説明

光伝送システム、光伝送装置、および光伝送方法

【課題】低遅延伝送・省電力動作を可能とする光伝送システム、光伝送装置、および光伝送方法を提供する。
【解決手段】本発明の光伝送システムは、第1の光伝送装置(10)及び第2の光伝送装置(30)の間に位置する光伝送装置(20)が、第1の光伝送装置(10)から伝送されてくる光信号のフレーム長情報FL1を取得するとともに、第2の光伝送装置(30)からの光信号を受信する光受信器からフレーム長情報FL2を取得し、当該2つのフレーム長情報FL1,FL2を基に、第1の光伝送装置(10)からの光信号を低遅延伝送する場合、あるいは当該光伝送装置(20)をできるだけ省電力で動作させる場合には、フレーム長情報FL2のフレーム長以下となる範囲で、フレーム長情報FL1のフレーム長をできるだけ長くする指示情報を第1の光伝送装置(10)に送信する手段を有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光信号のまま伝送する機能と、光信号を電気信号に変換した後に再度光信号に変換して伝送する機能を有する光伝送装置に関し、特に、低遅延伝送・省電力動作を可能とする光伝送システム、光伝送装置、および光伝送方法に関する。
【背景技術】
【0002】
近年、インターネットにおけるトラフィック量の増大に伴い、中継網の伝送装置にて生じるルーティングなどの電気処理による伝送遅延の回避、本処理部の規模縮小化等に向け、OEO(Optical-Electrical-Optical)変換を行わないフォトニックネットワークの研究が活発に行われている(例えば、非特許文献1参照)。しかし、光パケットスイッチングなどのフォトニックネットワークでは、光バッファの実現が難しいことから、将来のネットワークにおいては、全てがフォトニックネットワークに置き換わっていくのではなく、電気処理をベースとした既存ネットワークと、これらフォトニックネットワークが共存するネットワークアーキテクチャになるものと考えられる。
【0003】
以上のような背景をもとに、光処理と電気処理両方の機能を合わせもつネットワークの提案がなされている(例えば、非特許文献2参照)。この技術を基にしたシステム構成例を図5に示す。図5の光伝送システムは、光伝送装置901、光伝送装置903および光伝送装置901,903の間に接続される光伝送装置902からなり、光伝送装置902は、光伝送装置901からの光信号を分岐する光スプリッタ9020と、分岐した光信号を受信する光受信器9021と、光受信器9021からの電気信号を蓄える電気バッファ9022と、電気バッファ9022とは異なる追加電気バッファ9023と、電気バッファ9022の電気信号と追加電気バッファ9023の電気信号を読み出す判定制御回路9024と、光スプリッタ9020で分岐した光信号を透過する光遅延線9025と、光遅延線9025からの光信号を光増幅する光増幅器9026と、光増幅器9026からの光信号を光再生あるいは光飽和する半導体光増幅器9027と、半導体光増幅器9027からの飽和信号をもとに電気バッファ9022と追加電気バッファ9023からの電気信号を変調する光変調器9028で構成される。
【0004】
ここで光受信器9021は、光伝送装置901からの光信号を受信した後、受信した信号のヘッダ情報を判定制御回路9024に送信し、判定制御回路9024では、受信したヘッダ情報をもとに、光伝送装置901からの光信号を光増幅器9026および半導体光増幅器9027で光再生するかしないかの判定を行う。光遅延線9025は、光受信器9021による信号受信処理と判定制御回路9024における信号判定処理に要する時間相当の光遅延線であり、判定制御回路9024は、光受信器9021からの光信号をもとに、クロック信号を生成する機能を有し、クロック信号、設計された光遅延線9025の距離、光受信器9021による信号受信処理、及び、判定制御回路9024における信号判定処理に要する時間を考慮し、光遅延線9025を透過した光信号が光増幅器9026及び半導体光増幅器9027を通過するタイミングと、光増幅器9026及び半導体光増幅器9027の制御タイミングを一致させる。
【0005】
光伝送装置902において非特許文献2における制御を行うと、光伝送装置901からの光信号に対して、追加電気バッファ9023に電気信号がない場合には光増幅器9026及び半導体光増幅器9027で光再生を行い、追加電気バッファ9023に電気信号がある場合には光増幅器9026と半導体光増幅器9027にて光飽和させた後、半導体光増幅器からのCW光を基に、電気バッファ9022と追加電気バッファ9023からの電気信号を光変調器9028にて変調する。すなわち電気バッファ9022の電気信号が、追加電気バッファ9023の電気信号と時間的に衝突しないときには、光遅延線9025→光増幅器9026→半導体光増幅器9027の光処理ルートにて伝送し、衝突するときには光受信器9021→電気バッファ9022→光変調器9028の電気処理ルートにて伝送する。この制御は、信号が到着順に読み出されるFIFO(first-in first-out)方式である(例えば、非特許文献3参照)。ここで、光増幅器9026及び半導体光増幅器9027における光飽和によるデータ削除動作は、半導体光増幅器9027の特性を利用することにより実現可能である(例えば、非特許文献4参照)。
【0006】
このように構成し制御することにより、追加電気バッファ9023に電気信号がない場合には、光伝送装置901からの光信号は電気バッファ9022に蓄えられることなく光遅延線9025→光増幅器9026→半導体光増幅器9027の光処理ルートを通って伝送されるので、低遅延に伝送することが可能となる。また、追加電気バッファ9023に電気信号があった場合でも、判定制御回路9024で、追加電気バッファ9023の電気信号に比べ電気バッファ9022の電気信号を優先的に読み出すことにより、電気バッファ9022に滞留する時間が減少するので、低遅延に伝送することが可能であると考えられる。
【先行技術文献】
【非特許文献】
【0007】
【非特許文献1】S.J.Ben Yoo, “Optical Packet and Burst Switching Technologies for the Future Photonic Internet,” Journal Lightwave Technology, Vol.24, No.12, pp.4468-4492, December 2006.
【非特許文献2】島田達也他,“SOA多段接続型アクセスネットワークの検討,”2009年信ソ大 B-10-29.
【非特許文献3】高橋敬隆,山本尚生,吉野秀明,戸田彰,“わかりやすい待ち行列システム”,電子情報通信学会,2003年.
【非特許文献4】Satoshi Narikawa,”Gbit-Class Transmission Using SOA Data Rewriter for WDM-PON,” IEICE TRANS COMMUN., Vol.E91-B, No.2, pp.399-408, February 2008.
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、上述のような非特許文献2の構成・制御においては、問題点が2つある。1つは、伝送遅延に関連するものである。光伝送装置901からの光信号の伝送遅延を優先するために、光伝送装置901からの光信号を光受信器9021で受信した時には、追加電気バッファ9023の電気信号があるときでもその電気信号読み出しを停止し、常に光伝送装置901からの光信号を光遅延線9025→光増幅器9026→半導体光増幅器9027の光処理ルートを通って伝送されるよう制御すると、追加電気バッファ9023の電気信号は、光伝送装置901から光信号が伝送されている限り、追加電気バッファ9023で待ち続ける必要があるため、追加電気バッファ9023のバッファサイズを大きくする必要が生じる。また、追加電気バッファ9023の電気信号読み出し中にその処理を停止し、光伝送装置901からの光信号が光増幅器9026と半導体光増幅器9027を通るようにするために、これら停止処理を行うための時間分、光遅延線9025を長く設計する必要が生じる。その結果、光遅延線9025→光増幅器9026→半導体光増幅器9027の光処理ルートを通って伝送しても、遅延特性が劣化してしまうことになる。
【0009】
もう1つの問題は、消費電力に関連するものである。図6に半導体光増幅器の光入力−光出力特性の例を示す。図6に示すとおり、光伝送装置902においては、光再生動作を行う場合には光入力Aで制御し、光飽和動作を行う場合には光飽和特性となる光入力Bで制御を行う必要がある。ここで光入力Bは光入力Aより大きいため、光再生動作に比べ光飽和動作を行うときの方が、半導体光増幅器9027に入力する光パワーを大きくする必要が生じる。すなわち、光飽和動作を行うときの方が、光増幅器9026から強い光パワーを出力する必要があるため、光増幅器9026の制御に必要となる消費電力が大きくなる。
【0010】
ここで問題となるのは,図5の光伝送システムには、前述した光飽和動作にともなう光増幅器9026の消費電力拡大に対する対策機能が不十分な点である。光飽和動作が必要となるのは、追加電気バッファ9023の電気信号を読み出すときと、光伝送装置901の光信号を電気バッファ9022から読み出すときである。図5の光伝送システムにおいて光増幅器9026の消費電力を削減するためには、追加電気バッファ9023の電気信号を読み出すときには必ず光飽和動作が必要となるので、対策する余地があるのは、光伝送装置901の光信号を電気バッファ9022から読み出すときである。
【0011】
対策として、光伝送装置901からの光信号を光伝送装置902にて伝送するために光飽和動作しなければならない動作回数を減らす方法が挙げられる。動作回数が最大限少なくなるのは、上述した追加電気バッファ9023の電気信号があるときでもその信号読み出しを停止し、常に光伝送装置901からの光信号を光遅延線9025→光増幅器9026→半導体光増幅器9027の光処理ルートを通って伝送されるよう制御するという制御方法である。しかし、この制御方法では、光増幅器における消費電力抑制にはつながるが、前述のとおり、追加電気バッファ9023のバッファサイズ拡大、光遅延線の延長という課題が生じてしまう。
【0012】
本発明は、以上のような背景で行われたものであり、前述する対策によって生じる追加電気バッファ9023のバッファサイズ拡大、光遅延線9025の延長という問題を削減し、低遅延伝送・省電力動作を可能とする光伝送システム、光伝送装置、および光伝送方法を提供することを目的とする。
【課題を解決するための手段】
【0013】
本発明の観点は、前記目的を達成するために、光伝送装置901からの光信号のフレーム長を調整する機能を光伝送装置902にもたせたことである。
【0014】
即ち、本発明の光伝送システムは、3台の光伝送装置が一列に接続される光伝送システムであって、
第1の光伝送装置及び第2の光伝送装置の間に位置する光伝送装置が、
前記第1の光伝送装置からの光信号を分波する第1の波長スプリッタと、前記第1の波長スプリッタからの光信号を伝送する光再生変調部と、該光再生変調部からの光信号を合波する第2の波長スプリッタと、前記第2の光伝送装置からの光信号と前記光再生変調部からの光信号を合波する前記第2の波長スプリッタを介した後に受信する光受信器と、該光受信器からの信号を前記第1の光伝送装置に送信する光送信器と、前記光送信器からフレーム長情報を送信するためのフレーム長調整器とを備える、光伝送システムにおいて、
前記光再生変調部は、前記第1の光伝送装置からの光信号を分波する前記第1の波長スプリッタからの光信号を分岐する光スプリッタと、該光スプリッタからの一方の光信号を受信する光受信器と、該光受信器からの電気信号を蓄える電気バッファと、前記電気バッファとは異なるもう一つの追加電気バッファと、前記光受信器から光信号のヘッダ情報を読み取り、かつ電気バッファと追加電気バッファからの電気信号を読み出す機能を有する判定制御回路と、前記分岐した光信号のうちもう一方の光信号を透過する光遅延線と、光遅延線からの光信号を光増幅する光増幅器と、光増幅器からの光信号を光再生あるいは光飽和する半導体光増幅器と、該半導体光増幅器からの飽和信号を基に前記電気バッファ及び前記追加電気バッファからの電気信号を変調する光変調器とを備え、
前記光再生変調部の判定制御回路は、前記ヘッダ情報を基に前記第1の光伝送装置から伝送されてくる光信号のフレーム長情報FL1を取得し、前記フレーム長情報を前記フレーム長調整器へ送出する手段を有し、
前記フレーム長調整器は、前記第2の光伝送装置からの光信号を受信する光受信器からフレーム長情報FL2を取得し、当該2つのフレーム長情報FL1,FL2を基に、前記第1の光伝送装置からの光信号を低遅延伝送する場合、あるいは当該光伝送装置をできるだけ省電力で動作させる場合には、前記フレーム長情報FL2のフレーム長以下となる範囲で、前記フレーム長情報FL1のフレーム長をできるだけ長くする指示情報を、前記光送信器経由で前記第1の光伝送装置に送信する手段を有することを特徴とする。
【0015】
また、本発明の光伝送装置は、3台の光伝送装置が一列に接続される光伝送システムにて、第1の光伝送装置及び第2の光伝送装置の間に位置する光伝送装置であって、
前記第1の光伝送装置からの光信号を分波する第1の波長スプリッタと、前記第1の波長スプリッタからの光信号を伝送する光再生変調部と、該光再生変調部からの光信号を合波する第2の波長スプリッタと、前記第2の光伝送装置からの光信号と前記光再生変調部からの光信号を合波する前記第2の波長スプリッタを介した後に受信する光受信器と、該光受信器からの信号を前記第1の光伝送装置に送信する光送信器と、前記光送信器からフレーム長情報を送信するためのフレーム長調整器とを備える、光伝送装置において、
前記光再生変調部は、前記第1の光伝送装置からの光信号を分波する前記第1の波長スプリッタからの光信号を分岐する光スプリッタと、該光スプリッタからの一方の光信号を受信する光受信器と、該光受信器からの電気信号を蓄える電気バッファと、前記電気バッファとは異なるもう一つの追加電気バッファと、前記光受信器から光信号のヘッダ情報を読み取り、かつ電気バッファと追加電気バッファからの電気信号を読み出す機能を有する判定制御回路と、前記分岐した光信号のうちもう一方の光信号を透過する光遅延線と、光遅延線からの光信号を光増幅する光増幅器と、光増幅器からの光信号を光再生あるいは光飽和する半導体光増幅器と、該半導体光増幅器からの飽和信号を基に前記電気バッファ及び前記追加電気バッファからの電気信号を変調する光変調器とを備え、
前記光再生変調部の判定制御回路は、前記ヘッダ情報を基に前記第1の光伝送装置から伝送されてくる光信号のフレーム長情報FL1を取得し、前記フレーム長情報を前記フレーム長調整器へ送出する手段を有し、
前記フレーム長調整器は、前記第2の光伝送装置からの光信号を受信する光受信器からフレーム長情報FL2を取得し、当該2つのフレーム長情報FL1,FL2を基に、前記第1の光伝送装置からの光信号を低遅延伝送する場合、あるいは当該光伝送装置をできるだけ省電力で動作させる場合には、前記フレーム長情報FL2のフレーム長以下となる範囲で、前記フレーム長情報FL1のフレーム長をできるだけ長くする指示情報を、前記光送信器経由で前記第1の光伝送装置に送信する手段を有することを特徴とする。
【0016】
また、本発明の光伝送方法は、3台の光伝送装置が一列に接続される光伝送システムにて、第1の光伝送装置及び第2の光伝送装置の間に位置する光伝送装置による光伝送方法であって、
前記光伝送装置は、
前記第1の光伝送装置からの光信号を分波する第1の波長スプリッタと、前記第1の波長スプリッタからの光信号を伝送する光再生変調部と、該光再生変調部からの光信号を合波する第2の波長スプリッタと、前記第2の光伝送装置からの光信号と前記光再生変調部からの光信号を合波する前記第2の波長スプリッタを介した後に受信する光受信器と、該光受信器からの信号を前記第1の光伝送装置に送信する光送信器と、前記光送信器からフレーム長情報を送信するためのフレーム長調整器とを備えており、
前記光再生変調部は、前記第1の光伝送装置からの光信号を分波する前記第1の波長スプリッタからの光信号を分岐する光スプリッタと、該光スプリッタからの一方の光信号を受信する光受信器と、該光受信器からの電気信号を蓄える電気バッファと、前記電気バッファとは異なるもう一つの追加電気バッファと、前記光受信器から光信号のヘッダ情報を読み取り、かつ電気バッファと追加電気バッファからの電気信号を読み出す機能を有する判定制御回路と、前記分岐した光信号のうちもう一方の光信号を透過する光遅延線と、光遅延線からの光信号を光増幅する光増幅器と、光増幅器からの光信号を光再生あるいは光飽和する半導体光増幅器と、該半導体光増幅器からの飽和信号を基に前記電気バッファ及び前記追加電気バッファからの電気信号を変調する光変調器とを備えており、
前記光伝送装置の処理手順は、
前記光再生変調部の判定制御回路によって、前記ヘッダ情報を基に前記第1の光伝送装置から伝送されてくる光信号のフレーム長情報FL1を取得し、前記フレーム長情報を前記フレーム長調整器へ送出するステップと、
前記フレーム長調整器によって、前記第2の光伝送装置からの光信号を受信する光受信器からフレーム長情報FL2を取得し、当該2つのフレーム長情報FL1,FL2を基に、前記第1の光伝送装置からの光信号を低遅延伝送する場合、あるいは当該光伝送装置をできるだけ省電力で動作させる場合には、前記フレーム長情報FL2のフレーム長以下となる範囲で、前記フレーム長情報FL1のフレーム長をできるだけ長くする指示情報を、前記光送信器経由で前記第1の光伝送装置に送信するステップと、
を含むことを特徴とする。
【0017】
低遅延伝送したい場合には、前述したとおり、光飽和動作しなければならない動作回数をできるだけ減らす必要がある。本発明の光伝送システムによれば、フレーム長をできるだけ長くすることにより、光飽和動作しなければならない動作回数の削減を実現することができる。例えば、第1の光伝送装置からの光信号の伝送帯域を一定とすると、その光信号のフレーム長が長いほど、フレーム数が少なくなる。そのため、フレーム数が少ないほど光飽和動作しなければならない動作回数の減少が期待できる。ここで、フレーム長情報FL1のフレーム長を、フレーム長情報FL2のフレーム長以下となる範囲に制限しているのは、フレーム長情報FL2のフレーム長よりも長いフレーム長にすると、第2の光伝送装置にて受信できなくなってしまう恐れがあるからである。このフレーム長と光飽和動作しなければならない動作回数の定量的な考察については、後述する実施例の説明から明らかになる。
【0018】
省電力化したい場合には、光飽和動作しなければならない動作回数だけでなく、光飽和動作となるトータル時間が重要となる。第1の光伝送装置からの光信号を、本発明に係る光伝送装置にて伝送するために光飽和動作しなければならない時間は、光飽和動作しなければばらないフレーム数(電気信号の数)と、これらフレームが電気バッファから読み出される時間を乗算することにより算出される。電気バッファから読み出される時間は、該当のフレームのフレーム長に依存するものである。すなわち、フレーム長が長いほど電気バッファから読み出される時間が長くなり、フレーム長が短いほど読み出される時間が短くなる。そのため、フレーム長を長くすると光飽和動作しなければならない時間が増大してしまうが、それ以上に光飽和動作しなければばらないフレーム数が減少すれば、合計の光飽和動作時間の削減が期待できる。このフレーム長と光飽和動作しなければならない動作時間の定量的な考察は、後述する実施例の説明から明らかになる。
【発明の効果】
【0019】
本発明によれば、光処理と電気処理両方を合わせもつ光伝送システムにおいて、低遅延伝送と光増幅器の省電力機能を提供することができるようになる。
【図面の簡単な説明】
【0020】
【図1】本発明による一実施例の光伝送システムを示す図である。
【図2】本発明による一実施例の光伝送システムの光伝送装置におけるフレーム長調整方式のフローチャートを示す図である。
【図3】本発明による一実施例の光伝送システムにおける、フレーム長と光飽和動作をしなければならない動作回数の関係例を示す図である。
【図4】本発明による一実施例の光伝送システムにおける、フレーム長と光飽和動作をしなければならない動作時間の関係例を示す図である。
【図5】従来の光伝送システムを示す図である。
【図6】半導体光増幅器の光入力-光出力特性の例を示す図である。
【発明を実施するための形態】
【0021】
本発明の実施例を図1乃至図4を参照して説明する。図1は、本発明による一実施例の光伝送システムを示す図である。図2は、本発明による一実施例の光伝送システムの光伝送装置におけるフレーム長調整方式のフローチャートを示す図である。図3は、本発明による一実施例の光伝送システムにおける、フレーム長と光飽和動作をしなければならない動作回数の関係例を示す図である。図4は、本発明による一実施例の光伝送システムにおける、フレーム長と光飽和動作をしなければならない動作時間の関係例を示す図である。
【0022】
本発明に係る実施例の光伝送システムは、図1に示すように、3台の光伝送装置10,20,30が一列に接続され、任意(例えば既存)の第1の光伝送装置10及び第2の光伝送装置30の間に、本発明に係る光伝送装置20を設けることで実現するものである。
【0023】
光伝送装置20は、第1の光伝送装置10からの光信号を分波する第1の波長スプリッタ2001と、第1の波長スプリッタ2001からの光信号を伝送する光再生変調部210と、光再生変調部210からの光信号を合波する第2の波長スプリッタ2002と、第2の光伝送装置30からの光信号と光再生変調部210からの光信号を合波する波長スプリッタ2002を介した後に受信する光受信器201と、光受信器201からの信号を第1の光伝送装置10に送信する光送信器202と、光送信器からフレーム長情報を送信するためのフレーム長調整器200とを備える。
【0024】
光再生変調部210は、第1の光伝送装置10からの光信号を分波する第1の波長スプリッタ2001からの光信号を分岐する光スプリッタ2100と、光スプリッタ2100からの一方の光信号を受信する光受信器2101と、光受信器2101からの電気信号を蓄える電気バッファ2102と、電気バッファ2102とは異なるもう一つの追加電気バッファ2103と、光受信器2101から光信号のヘッダ情報を読み取り、かつ電気バッファと追加電気バッファからの電気信号を読み出す機能を有する判定制御回路2104と、前記分岐した光信号のうちもう一方の光信号を透過する光遅延線2105と、光遅延線2105からの光信号を光増幅する光増幅器2106と、光増幅器2106からの光信号を光再生あるいは光飽和する半導体光増幅器2107と、半導体光増幅器2107からの飽和信号をもとに電気バッファ2102及び追加電気バッファ2103からの電気信号を変調する光変調器2108とを備える。
【0025】
光再生変調部210の判定制御回路2104は、前記ヘッダ情報を基に第1の光伝送装置10から伝送されてくる光信号のフレーム長情報FL1を取得し、このフレーム長情報FL1をフレーム長調整器200へ送出する手段を有する。
【0026】
フレーム長調整器200は、第2の光伝送装置30からの光信号を受信する光受信器201からフレーム長情報FL2を取得し、当該2つのフレーム長情報FL1,FL2を基に、第1の光伝送装置10からの光信号を低遅延伝送する場合、あるいは本発明に係る光伝送装置20をできるだけ省電力で動作させる場合には、フレーム長情報FL2のフレーム長以下となる範囲で、フレーム長情報FL1のフレーム長をできるだけ長くする指示情報を、光送信器202経由で第1の光伝送装置10に送信する手段を有する。
【0027】
ここで、本発明の特徴とするところは、第1の光伝送装置10からの光信号のフレーム長を調整する機能をもたせたことにより、低遅延伝送、及び光増幅器2106の省電力機能を提供する点である。
【0028】
図2に、本発明の光伝送装置におけるフレーム長調整方式のフローチャートを示している。光伝送装置20の判定制御回路2104は、光受信器2101で受信する第1の光伝送装置10からの光信号を基に、伝送されてくる信号のフレーム長FL1を取得し、フレーム長調整器200にその情報を送信する(S101)。
【0029】
次に、フレーム長調整器200は、第2の光伝送装置30からの光信号を受信する光受信器201からフレーム長情報FL2を取得する(S102)。
【0030】
次に、フレーム長調整器200は、当該2つのフレーム長情報FL1,FL2を基に、第1の光伝送装置10からの光信号を低遅延で伝送する場合(S103でYesの場合)、さらにフレーム長情報FL1におけるフレーム長とフレーム長情報FL2におけるフレーム長の大小を比較し、FL1<FL2の場合(S104でYesの場合)には、第1の光伝送装置10に対し、フレーム長情報FL2のフレーム長以下となる範囲で、フレーム長情報FL1のフレーム長をできるだけ長くする指示情報を送信し(S105)、FL1<FL2でない場合(S104でNoの場合)には、フレーム長指示情報は送信しない(S106)。
【0031】
一方、第1の光伝送装置10からの光信号を低遅延で伝送する必要がない場合(S103でNoの場合)で、光伝送装置20を省電力で動作させる場合(S107でYesの場合)、さらにフレーム長情報FL1におけるフレーム長とフレーム長情報FL2におけるフレーム長の大小を比較し、FL1<FL2の場合(S108でYesの場合)には、第1の光伝送装置10に対し、フレーム長情報FL2のフレーム長以下となる範囲で、フレーム長情報FL1のフレーム長をできるだけ長くする指示情報を送信し(S109)、FL1<FL2でない場合(S108でNoの場合)には、フレーム長指示情報は送信しない(S110)。そして、光伝送装置20を省電力で動作させる必要がない場合(S107でNoの場合)、光伝送装置20から第1の光伝送装置10に対し、フレーム長指示情報は送信しない(S111)。
【0032】
尚、フレーム長情報の取得(S101,S102)は、順番を逆、あるいは同時に実施してもよく、判定処理(S103,S107)は、S107を先に実施した後、S107にてNoの判定後、S103を実施してもよく、本発明は、図2に記載されるフローだけに制限されるものではない。
【0033】
以上のように光伝送装置20においてフレーム長を調整することにより、低遅延伝送、及び光増幅器2106の省電力機能を提供することができる。
【0034】
図3には、本発明に係るフレーム長調整器200の調整方式を実施したときの、光飽和動作をしなければならない動作回数の割合例を示す。光飽和動作の割合は、第1の光伝送装置10から伝送される合計フレーム数で、光飽和動作しなければならないフレーム数を割算することにより求めたものである。第1の光伝送装置10から伝送されてくるフレーム、及び追加電気バッファ2103に伝送されてくるフレームは、ポアソン過程に従うものと仮定し、FIFO方式により読み出す。伝送速度は1Gbit/sとし、第1の光伝送装置10から伝送されてくるフレームの伝送帯域は512Mbit/s、そのフレーム長をパラメータとして算出している。一方の追加電気バッファ2103の伝送帯域は128Mbit/sとし、そのフレームのフレーム長は64〜1518byte可変でランダムに生成されるものとしている。なお、ここで述べる伝送帯域は、フレームのヘッダ情報とデータ情報の両方を合わせた帯域である。
【0035】
図3より、フレーム長を長くするほど、光飽和動作の割合が減少していることが理解できる。よって、本発明のフレーム長調整を行うことにより、低遅延伝送を実現できることが分かる。
【0036】
図4には、本発明に係るフレーム長調整器200の調整方式を実施したときの、光飽和動作をしなければならない動作時間例を示す。光飽和動作時間は、第1の光伝送装置10から伝送されてくるフレームのフレーム長が1518byteのときの合計フレーム数を1としたときの合計光飽和動作時間で、前述のように、光飽和動作しなければばらないフレーム数(電気信号の数)と、これらフレームが電気バッファ2102から読み出される時間を乗算することにより求めた。伝送速度、信号の読み出し方式、フレーム到着、フレームの伝送帯域、フレームのフレーム長に関する条件は、図3に示す例と同じである。
【0037】
図4より、フレーム長を長くするほど光飽和動作時間が減少していることが理解できる。よって、本発明のフレーム長調整を行うことにより,光増幅器の省電力機能を実現することができる。
【0038】
尚、上述の例において、光伝送装置20は、第1の光伝送装置10(又は第2の光伝送装置30)にフレーム長を変更することを指示することで、第1の光伝送装置10(又は第2の光伝送装置30)は、この指示情報に基づいてフレーム長を変更できる手段を備えているものとする。
【0039】
また、フレーム長情報FL1は、第1の光伝送装置10から伝送されてくる生のデータ信号から読み取ったフレーム長である一方で、フレーム長情報FL2は、第2の光伝送装置30から伝送されてくる制御信号から読み取ったフレーム長であり、生のデータ信号から読み取ったものではないことに留意する。
【0040】
本発明は、イーサネット(登録商標)に限定されるものではないが、例えば、イーサネットであれば、第1の光伝送装置10から第2の光伝送装置30に向けて、あるフレーム長の信号を送信し、この信号を第2の光伝送装置30で受信できない場合、最大で受信できるフレーム長情報を第2の光伝送装置30から第1の光伝送装置10に送信し、第2の光伝送装置30では、正常に受信できなかった第1の光伝送装置10からの光信号を破棄するように構成することができる。また、第1の光伝送装置10では、最大で受信できるフレーム長情報に基づき、再度、第2の光伝送装置30に対し再送信を行うように構成することができる。尚、第2の光伝送装置30からの最大で受信できるフレーム長の情報(制御信号)の送信は、上記のように、正常に受信できなかった時だけでなく、定期的に(例えば、10分毎に)第2の光伝送装置30から第1の光伝送装置10に向けて送信するように構成することができる。
【0041】
さらに、第2の光伝送装置30からの制御信号の情報を、本発明に係る光伝送装置20にて保持することで、フレーム長情報FL1,FL2の比較を実現しているが、FL1<FL2の場合も、第2の光伝送装置30からの生のデータ信号のフレーム長が、第1の光伝送装置10における最大受信可能なフレーム長以下であれば、第1の光伝送装置10では、第2の光伝送装置30からの信号を受信することができる。
【0042】
また、上記の例では、第1の光伝送装置10→第2の光伝送装置30の場合について説明したが、第2の光伝送装置30→第1の光伝送装置10へのデータ信号の送信の際も、同様に適用可能であることに留意する。この場合、FL1(第1の光伝送装置10の最大受信可能フレーム長)>FL2(第2の光伝送装置30からのフレーム長)を満たす範囲で、上記と同様にフレーム長を変更する。したがって、本発明に係る光伝送装置20の装置構成としては、例えば、図1の第1の波長スプリッタ2001と第2の波長スプリッタ2002との間に、フレーム長調整器200、光受信器201、光送信器202、及び光再生変調部210について反対向きの構成をさらに備えるようにすることも可能である。したがって、本発明は、前述した実施例に限定されるものではなく、その主旨を逸脱しない範囲において種々変更可能である。
【産業上の利用可能性】
【0043】
本発明によれば、低遅延伝送と光増幅器の省電力機能を提供する光処理と電気処理両方を合わせもつ光伝送システムを構築できるので、光伝送装置を用いる任意のシステムに有用である。
【符号の説明】
【0044】
10 光伝送装置(第1の光伝送装置)
20 光伝送装置(本発明に係る光伝送装置)
30 光伝送装置(第2の光伝送装置)
200 フレーム長調整器
201 光受信器
202 光送信器
210 光再生変調部
901,902,903 光伝送装置
2001,2002 波長スプリッタ
2100 光スプリッタ
2101 光受信器
2102 電気バッファ
2103 追加電気バッファ
2104 判定制御回路
2105 光遅延線
2106 光増幅器
2107 半導体光増幅器
2108 光変調器
9020 光スプリッタ
9021 光受信器
9022 電気バッファ
9023 追加電気バッファ
9024 判定制御回路
9025 光遅延線
9026 光増幅器
9027 半導体光増幅器
9028 光変調器

【特許請求の範囲】
【請求項1】
3台の光伝送装置が一列に接続される光伝送システムであって、
第1の光伝送装置及び第2の光伝送装置の間に位置する光伝送装置が、
前記第1の光伝送装置からの光信号を分波する第1の波長スプリッタと、前記第1の波長スプリッタからの光信号を伝送する光再生変調部と、該光再生変調部からの光信号を合波する第2の波長スプリッタと、前記第2の光伝送装置からの光信号と前記光再生変調部からの光信号を合波する前記第2の波長スプリッタを介した後に受信する光受信器と、該光受信器からの信号を前記第1の光伝送装置に送信する光送信器と、前記光送信器からフレーム長情報を送信するためのフレーム長調整器とを備える、光伝送システムにおいて、
前記光再生変調部は、前記第1の光伝送装置からの光信号を分波する前記第1の波長スプリッタからの光信号を分岐する光スプリッタと、該光スプリッタからの一方の光信号を受信する光受信器と、該光受信器からの電気信号を蓄える電気バッファと、前記電気バッファとは異なるもう一つの追加電気バッファと、前記光受信器から光信号のヘッダ情報を読み取り、かつ電気バッファと追加電気バッファからの電気信号を読み出す機能を有する判定制御回路と、前記分岐した光信号のうちもう一方の光信号を透過する光遅延線と、光遅延線からの光信号を光増幅する光増幅器と、光増幅器からの光信号を光再生あるいは光飽和する半導体光増幅器と、該半導体光増幅器からの飽和信号を基に前記電気バッファ及び前記追加電気バッファからの電気信号を変調する光変調器とを備え、
前記光再生変調部の判定制御回路は、前記ヘッダ情報を基に前記第1の光伝送装置から伝送されてくる光信号のフレーム長情報FL1を取得し、前記フレーム長情報を前記フレーム長調整器へ送出する手段を有し、
前記フレーム長調整器は、前記第2の光伝送装置からの光信号を受信する光受信器からフレーム長情報FL2を取得し、当該2つのフレーム長情報FL1,FL2を基に、前記第1の光伝送装置からの光信号を低遅延伝送する場合、あるいは当該光伝送装置をできるだけ省電力で動作させる場合には、前記フレーム長情報FL2のフレーム長以下となる範囲で、前記フレーム長情報FL1のフレーム長をできるだけ長くする指示情報を、前記光送信器経由で前記第1の光伝送装置に送信する手段を有することを特徴とする光伝送システム。
【請求項2】
前記フレーム長調整器は、
当該2つのフレーム長情報FL1,FL2を基に、前記第1の光伝送装置からの光信号を低遅延で伝送する場合、さらに前記フレーム長情報FL1におけるフレーム長と前記フレーム長情報FL2におけるフレーム長の大小を比較し、FL1<FL2の場合にのみ、前記第1の光伝送装置に対し、前記フレーム長情報FL2のフレーム長以下となる範囲で、前記フレーム長情報FL1のフレーム長をできるだけ長くする指示情報を、前記第1の光伝送装置に送信する手段を有することを特徴とする、請求項1に記載の光伝送システム。
【請求項3】
前記フレーム長調整器は、
当該2つのフレーム長情報FL1,FL2を基に、前記第1の光伝送装置からの光信号を低遅延で伝送する必要がない場合、当該光伝送装置を省電力で動作させる場合、さらに前記フレーム長情報FL1におけるフレーム長とフレーム長情報FL2におけるフレーム長の大小を比較し、FL1<FL2の場合にのみ、前記第1の光伝送装置に対し、前記フレーム長情報FL2のフレーム長以下となる範囲で、前記フレーム長情報FL1のフレーム長をできるだけ長くする指示情報を、前記第1の光伝送装置に送信する手段を有することを特徴とする、請求項1に記載の光伝送システム。
【請求項4】
3台の光伝送装置が一列に接続される光伝送システムにて、第1の光伝送装置及び第2の光伝送装置の間に位置する光伝送装置であって、
前記第1の光伝送装置からの光信号を分波する第1の波長スプリッタと、前記第1の波長スプリッタからの光信号を伝送する光再生変調部と、該光再生変調部からの光信号を合波する第2の波長スプリッタと、前記第2の光伝送装置からの光信号と前記光再生変調部からの光信号を合波する前記第2の波長スプリッタを介した後に受信する光受信器と、該光受信器からの信号を前記第1の光伝送装置に送信する光送信器と、前記光送信器からフレーム長情報を送信するためのフレーム長調整器とを備える、光伝送装置において、
前記光再生変調部は、前記第1の光伝送装置からの光信号を分波する前記第1の波長スプリッタからの光信号を分岐する光スプリッタと、該光スプリッタからの一方の光信号を受信する光受信器と、該光受信器からの電気信号を蓄える電気バッファと、前記電気バッファとは異なるもう一つの追加電気バッファと、前記光受信器から光信号のヘッダ情報を読み取り、かつ電気バッファと追加電気バッファからの電気信号を読み出す機能を有する判定制御回路と、前記分岐した光信号のうちもう一方の光信号を透過する光遅延線と、光遅延線からの光信号を光増幅する光増幅器と、光増幅器からの光信号を光再生あるいは光飽和する半導体光増幅器と、該半導体光増幅器からの飽和信号を基に前記電気バッファ及び前記追加電気バッファからの電気信号を変調する光変調器とを備え、
前記光再生変調部の判定制御回路は、前記ヘッダ情報を基に前記第1の光伝送装置から伝送されてくる光信号のフレーム長情報FL1を取得し、前記フレーム長情報を前記フレーム長調整器へ送出する手段を有し、
前記フレーム長調整器は、前記第2の光伝送装置からの光信号を受信する光受信器からフレーム長情報FL2を取得し、当該2つのフレーム長情報FL1,FL2を基に、前記第1の光伝送装置からの光信号を低遅延伝送する場合、あるいは当該光伝送装置をできるだけ省電力で動作させる場合には、前記フレーム長情報FL2のフレーム長以下となる範囲で、前記フレーム長情報FL1のフレーム長をできるだけ長くする指示情報を、前記光送信器経由で前記第1の光伝送装置に送信する手段を有することを特徴とする光伝送装置。
【請求項5】
3台の光伝送装置が一列に接続される光伝送システムにて、第1の光伝送装置及び第2の光伝送装置の間に位置する光伝送装置による光伝送方法であって、
前記光伝送装置は、
前記第1の光伝送装置からの光信号を分波する第1の波長スプリッタと、前記第1の波長スプリッタからの光信号を伝送する光再生変調部と、該光再生変調部からの光信号を合波する第2の波長スプリッタと、前記第2の光伝送装置からの光信号と前記光再生変調部からの光信号を合波する前記第2の波長スプリッタを介した後に受信する光受信器と、該光受信器からの信号を前記第1の光伝送装置に送信する光送信器と、前記光送信器からフレーム長情報を送信するためのフレーム長調整器とを備えており、
前記光再生変調部は、前記第1の光伝送装置からの光信号を分波する前記第1の波長スプリッタからの光信号を分岐する光スプリッタと、該光スプリッタからの一方の光信号を受信する光受信器と、該光受信器からの電気信号を蓄える電気バッファと、前記電気バッファとは異なるもう一つの追加電気バッファと、前記光受信器から光信号のヘッダ情報を読み取り、かつ電気バッファと追加電気バッファからの電気信号を読み出す機能を有する判定制御回路と、前記分岐した光信号のうちもう一方の光信号を透過する光遅延線と、光遅延線からの光信号を光増幅する光増幅器と、光増幅器からの光信号を光再生あるいは光飽和する半導体光増幅器と、該半導体光増幅器からの飽和信号を基に前記電気バッファ及び前記追加電気バッファからの電気信号を変調する光変調器とを備えており、
前記光伝送装置の処理手順は、
前記光再生変調部の判定制御回路によって、前記ヘッダ情報を基に前記第1の光伝送装置から伝送されてくる光信号のフレーム長情報FL1を取得し、前記フレーム長情報を前記フレーム長調整器へ送出するステップと、
前記フレーム長調整器によって、前記第2の光伝送装置からの光信号を受信する光受信器からフレーム長情報FL2を取得し、当該2つのフレーム長情報FL1,FL2を基に、前記第1の光伝送装置からの光信号を低遅延伝送する場合、あるいは当該光伝送装置をできるだけ省電力で動作させる場合には、前記フレーム長情報FL2のフレーム長以下となる範囲で、前記フレーム長情報FL1のフレーム長をできるだけ長くする指示情報を、前記光送信器経由で前記第1の光伝送装置に送信するステップと、
を含むことを特徴とする、光伝送装置による光伝送方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2011−228756(P2011−228756A)
【公開日】平成23年11月10日(2011.11.10)
【国際特許分類】
【出願番号】特願2010−93614(P2010−93614)
【出願日】平成22年4月15日(2010.4.15)
【出願人】(000004226)日本電信電話株式会社 (13,992)
【Fターム(参考)】