換器(冷却器)、および制御機構等により構成する。この機構を用いて内封された作動流体に圧縮、膨張あるいは相互の熱交換、外部からの加熱あるいは冷却を行ってその圧力、温度等の状態を、[0004]項で述べたように循環的に変化させ軸出力を発生させる。ここに、該圧縮機構、該膨張機構はそれぞれ別々でも共通軸を有する一軸方式でもよいが、前者では圧縮、膨張両機構間の一回転あたりの吐出、吸入容積の設定に応じて相互回転数が最適になるよう電動機、発電機を電気的に、もしくは歯車や無段変速機構等で機械的に制御する。後者では電動機と発電機は一体化して簡易化できかつフライホイール効果も得られる利点があるが、あらかじめ両機構の一回転あたりの吐出、吸入容積を最適に設定しておくことが必要で、場合により能力制御の必要性や負荷変動、あるは温度、圧力が外的要因で変動することが予測される際は別途制御弁や他の制御機構が必要となる。なお、前者では各駆動機構は別々の容器に格納してもひとつの容器にまとめて格納してもよいが、後者では出力軸を共通とするため同一の容器に格納すると便利である。この際、駆動機構以外の各種熱交換器はそれぞれ容器の外部に設け、冷却器の低温の熱は該圧縮機構を冷却して等温圧縮を、加熱器の高温の熱は該膨張機構を加熱して等温膨張を生成できるように、あらかじめそれぞれの機構、特にシリンダー部に伝熱可能なような構造を設定し、あわせてそれぞれを格納する容器内部も同様に冷却、加熱可能なように作動流体の流れを設定する。
【実施例】
【0011】
以下、本発明の実施例を図1の基本構造およびシステム図ならびに参考用の図2の熱再生式エリクソンサイクルの圧力(P)体積(V)線図に基づいて説明する。本システムは大きく分けて(1)圧縮機、(2)膨張機、(3)加熱器、(4)冷却器、(5)生成熱交換器からなる熱サイクル系と、(1)圧縮機を駆動する(6)電動機、(2)膨張機の出力を発電力として取り出す場合の(7)発電機および両者のエネルギーの授受と相互回転数や移送を制御するための(8)制御機等からなる出力制御系から形成される。熱サイクル系は同図の二重線のようにそれぞれ接続されその内部には作動流体(図示せず)が適宜密閉封入され、サイクルが稼働中は同図の二重線矢印の方向に流れる。本実施例は(1)圧縮機、(2)膨張機ともにマルチベーン型を用いた機構を基本とする。それぞれの機構は(1)圧縮機は主に(11)圧縮機シリンダー、(12)圧縮機ローター、(13)圧縮機ベーン(複数)、(14)圧縮機軸から、(2)膨張機は主に(21)膨張機シリンダー、(22)膨張機ローター、(13)膨張機ベーン(複数)、(14)膨張機軸から形成される。また、(14)圧縮機軸には(6)電動機が、(24)膨張機軸には(7)発電機が取り付けられ、相互に(8)制御機で一点鎖線のように結合される。また、(1)圧縮機は(10)圧縮機容器(破線表示)に収納され(15)圧縮機容器内空間を、また(2)膨張機も(20)膨張機容器(破線表示)に収納され(25)膨張機容器内空間を形成する。なお、各シリンダーは小矢印の方向に回転駆動する。
【0012】
今、(1)圧縮機の圧縮空間は主に(11)圧縮機シリンダー(両側面のフタも含める)と(12)圧縮機ローターおよび(13)圧縮機ベーン(複数)で構成され、(11)圧縮機シリンダーをこれに連結する(14)圧縮機軸を通して(6)電動機が小矢印の方向に回転駆動すると、この空間容積は一端最大に達した後縮小し内部の作動流体を圧縮する。この時初期の空間容積が増加する過程で(11)圧縮機シリンダーに接続する(16)圧縮機吸入口から作動流体が吸入されその後空間容積が縮小する過程で圧縮される。圧縮された作動流体は(11)圧縮機シリンダーに設けられた(17)圧縮機吐出口から吐出される。なおここに、(16)圧縮機吸入口および(17)圧縮機吐出口は上記空間の変化が最適に生じるようあらかじめ設定され、さらに(17)圧縮機吐出口には通常所定圧力に達した作動流体を吐出するようあらかじめ設定された吐出弁(図示せず)が設けられる。この結果圧縮機構からは連続的に高圧の作動流体が吐出される。一方、(2)膨張機でも同様に(21)膨張機シリンダー、(22)膨張機ローターおよび(23)膨張機ベーンで膨張空間が形成され、(21)膨張機シリンダーに設けられた(26)膨張機吸入口から流入した前記の高圧作動流体がこの空間内部で充分膨張し(21)膨張機シリンダーに設けられた(27)膨張機吐出口から低圧となって吐出されるよう設定される。この結果膨張機構からは連続的に低圧の作動流体が吐出される。なお、後者の膨張機構では前者の圧縮機構と異なり(27)膨張機吐出口に弁は不要で吸入と吐出の容積比でその膨張比が決定される。
【0013】
本サイクルでは(1)圧縮機を(10)圧縮機容器に収納し、両者の間に(15)圧縮機容器内空間を適宜設け、ここを(4)冷却器で冷却された作動流体で満たして(1)圧縮機の圧縮過程を低温の等温度状態に近付くようにする。この結果[0004]項で述べた▲1▼等温圧縮工程が生成される。同様、(2)膨張機も(20)膨張機容器に収納し(25)膨張機容器内空間に(5)加熱器で過熱された作動流体を満たすことにより膨張過程を高温の等温膨張状態に近付くようにし、同項の▲3▼等温膨張行程が生成される。なお、各シリンダーの周囲にそれぞれ冷却、加熱が出来るように水や熱媒などの通路を設け同様の効果を得ることも可能である。この際はそれぞれの作動流体はそれぞれの吸入口から直接的に吸入されることもあり得る。(1)圧縮機の(17)圧縮機吐出口から吐出された低温高圧の作動流体はまず(5)再生熱交換器に導かれ熱交換器内部の隔壁を介して流れる、より高温の作動流体に加熱されることにより高温高圧に変化する。ここに加熱に使われる作動流体は(2)膨張機から高温で吐出され(1)圧縮機に向かう途中にあり、その顕熱を当初低温であったこの作動流体が得て再びその吸入作動流体の高温化に活用されて熱再生される。この作動流体はこのあとさらに(3)加熱器で外部から供給される高温熱源により加熱されて(2)膨張機の(26)膨張機吸入口に流入する。この時(2)膨張機の吸入流量は(17)圧縮機吐出口から吐出される吐出流量と圧力がほぼ等しくなるようにあらかじめ設定される。この結果[0004]項での▲2▼等圧加熱工程が生成される。同様に(2)膨張機の(27)膨張機吐出口から吐出された高温低圧の作動流体は(5)再生熱交換器で前述のように対抗流の作動流体を加熱することにより自身は冷却され、したがって対抗流の有していた冷熱は熱再生され、この後さらに(4)冷却器で冷却されて低温低圧となりふたたび当初の状態に戻って(2)圧縮機に吸入される。この際も作動流体の流量は圧力がほぼ等しくなるように各駆動部分の吐出、吸入にかかわる緒言はあらかじめ設定される。この結果[0004]の▲4▼等圧冷却工程での冷却工程が生成され、本サイクルが完結する。▲2▼等圧加熱工程と▲4▼等圧冷却工程間の熱の授受が熱再生を実現しサイクル効率を大きく向上させ得る。
【0014】
本例で用いるマルチベーン型は車両の空調機用によく使われているものとほぼ同様な基本構造を有し、この図1の例では(1)圧縮機、(2)膨張機ともに各5枚のベーンが各1個のローターのミゾ(図示せず)に収納されその回転に伴って外方向に飛び出し各々の円形シリンダー内壁に接し周回するように形成されている。なお、各ローターはその軸と一体で適宜量各シリンダーと偏芯して設けられる。(1)圧縮機ではその目的から(16)圧縮機吸入口が回転工程初めの比較的長い間作動流体の吸入が行われ、(17)圧縮機吐出口は同工程最後の比較的短い間に終了するよう設定される。(2)膨張機では逆になる(詳細省略)。(10)圧縮機容器は(1)圧縮機以外に(6)電動機も収納することも可能である。(20)膨張機容器についても同様に(2)膨張機以外に(7)発電機も収納することが可能でこの際はその発熱が作動流体の加熱に寄与する。既述のように電動機が(1)圧縮機を駆動する軸動力は(2)膨張機から発生する軸動力、すなわち本例では(7)発電機の発電力から供給され、熱サイクルの生成に関わる互いの最適回転数は(8)制御機により電気的に制御される。なお、電気的な制御以外に(6)電動機と(7)発電機を電動機兼発電機として一体化し、軸は共通にして発電力を得たり、(1)圧縮機の始動用には発電機を用い(2)膨張機との各機構の軸回転数は歯車や無断変速機などにより機械的に調整し直接軸出力を得たりすることも可能である。なお、共通軸で結合する際は両機構ともに同一回転数となるため吐出、吸入に関わる作動流体の単位時間当たりの流量が最適となるようにあらかじめ各機構の容積を選定しておくことが必要である。負荷変動や温度、圧力が外部要因等により変動した場合は効率が最適状態から外れることもあり得る。
【0015】
本発明の主体である熱再生式外燃式の機関では、(3)加熱器は作動流体を外部から加熱して高温化する機構とし、高温熱源には天然ガス等化石燃料、バイオ系燃料、廃熱、あるいは太陽熱等多種類が可能である。また、(4)冷却器も外部から冷熱を供給、換言すれば外部に放熱できるものであればたとえば空冷、水冷を問わない。高温と低温の温度差が充分あれば圧縮仕事よりも膨張動力が多く得られしたがって熱機関の正味出力が得られる。なお、膨張機の吸入、吐出容積はそれぞれに対応する同圧力下での圧縮機の吐出、吸入容積より常に大きくなるのでこれを調整するために、単位容積の差を設けたり、もしくは単位時間当たりの回転数の差を用いたりして所定の熱サイクルを生成させる。このために本例で用いた容積型のロータリー式の機構圧縮と膨張の組み合わせに便利であり、代表的な例としてすでに説明したマルチベーン型では本例のような円形のシリンダー形状以外に楕円形状のシリンダーでも同様に応用可能である。これ以外にもロータリー方式はスクロール式、ローリングピストン式、スイングピストン式やバンケル式等多様であるが、いずれも基本的な熱サイクルには同様に応用可能である。また、前項で述べた圧縮、膨張両機構を同軸で共用する方式は共通の容器に収納することも可能でシステムのコンパクト化が図れ、取り扱いや製造に便利であるが、容器の内部では両機構周囲の温度、圧力ともに異なるため内部には軸部を貫通させた隔壁を設けることが必要となる。
【0016】
なお、今までの説明は便宜的に出力を電気的な発電力にして取り出しているが、当然軸出力として用いることも可能である。また、各機構は通常潤滑が必要でありこのために適宜潤滑剤等を用いて潤滑する。従来の往復動型スターリング機関等では既述のメッシュ等で構成される再生熱交換器を用いる際作動流体の往復動に伴うこの潤滑剤等による目詰まりなどが性能劣化に結びつきやすいため多くのの配慮が必要であったが、本発明の機構においては既述のごとく作動流体は一方向の循環動のため著しく容易となる。
【0017】
上述の機関の他への応用例として、[0008]項で触れたように本システムの基本である等温膨張行程を活用した高効率のランキン機関が上げられる。この場合作動流体はフロン系冷媒や炭化水素あるいは二酸化炭素など、[0004]項の▲3▼工程で等温膨張した作動流体が▲4▼工程で冷却され常温で液化しやすい物質を用いる。この後液化した作動流体は昇圧ポンプで高圧になり加熱器で加熱された後▲3▼工程の等温膨張にはいり出力を発生する。また、本熱サイクルはガスタービンで用いられるブレイトンサイクルの断熱圧縮、断熱膨張の両行程をいずれも等温度で行うようにするエリクソンサイクルを基本に、熱再生を加味して、理想的には熱力学的に最高効率となるカルノーサイクル相当の高効率を外燃式機関で得ることを目指しているが、実際の熱機関においては機械的な制約や熱伝達の遅れ等からずれてくるのが通常である。この点を勘案して実態に近づく多くの工夫が必要であるが、一例として▲1▼等温圧縮工程の吐出弁を場合により省略し代わりの制御機器を用いることも出来る。この場合結果的には▲2▼工程は等容積圧縮の略スターリングサイクルに近くなることもあるが、本発明の趣旨である等温度下での圧縮、膨張両機構の簡易な組み合わせと熱再生を用いることによる高効率ロータリー式外燃機関の構成に沿うものであれば包含される。
【産業上の利用可能性】
【0018】
以上説明したように、本発明によればまったく新しい概念の「熱再生式エリクソンサイクル外燃式機関」を比較的簡単な構造で実用性の高い高性能な「容積型ロータリー」式機構で構築可能となり[0008]項等冒頭で述べたごとく多くの技術分野への活用が可能となる。特に本発明のロータリー構造は小型軽量で量産性に富むため容積型の特性を活かした数キロワット級以下の小型発電機用途が有望と推測される。また、数百ワット級以下のいわゆるマイクロ発電機としても小型動力機器用のみならず通信情報機器や車両用の充電等補助機器としての用途も期待される。
【図面の簡単な説明】
【0019】
【図1】基本構造およびシステム図
【図2】熱再生式エリクソンサイクルのP−V線図(参考)
【符号の説明】
【0020】
(1)圧縮機
(2)膨張機
(3)加熱器
(4)冷却器
(5)再生熱交換器
(6)電動機
(7)発電機
(8)制御機
(10)圧縮機容器
(11)圧縮機シリンダー
(12)圧縮機ローター
(13)圧縮機ベーン
(14)圧縮機軸
(15)圧縮機容器内空間
(16)圧縮機吸入口
(17)圧縮機吐出口
(20)膨張機容器
(21)膨張機シリンダー
(22)膨張機ローター
(23)膨張機ベーン
(24)膨張機軸
(25)膨張機容器内空間
(26)膨張機吸入口
(27)膨張機吐出口

【特許請求の範囲】
【請求項1】
略等温圧縮となるようにシリンダー周辺を低温度に保持するようにしたロータリー式圧縮機構と同様略等温膨張となるようにシリンダー周辺を高温度に保持できるようにしたロータリー式膨張機構を機械的もしくは(及び)電気的に組み合わせ、併せてそれぞれの低温度吐出作動流体と高温度吐出作動流体の熱を相互に交換して熱再生する機構、該作動流体を冷却して低温度にし該圧縮機構に供する冷却器および同様に加熱して高温度にし該膨張機構に供する加熱器等を備え、該圧縮機構と該膨張機構間をつなぐ時の作動流体の圧力が高低それぞれに略一定となるようにそれぞれの時間当たりの実効排除容積を設定もしくは調整可能にしてなる容積型熱機関を構成すること。
【請求項2】
請求項1の機関とほぼ同様の構成よりなり該圧縮機構及び(もしくは)該膨張機構をそれぞれ容器に収納し該容器内部に空間を設けここにそれぞれ冷却もしくは加熱された作動流体を導入してこの空間をそれぞれ低温もしくは高温に保持するようにした構造を有する熱機関を構成すること。
【請求項3】
請求項1の機関とほぼ同様の構成よりなり該圧縮機構には回転駆動軸に電動機を結合して駆動できるようにし、該膨張機構には回転出力軸に発電機を設けて相互を電気的に結合し制御可能として電気出力を得るように構成した熱機関を構成すること。
【請求項4】
請求項1の機関とほぼ同様の構成よりなり該圧縮機構には回転駆動軸に電動機兼発電機を結合しこれを介して該膨張機構の出力軸と結合して電気出力を得るように構成した熱機関を構成すること。
【請求項5】
請求項1の機関とほぼ同様の構成よりなり該圧縮機構には回転駆動軸に始動用電動機を有し同軸に設けた歯車装置や無断変速装置及びその制御装置等を介して該膨張機構の出力軸と連結し軸出力を得るように構成した熱機関を構成すること。
【請求項6】
請求項2の機関とほぼ同様の構成において、該圧縮機構及び(もしくは)該膨張機構をそれぞれ収納する容器に電動機、発電機も併せて収納した構造を有する熱機関を構成すること。
【請求項7】
請求項1に供する該ロータリー式圧縮機構および(もしくは)該ロータリー式膨張機構に供されるそれぞれのシリンダー等固定され圧縮作用および(もしくは)膨張作用を作動流体に生じさせる非可動な機構部品内部に流体用の流路を設け、これに請求項1に供するものと同等機能の冷却器および(もしくは)加熱器で冷却および(もしくは)加熱された作動流体を流してそれぞれを高温度および(もしくは)低温度の略等温度状態に保持する構造を有すること。
【請求項8】
基本的な構成は請求項1に順ずるが、作動流体にフロン、炭化水素、アンモニア、二酸化炭素等高圧で冷却器で冷却されると液化する物質を用い、その圧縮工程を昇圧ポンプに替えこの液化作動流体の昇圧をするようにして略ランキンサイクルを構成するようにした熱再生式ロータリー式等温膨張型機関を構成し、その略等温膨張機構は請求項2あるいは請求項7で示すものを、冷却器、加熱器および熱再生器等は請求項1に示すのと同等機能のものを、かつ膨張機からの軸出力の取り出しおよび昇圧ポンプの駆動については請求項3乃至請求項目5に示すものをそれぞれ援用すること。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2009−270559(P2009−270559A)
【公開日】平成21年11月19日(2009.11.19)
【国際特許分類】
【出願番号】特願2008−146265(P2008−146265)
【出願日】平成20年5月7日(2008.5.7)
【出願人】(507014151)株式会社テラテック (14)
【Fターム(参考)】