説明

光学的測定装置及び光学的測定方法

【課題】測定対象が微小粒子であっても良好な位置信号調整信号を得ることができ、測定対象の試料(微小粒子)の位置を精度良く検出し、試料から発せられる蛍光や散乱光などを効率よく測定ことが可能な光学的測定装置及び光学的測定方法を提供する。
【解決手段】試料2に励起光5を照射する光照射部3と、励起光5が照射された試料2から発せられた蛍光6及び散乱光7を検出する検出部4とを備える光学的測定装置1に、試料から発せられた散乱光7をS偏光7sとP偏光7pとに分光する偏光ビームスプリッター43、分光されたP偏光7pを測定する散乱光強度検出器46、及びS偏光7sを測定する試料位置検出器49を設ける。そして、散乱光強度検出器46では散乱光7の強度を検出し、試料位置検出器49ではS偏光7sの結像位置(受光位置)から、試料2の位置を検出する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、微小粒子などの試料を識別する光学的測定装置及び光学的測定方法に関する。より詳しくは、特定波長の光が照射されたときに試料から発せられる蛍光や散乱光を検出し、その種類などを識別する技術に関する。
【背景技術】
【0002】
一般に、細胞、微生物及びリポソームなどの生体関連微小粒子を識別する場合は、フローサイトメトリー(フローサイトメーター)を用いた光学的測定方法が利用されている(例えば、非特許文献1参照。)。フローサイトメトリーは、流路内を1列になって通流する微小粒子に特定波長のレーザ光を照射し、各微小粒子から発せられた蛍光又は散乱光を検出することで、複数の微小粒子を1個ずつ識別する方法である。
【0003】
具体的には、フローセル内において、測定対象の微小粒子を含むサンプル液と、その周囲を流れるシース(鞘)液とで層流を形成し、サンプル液中に含まれる複数の微小粒子を1列に並べる。その状態でフローセルにレーザ光を照射すると、微小粒子がレーザービームを横切るように1個ずつ通過する。このとき、レーザ光により励起されて各微小粒子から発せられた蛍光及び/又は散乱光を、PD(Photo diode;フォトダイオード)、CCD(Charge Coupled Device;電荷結合素子)又はPMT(Photo-Multiplier Tube;光電子増倍管)などの光検出器を用いて検出する。
【0004】
そして、光検出器で検出した光を電気的信号に変換して数値化して統計解析を行い、微小粒子の大きさ及び構造、構成するタンパク質などの情報から微小粒子の種類を判定する。また、従来、蛍光や散乱光に代えて、非線形ラマン散乱光を検出することにより、細胞などの生体関連微小粒子の内部構造を分析するフローサイトメーターも提案されている(特許文献1参照)。
【0005】
一方、前述したフローサイトメトリーにおいて、試料を定量的及び安定的に分析するためには、試料に照射される励起光の光量を常に一定にしておくことが望ましい。しかしながら、一般に、励起光のビームスポットは数十μmと小さく、また、ビームスポット内でも、3次元方向(光軸深さ方向及び光軸と直交する方向)において、パワー密度にばらつきが生じてしまう。
【0006】
このため、励起光のビームスポットの特定位置に、測定対象の試料を正確に投入する必要があり、従来、励起光の照射位置と試料の通流位置とを位置合わせする方法が提案されている(特許文献2〜4参照。)。例えば、特許文献2に記載のフローサイトメーターでは、先ず、テスト用サンプルを含むテストサンプル液を流し、散乱光又は蛍光の強度が最も高くなるように、サンプル液流の位置を調整した後、測定対象の試料を含むサンプル液を流して測定を行っている。
【0007】
また、特許文献3に記載の流動粒子分析装置では、前方散乱光、側方散乱光又は後方散乱光から、光分割器を介して取りだした検出光(散乱光)を、4分割フォトダイオードやエリアCCDなどによって検出している。そして、その検出位置から、励起光の中心とシースフローの中心との位置ずれを検出し、この位置ずれが所定の範囲内に入るように、フローセルの位置を調節している。
【0008】
更に、特許文献4に記載の平板状フローセル測定装置では、先ず、試料が流れていない状態で、流路の幅方向に移動させながら励起光を照射して散乱光の測定を行い、流路側壁からの散乱光を測定することにより、流路の位置を求める。そして、その位置情報に基づいて、流路の中心に励起光のビームスポットがくるように、ステージを移動させて平板状フローセルの位置合わせをしている。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開2009−258071号公報
【特許文献2】特開2006−170687号公報
【特許文献3】特開平9−166541号公報
【特許文献4】特開2004−69634号公報
【非特許文献】
【0010】
【非特許文献1】中内啓光監修,「細胞工学別冊 実験プロトコルシリーズ フローサイトメトリー自由自在」,第2版,株式会社秀潤社,2006年8月31日発行
【発明の概要】
【発明が解決しようとする課題】
【0011】
しかしながら、前述した従来の技術には、以下に示す問題点がある。フローサイトメトリーのように光を利用した分析方法において、測定対象の試料を定量的かつ安定的に分析しようとすると、ビームスポット内であってもビーム強度が許容できる範囲は、数μmと極めて小さくなる。このため、ビームスポットの特定位置に、測定対象の試料を正確に通流させる必要があるが、試料の通流位置を常に一定に保つことは難しい。
【0012】
特に、マイクロ流路が形成された分析チップを使用して測定を行う場合は、流路の形状のばらつきや送液速度の変化によって、サンプル液の通流位置が変動しやすい。一方、分析チップの形状のばらつきをなくすには、製造時の加工精度を上げることが考えられるが、その場合、コストアップや歩留まりの低下が問題となる。
【0013】
また、特許文献2に記載のフローサイトメーターのように、測定前に、テストサンプル液を流して位置合わせをする方法は、微小粒子から発散される散乱光の信号強度のみを検出する方法であり、必然的に散乱信号の最大値を示した位置が最適位置となる。従って、この方法では、調整用信号に極性は存在せず、アクチュエータを動かしながら最大値になっているかを判別する動作が必要となるため、瞬時に最適値に調整を行うことが困難であり、リアルタイムでサーボをかけることができないという問題点がある。
【0014】
また、検出信号の散乱強度は測定対象物の粒子径に依存し、測定する微小粒子によって検出最大値が異なるため、特許文献2に記載の方法では、均一な大きさの粒子を調整に使用しないと、精度良く調整を行うことができない。更に、このような信号強度のみを検出する調整方法においては、3軸調整などの多軸調整では、各軸の移動に伴う信号強度変化が独立しておらず、複雑な調整シーケンスが必要となる。
【0015】
一方、特許文献3に記載の装置のように、散乱光の検出位置に基づいてフローセルを位置決めする方法は、光軸に直交する方向については粒子検出位置を検知することができるが、光軸方向については検知することができないという問題点がある。即ち、この方法では、光軸と直交する方向にのみ極性をもった検出信号を得ることが可能であり、光軸方向では微小粒子から発散される散乱光の信号強度のみを検出しているため、調整用信号に極性は存在せず、アクチュエータを動かしながら、最大値になっているか否か判別する動作が必要となる。このため、瞬時に最適値に調整を行うことは困難であり、リアルタイムでサーボをかけることができない。
【0016】
また、微小粒子から生じる散乱光は、非常に微弱であり、その信号は測定対象である粒子の大きさに依存する。このため、測定対象の粒子が小さくなるほど、十分な信号強度を得ることが困難になり、十分な検出精度を得るための何らかの対策が必要となる。そして、前述したように、検出信号の散乱強度は測定対象物の粒子径に依存し、測定する粒子により検出最大値が異なるため、この特許文献3に記載の方法においても、均一な大きさの粒子を調整用に使用しないと、精度よく調整を行うことができないという問題点がある。
【0017】
また、特許文献4に記載の装置のように、流路側壁からの散乱光に基づいてフローセルの位置決めする方法は、流路の中心部を探し出すことは可能であるが、フローセルの状態やシース液及びサンプル液の流速変化などにより、測定対象の微小粒子が中心部を通過している保証はない。このため、高精度な分析を目的とした装置では、十分な精度を保証することが難しいという問題点がある。
【0018】
そこで、本発明は、測定対象が微小粒子であっても良好な位置信号調整信号を得ることができ、測定対象の試料(微小粒子)の位置を精度良く検出し、試料から発せられる蛍光や散乱光などを効率よく測定ことが可能な光学的測定装置及び光学的測定方法を提供することを主目的とする。
【課題を解決するための手段】
【0019】
本発明に係る光学的測定装置は、試料に光を照射する光照射部と、光が照射された試料から発せられた散乱光を検出する散乱光検出部とを有し、前記散乱光検出部は、少なくとも、試料から発せられた散乱光をS偏光成分とP偏光成分とに分光する偏光ビームスプリッターと、前記P偏光成分を受光して散乱光の強度を検出する第1検出器と、前記S偏光成分を受光してその受光位置の変化から試料位置を検出する第2検出器とを備えるものである。
本発明においては、散乱現象により生じたS偏光成分だけを取り出し、その変化から試料位置を検出しているため、試料が小さく、散乱光が微弱な場合でも、精度よくその位置を検出することが可能である。このように試料位置を高精度で検出できると、それに基づき試料位置を調整することができるため、試料から発せられる蛍光や散乱光などを効率よく測定することが可能となる。
この測定装置は、マイクロ流路を備えた分析チップを有していてもよく、その場合、光照射部はマイクロ流路内を通流する試料に光を照射する。
また、偏光ビームスプリッターと第2検出器との間に、シリンドリカルレンズを配設し、非点収差法により光軸方向における試料位置を検出することもできる。
更に、試料と偏光ビームスプリッターとの間に、試料に照射されずに透過した光を除去する遮光マスクを配置してもよい。
更にまた、光が照射された試料から発せられた蛍光を検出する蛍光検出部を設けることもでき、その場合、試料と蛍光検出部及び散乱光検出部との間に、蛍光と散乱光とを分離するミラーを配設することが望ましい。
更にまた、第2検出器での検出結果に基づいて試料位置を調整する試料位置調整部を設けてもよい。
【0020】
本発明に係る光学的測定方法は、測定対象の試料に光を照射する工程と、前記試料から発せられた散乱光をS偏光成分とP偏光成分とに分光する工程と、P偏光成分を測定して散乱光の強度を検出する工程と、S偏光成分を測定して非点収差法により試料位置を検出する工程と、を有する。
本発明においては、試料での散乱により生じたS偏光成分を取り出し、非点収差法により試料位置を検出しているため、検出精度が高い。このため、検出結果に基づき、試料位置を調整することで、高感度での測定を安定して行うことができる。
【発明の効果】
【0021】
本発明によれば、P偏光成分とS偏光成分とを分離し、S偏光成分の変化から試料位置を検出しているため、測定対象の試料の位置を精度良く検出することができると共に、微弱な散乱光を励起光及び迷光と分離することができるため、測定対象が微小な粒子であっても、良好な位置検出信号を得ることができるため、試料から発せられる蛍光や散乱光などを効率よく測定することが可能となる。
【図面の簡単な説明】
【0022】
【図1】本発明の第1の実施形態に係る光学的測定装置の構成を模式的に示す図である。
【図2】遮光マスク41の構成を模式的に示す図である。
【図3】本発明の第2の実施形態に係る光学的測定装置の構成を模式的に示す図である。
【図4】(a)はマイクロ流路22におけるサンプル液の通流位置を示す図であり、(b)はマイクロ流路22内を通流する液の速度分布を示す図である。
【図5】本発明の第3の実施形態に係る光学的測定装置の構成を模式的に示す図である。
【図6】(a)及び(b)はシリンドリカルレンズ50を用いた検出例を示す図である。
【発明を実施するための形態】
【0023】
以下、本発明を実施するための形態について、添付の図面を参照して詳細に説明する。なお、本発明は、以下に示す各実施形態に限定されるものではない。また、説明は、以下の順序で行う。

1.第1の実施の形態
(散乱光から試料位置を検出する光学的測定装置の例)
2.第2の実施の形態
(マイクロ流路を備える分析チップを使用した装置の例)
3.第3の実施の形態
(シリンドリカルレンズを配設した装置の例)

【0024】
<1.第1の実施の形態>
[光学的測定装置の全体構成]
図1は本発明の第1の実施形態に係る光学的測定装置の構成を模式的に示す図である。図1に示すように、本実施形態の光学的測定装置1には、例えば測定用セル20内の試料2に、励起光5を照射する光照射部3と、励起光5が照射された試料2から発せられた蛍光6及び散乱光7などを検出する検出部4が設けられている。
【0025】
[試料2について]
本実施形態の光学的測定装置1により測定される試料2は、励起光5を照射することにより、蛍光6及び散乱光7を発するものであればよく、例えば、細胞やマイクロビーズ等の微小粒子、ウィルス、バクテリア、酵母などが挙げられる。また、試料2は、1又は複数の蛍光色素で修飾されていてもよい。
【0026】
[光照射部3の構成]
光照射部3は、励起光5を発する光源30と、この励起光5を試料2に向けて集光する対物レンズ31などを備えている。ここで使用する光源30は、測定内容などに応じて適宜選択することができるが、例えばレーザダイオード、SHG(Second Harmonic Generation)レーザ、ガスレーザ及び高輝度LED(Light Emitting Diode:発光ダイオード)などを使用することができる。
【0027】
更に、この試料2の手前に配置される対物レンズ31は、開口数NAが低いことが望ましい。これにより、測定対象である微小粒子に対して励起ビームスポットが小さくなりすぎるのを避け、かつ焦点深度を広く確保することが可能となるため、励起光の位置決めマージンを広くすることができる。
【0028】
更にまた、光源30と対物レンズ31との間に、特定波長の光のみを透過し、それ以外の光は反射する特性をもつバンドパスフィルター(図示せず)を配設することもできる。これにより、不要な光成分を除去することができるため、特にLEDや白色光源を励起光として用いる場合には有効な手段である。なお、光照射部3は、特定波長の光(励起光5)を、試料2に照射可能な構成であればよく、光源、レンズ及び光学フィルターなどの各種光学部品の種類及び配置は適宜選択可能であり、前述した構成に限定されるものではない。
【0029】
[検出部4の構成]
検出部4には、少なくとも、試料2から発せられた蛍光6を検出する蛍光検出器(図示せず)、並びに試料2から発せられた散乱光7を検出する散乱光強度検出器46及び試料位置検出器49が設けられている。また、試料2と蛍光検出器との間には、試料2側から順に、試料2から発せられた蛍光6及び散乱光7を集光する対物レンズ40、励起光5を除去する遮光マスク41、蛍光6と散乱光7を分離するダイクロックミラー42が設けられている。
【0030】
一方、ダイクロックミラー42と散乱光強度検出器46との間には、ダイクロックミラー42側から順に、偏光ビームスプリッター(Polarizing Beam Splitter:PBS)43、集光レンズ44、ピンホール45が配設されている。また、偏光ビームスプリッター43と試料位置検出器49との間には、偏光ビームスプリッター43側から順に、集光レンズ47及びピンホール48が配設されている。
【0031】
(対物レンズ40)
検出器側の対物レンズ40は、開口数NAが高いことが望ましく、これにより、測定対象である微小粒子から生じる微弱な散乱光及び蛍光を高感度に計測することが可能となる。
【0032】
(遮光マスク41)
励起光5の照射により、試料2からは、励起光5と同波長の散乱光7と、励起光5とは波長が異なる蛍光6が発せられるが、検出部4側に入射する光には、試料2に照射されずに測定セル20を透過した励起光5も含まれる。しかしながら、試料2から発せられる蛍光6及び散乱光7は、励起光5に比べて非常に微弱な光であり、検出部4側に入射した光から励起光5を分離する必要がある。そこで、本実施形態の光学的測定装置1においては、検出部4に入射した光から励起光5を除去するため、対物レンズ40とダイクロックミラー42との間に、遮光マスク41を配設している。
【0033】
図2は遮光マスク41の構成を模式的に示す図である。図2に示すように、遮光マスク41は、中心部分に遮光領域41aが設けられ、その周囲に透過領域41bが設けられている。この遮光マスク41では、開口数NAが低い対物レンズ31を介して検出部4に入射する励起光5は、中心部分に設けられた遮光領域41aで遮光されるようになっている。一方、試料2から広い角度で出射される蛍光6や散乱光7は、遮光マスク41の透過領域41bを通過し、各検出器に入射する。
【0034】
ここで、遮光マスク41の遮光領域41aは、より大きい方が励起光5の遮光性に優れるが、その場合、信号強度が小さい蛍光6及び散乱光7の感度が低下してしまうという問題がある。このため、蛍光6及び散乱光7を高感度で検出するためには、遮光マスク41の遮光領域41aは、励起光のNAを遮光できる最低限の大きさであることが望ましい。
【0035】
なお、遮光領域41aが励起光のNAを大幅に超えると、蛍光6及び散乱光7の検出感度が低下することがある。また、遮光領域41aが励起光のNAと同等又は励起光のNA未満であると、透過領域41bを通過する光にビーム強度が強い励起光が混入してしまい、蛍光及び励起光の測定に支障をきたすことがある。また、光学部品の内部反射などによる迷光(励起光5)の混入も、測定に支障をきたすので、迷光及び散乱光以外の励起光成分は除去することが望ましい。
【0036】
(ダイクロックミラー42)
ダイクロックミラー42は、特定波長の光のみを反射し、それ以外の波長成分を透過するものであり、本実施形態の光学的測定装置1では、散乱光7(励起光5を含む)を反射し、蛍光6を透過するものを使用する。そして、このダイクロックミラー42によって、蛍光6と散乱光7(遮光マスク41で除去できなかった励起光5を含む)とが分離される。
【0037】
(蛍光検出器)
蛍光検出器は、試料2から発せられる蛍光6を検出可能なものであればよく、特に限定されるものではないが、例えばPD(Photo diode)、CCD(Charge Coupled Device)又はPMT(Photo-Multiplier Tube)などを使用することができる。
【0038】
(偏光ビームスプリッター43)
偏光ビームスプリッター43は、入射する非偏光を、振動方向が直交する2つの偏光に分離するものであり、本実施形態の光学的測定装置1では、散乱光7を、S偏光7sとP偏光7pとに分離する。具体的には、偏光ビームスプリッター43により、入射した散乱光7のうちP偏光7pを透過し、S偏光7sを反射する。これにより、P偏光7pのみが散乱光強度検出器46に入射し、S偏光7sのみが試料位置検出器49に入射することとなる。
【0039】
なお、本実施形態の光学的測定装置1で使用される偏光ビームスプリッター43は、例えば励起光5と同じの波長の光を分光可能なものあればよく、これにより、分光による損失を抑制することができる。
【0040】
(集光レンズ44,47)
集光レンズ44,47は、P偏光7p及びS偏光7sを、それぞれ散乱光強度検出器46及び試料位置検出器49に向けて集光するものであり、例えば凸レンズ、フレネルレンズ、球面ミラーなどを使用することができる。
【0041】
(ピンホール45,48)
ピンホール45,48は、それぞれ散乱光強度検出器46及び試料位置検出器49に入射するP偏光7p又はS偏光7sから、外乱成分を除去するものであり、例えば遮光プレート、ホログラム、光ファイバーなどを使用することができる。
【0042】
(散乱光強度検出器46)
散乱光強度検出器46は、試料2から発せられた前方散乱光の強度を検出するものであり、偏光ビームスプリッター43により分光されたP偏光7pを検出可能なものであればよい。このように、前方散乱光(P偏光7p)の強度を検出することにより、例えば試料2の大きさに関する情報を得ることができる。
【0043】
(試料位置検出器49)
散乱光位置検出器49は、試料2から発せられた前方散乱光7の偏光角の変化を検出するものであり、例えば4分割フォトダイオードやCCDなどを使用することができる。試料2において、励起光5に散乱現象が起きると、その前後、即ち、励起光5と散乱光7とで偏光角に変化が生じる。そして、本発明者は、この散乱現象による偏光角変化を利用することにより、遮光マスク41で除去できなかった励起光5及び光学部品の内部反射などにより生じる迷光を、偏光ビームスプリッター43を用いて、散乱光7と完全に分離し、散乱光の発光点位置、即ち、試料2の位置を高精度に検出可能となることを見出した。
【0044】
例えば、光源30から発せられる励起光5の偏光をP偏光のみとし、試料2において生じた散乱光7から偏光角が回転した成分(S偏光7s)のみを分離して、散乱光強度検出器49で検出することにより、測定セル20内における試料2の位置を知ることができる。これにより、測定された試料2の位置に応じて、励起光5の焦点位置を高精度に調整することができるようになるため、高感度で安定した測定を実現することができる。
【0045】
[光学的測定装置1の動作]
次に、本実施形態の光学的測定装置1の動作について説明する。本実施形態の光学的測定装置1を使用して試料2を光学的に測定する際は、先ず、光照射部3の光源30から励起光5を出射し、測定用セル20内の試料2に照射する。そして、試料2から発せられた蛍光6及び散乱光7を、検出部4の対物レンズ40で捕捉する。
【0046】
その際、検出部4には、蛍光6及び散乱光7と共に、試料2に照射されずに測定セル20を透過した励起光5も入射するが、この励起光5は、対物レンズ40を通過した後、遮光マスク41によって大部分が除去される。その後、ダイクロックミラー42により、蛍光6と散乱光7(遮光マスク41で除去できなかった励起光5を含む)とが分離され、蛍光6については、蛍光検出器(図示せず)によって検出される。
【0047】
一方、散乱光7は、偏光ビームスプリッター43によって、S偏光7sとP偏光7pとに分光される。そして、P偏光7pは、従来同様、散乱光強度検出器46によりその強度を測定し、例えば試料2の大きさに関する情報を得る。また、S偏光7sは、集光レンズ47により散乱光位置検出器49の検出部に結像させて、その位置(結像位置)から試料2の位置を検出し、その結果に応じて、測定用セル20の位置や励起光5の焦点位置を調整する。
【0048】
なお、本実施形態の光学的測定装置1では、別途、散乱光位置検出器49での検出結果に基づいて、測定用セル20の位置や励起光の焦点位置を調整する調整部(図示せず)を設け、これらの調整を自動で行うようにしてもよい。
【0049】
このように、本実施形態の光学的測定装置1では、遮光マスク41で除去しきれなかった励起光5を含む散乱光7から、散乱光7のみが偏光角変化を生じることを利用し、散乱光7の発光点、即ち試料2の位置情報のみを検出している。このため、測定用セル20の位置や励起光5の焦点位置を、高精度で調整することができる。これにより、試料2を、定量的かつ安定的に分析することができる。また、光利用効率が最も高い位置で検出を行うことが可能となるため、従来に比べて、高感度かつ高精度で測定することができる。
【0050】
なお、本実施形態の光学的測定装置1は、微小粒子や細胞などの分析装置に限らず、例えば、製造装置、検査装置及び医療用装置などとしても使用することができる。
【0051】
<2.第2の実施の形態>
[光学的測定装置の全体構成]
図3は本発明の第2の実施形態に係る光学的測定装置の構成を模式的に示す斜視図である。なお、図3においては、前述した第1の実施形態の光学的測定装置の構成要素と同じものには、同じ符号を付し、その詳細な説明は省略する。図3に示すように、本実施形態の光学的測定装置11は、マイクロ流路が形成された分析チップ21を使用して測定を行うものであり、マイクロチップ型FACS(Fluorescence Activated Cell Sorting)システムに使用される。
【0052】
本実施形態の光学的測定装置11は、分析チップ21に設けられた流路を通流する試料2a,2bに励起光を照射する光照射部と、励起光5が照射された試料2a,2bから発せられた蛍光6及び散乱光7などを検出する検出部を備えている。この光学的測定装置11における光照射部には、励起光5を発する光源30と、励起光5を試料2に向けて集光する対物レンズ31との間に、半導体レーザ30のビーム形状を成形するコリメータレンズ32が設けられている。
【0053】
また、検出部には、試料2から発せられた蛍光6を検出するための蛍光検出器50及び回折格子51と、散乱光7を検出するための散乱光強度検出器46及び試料位置検出器49とが設けられている。そして、試料2から発せられた光は、ダイクロックミラー42により蛍光6と散乱光7に分離され、蛍光6は回折格子51で分光された後、蛍光検出器50で検出されるようになっている。一方、散乱光7は、偏光ビームスプリッター43によりP偏光7pとS偏光7sとに分光され、それぞれ散乱光強度検出器46及び試料位置検出器49で検出される構成となっている。
【0054】
[分析チップ21]
本実施形態の光学的測定装置11で使用する分析チップ21には、試料2a,2bを通流させるマイクロ流路22が設けられている。このマイクロ流路22は、試料2a,2bを含むサンプル液の周囲をシース液で囲んで層流を形成し、励起光5が照射される測定領域において、試料2a,2bが一列に並んで通流するような構成となっている。また、マイクロ流路22には、測定領域よりも下流側に、採取対象の試料2aが集められる回収液貯留部23、又は採取対象外の試料2bが集められる排液貯留部24に連通する複数の分岐流路が設けられている。
【0055】
更に、分析チップ21には、マイクロ流路22の測定領域よりも下流側で、分岐流路の手前に、試料2a,2bを各分岐流路に流入させるための分取機構25が設けられている。この分取機構25の構成は特に限定するものではないが、例えば圧電素子や電磁バルブを使用したもの、アクチュエータなどの可動デバイスを使用したものなどが挙げられる。
【0056】
図4(a)はマイクロ流路22におけるサンプル液の通流位置を示す図であり、図4(b)はマイクロ流路22内を通流する液の速度分布を示す図である。なお、図4(b)は図4(a)に示すA−A線による断面図に相当する。図3に示す分析チップ21のように、測定領域と分取領域(分取機構25)とが離れた位置に設けられている場合、分取領域において試料2a,2bの位置を特定するためには、これらがマイクロ流路22内を一定速度で通流していることが望ましい。
【0057】
一方、図4(b)に示すように、マイクロ流路22内を通流する液は、ハーゲン・ポアズイユの原理により、壁面で遅く中心部で速い速度分布をもつ。そこで、本実施形態の光学的測定装置11においては、図4(b)に示すように、マイクロ流路22内に所望の速度でシース液を流し、その中心部にのみサンプル液を流している。これにより、壁面からのダメージを受けずに、試料2a,2bを一定速度で通流させることができる。
【0058】
ただし、サンプル液の通流速度を常に一定に保つことは困難であり、その変動により試料2a,2bの通流位置が変化することがある。このため、本実施形態の光学的測定装置11では、散乱光の偏光角変化を利用して試料2a,2bの通流位置を検出し、その結果に基づいて分析チップ1の位置を調整する。
【0059】
[光学的測定装置11の動作]
次に、本実施形態の光学的測定装置11により、分析チップ21を使用して、複数の試料2a,2bを個別に測定し、分取する方法について説明する。本実施形態の光学的測定装置11では、先ず、光照射部の光源30から励起光5を出射し、分析チップ21のマイクロ流路22を通流する試料2a,2bに照射する。このとき、試料2a,2bは、マイクロ流路22内を一列に並んで通流しているため、励起光5を個別に照射することができる。
【0060】
各試料2a,2bから発せられた蛍光6及び散乱光7は、検出部の対物レンズ40で捕捉された後、ダイクロックミラー42によって蛍光6と散乱光7とに分離される。そして、蛍光6は、回折格子51で分光された後、蛍光検出器50で検出される。その結果、採取対象の試料2aであると判定された場合には、蛍光スペクトル、試料2aの大きさ及び通流速度などに基づいて最適なタイミングを算出され、分取機構25に駆動信号が送信される。これにより、分取機構25が動作し、試料2aを回収液貯留部23に流入させる。また、採取対象外の試料2bであると判定された場合は、分取機構25は動作させずに、試料2bを排液貯留部24に流入させる。
【0061】
一方、散乱光7は、偏光ビームスプリッター43によって、S偏光7sとP偏光7pとに分光される。そして、P偏光7pは、散乱光強度検出器46によりその強度を測定し、例えば試料2a,2bの大きさに関する情報を得る。また、S偏光7sは、集光レンズ47により散乱光位置検出器49の検出部に結像させて、その位置(結像位置)から試料2の位置を検出し、その結果に応じて、分析チップ21の位置や励起光5の焦点位置を調整する。
【0062】
このように、本実施形態の光学的測定装置11は、散乱光7の偏光角変化を検出しているため、試料2a,2bの通流位置を高精度で検出することができる。そして、その結果に基づいて、励起光5照射のための光学系及び蛍光6・散乱光7を検出するための光学系に対して、分析チップ21の位置やサンプル液の通流位置を調整することにより、チップの形状精度に依存しない測定をすることができる。これにより、チップの製造コストを低減することもできる。
【0063】
また、散乱光の偏光角変化の検出信号を基に、サンプル液の通流位置を安定させることにより、流速の変化に対応することが可能となるため、装置の分析速度範囲(流速指定範囲)を拡大することができる。更に、励起光5のパワー密度が最大となる位置又は検出用の対物レンズ40の焦点位置に、サンプル液を通流させることにより、試料2a,2bから放出される光(蛍光6,散乱光7)の受光強度を最大にすることできるため、高感度での測定が可能となる。
【0064】
なお、本実施形態の光学的測定装置11における上記以外の構成、動作及び効果は、前述した第1の実施形態と同様である。
【0065】
<3.第3の実施の形態>
[光学的測定装置の全体構成]
図5は本発明の第3の実施形態に係る光学的測定装置の構成を模式的に示す図である。なお、図5においては、前述した第1及び第2の実施形態の光学的測定装置の構成要素と同じものには、同じ符号を付し、その詳細な説明は省略する。図5に示すように、本実施形態の光学的測定装置12は、散乱光の偏光角変化を検出するための光学系の集光レンズ47とピンホール48との間に、シリンドリカルレンズ50が配置されている以外は、前述した第1の実施形態と同様である。
【0066】
[シリンドリカルレンズ50]
シリンドリカルレンズ50は、S偏光7sの結像パターンに楕円の収差を発生させるものであり、例えば、長軸が散乱光位置検出器49の対角線と平行になるように、45°の角度で配置される。これにより、非点収差法を用いて、試料2の励起光5における光軸方向の位置を検出することが可能となる。ここで、シリンドリカルレンズ50としては、例えば凸レンズ、フレネルレンズ、球面ミラーなどを使用することができる。
【0067】
[光学的測定装置12の動作]
次に、光学的測定装置12の動作として、非点収差法を用いて試料2の位置を検出方法について説明する。図6(a)及び(b)はシリンドリカルレンズ50を用いた検出例を示す図である。例えば、図6(a)及び(b)に示すように、試料位置検出器49に4分割の検出器を使用し、分析チップ21における試料2の通流方向をAからB方向(紙面右方向)とした場合、それと直交する方向(紙面上下方向)をトラッキング方向とする。
【0068】
これにより得られる楕円状の結像パターンは、試料2から発せられた散乱光7のS偏光7sを結像させた像であり、図5に示す検出側の対物レンズ40の焦点位置から励起光5の光軸方向にずれた位置に試料2が存在する場合、このような楕円状となる。一方、対物レンズ40の焦点位置に試料2が存在する場合は、真円状の像となる。
【0069】
このような非点収差光学系を用いた検出方法を、試料2の発光点検出に用いることにより、光軸方向とそれと直交する方向の検出を、独立した現象として検出することが可能となる。これは、光学的に独立した現象を利用しているものであり、光軸検出には非点収差による結像パターン変化、及びこれと直交する方向には入射軸倒れによる結像パターンの移動を利用しているためである。これにより、3次元方向に独立して検出を行うことが可能となるため、高精度で簡便な位置制御方法を実現することができる。
【0070】
この散乱光(S偏光7s)の結像パターンは、通流方向(A→B)に移動するが、それと直交する方向には変化しない。そこで、A→Dの中間点を基準にすると、(A+B)−(C+D)の演算を行うことにより、変位量TEを、試料2の位置に対するエラー信号(Tracking Error)として検出することができる。一方、光軸方向の位置検出には非点収差法が適用できるが、測定対象である試料2が通流している場合は、前述した方法によりトラッキング制御を行い、変位量TEが0で、かつ結像パターンが検出器49の4分割の中心に位置した時の状態のみを用いて判断を行う必要がある。
【0071】
また、光軸方向については、(A+C)−(B+D)の演算を行うことにより、変位量FEをエラー信号(Focus Error)として検出することができる。ただし、その際、検出器49の分割中心に試料2の結像パターンが位置していることを判定するため、(A+D)−(B+C)=0となった間、又は和信号(SUM=A+B+C+D)が最大となった時に検出する必要がある。なお、和信号が分割中心部で最大となるのは、図6(a)及び(b)に示す励起光強度分布が、検出器49の中心部に集中している場合とする。
【0072】
なお、図6における励起光強度分布が示すように、励起ビームが偏平形状になっており、通流方向において散乱光及び蛍光信号が出力される範囲が小さい場合には、常に分割ディテクタの中心部のみでしか検知しないため、特定時間検出する必要はない。また、サーボ信号の演算方法は、リアルタイムでの演算を行ってもよいし、各チャンネルの値を積分した後(AREA)、前述した除算を行うことも可能である。更に、各チャンネルの最大値(HIGHT)を用いて演算を行うこともできる。
【0073】
一方、本実施形態においては、マイクロ流路における通流方向がA→Bとなっており、試料2が検出ビームに対して流れ込んでくるため、分析チップ21の通流方向の位置合わせを行う必要はない。しかしながら、試料2から生じる蛍光及び散乱光を効率よく検知するためには、検出側の対物レンズ40と励起光5の光軸を一致させる必要がある。図6に示すような4分割の場合、(A+C)−(B+D)の演算を用いることで、通流方向における励起光5の位置を最適な位置に調整することができる。
【0074】
また、一般に、偏光ビームスプリッターは、その偏光分離特性として、僅かながらP偏光成分に漏れが生じる。遮光マスク41を取り除いた場合、全ての励起光5が偏光ビームスプリッターに入射されることになるため、励起光5がP偏光のみで構成されていても、分割ディテクタ(試料位置検出器49)により励起光5の位置検出を行うことが可能である。即ち、本実施形態の光学的測定装置12は、遮光マスク41を取り除くことで、励起光5の位置を検出することが可能である。そして、前述した方法と同様の方式を適用することにより、励起光5の集光位置(励起側対物レンズ31の焦点)を、検出側の対物レンズの焦点位置と3次元的に一致させることもできる。
【0075】
このように、本実施形態の光学的測定装置12は、測定対象である試料2の位置及び励起光5の集光位置を3次元的に検出することが可能であり、その検出された信号により、試料2の通流位置(チップ位置)を光学系の焦点位置に高精度に調整することができる。これにより、高感度で安定した測定を実現できる。
【0076】
また、本実施形態の光学的測定装置12では、分割ディテクタと非点収差光学系により散乱光の検出を行っているため、極性をもったサーボ信号を取得することができる。これにより、リアルタタイムでサーボをかけることが可能となる。そして、粒子径や散乱光の信号強度によらず、散乱光の結像パターンによりサーボ信号の検出が可能であり、かつ極性判断を行うことが可能であるため、リアルタイムで位置調整を行うことができる。
【0077】
なお、本実施形態の光学的測定装置12における上記以外の構成、動作及び効果は、前述した第1及び第2の実施形態と同様である。
【符号の説明】
【0078】
1、11、12 光学的測定装置
2 試料
2a 採取対象試料
2b 採取対象外試料
3 光照射部
4 検出部
5 励起光
6 蛍光
7 散乱光
7p P偏光
7s S偏光
20 測定用セル
21 分析チップ
22 マイクロ流路
23 回収液貯留部
24 排液貯留部
25 分取機構
30 光源
31、40 対物レンズ
32 コリメータレンズ
41 遮光マスク
42 ダイクロックミラー
43 偏光ビームスプリッター
44、47 集光レンズ
45、48 ピンホール
46、49 検出器
50 シリンドリカルレンズ
51 蛍光検出器
52 回折格子

【特許請求の範囲】
【請求項1】
試料に光を照射する光照射部と、
光が照射された試料から発せられた散乱光を検出する散乱光検出部と、を有し、
前記散乱光検出部は、少なくとも、
試料から発せられた散乱光をS偏光成分とP偏光成分とに分光する偏光ビームスプリッターと、
前記P偏光成分を受光して散乱光の強度を検出する第1検出器と、
前記S偏光成分を受光してその受光位置の変化から試料位置を検出する第2検出器と、
を備える光学的測定装置。
【請求項2】
マイクロ流路を備えた分析チップを有し、前記光照射部は前記マイクロ流路内を通流する試料に光を照射する請求項1に記載の光学的測定装置。
【請求項3】
偏光ビームスプリッターと第2検出器との間に、シリンドリカルレンズが配設されており、非点収差法により光軸方向における試料位置を検出する請求項1又は2に記載の光学的測定装置。
【請求項4】
試料と偏光ビームスプリッターとの間に、試料に照射されずに透過した光を除去する遮光マスクが配置されている請求項1乃至3のいずれか1項に記載の光学的測定装置。
【請求項5】
更に、光が照射された試料から発せられた蛍光を検出する蛍光検出部を有し、
前記試料と蛍光検出部及び散乱光検出部との間には、蛍光と散乱光とを分離するミラーが配設されている請求項1乃至4のいずれか1項に記載の光学的測定装置。
【請求項6】
第2検出器での検出結果に基づいて試料位置を調整する試料位置調整部を有する請求項1乃至5のいずれか1項に記載の光学的測定装置。
【請求項7】
測定対象の試料に光を照射する工程と、
前記試料から発せられた散乱光をS偏光成分とP偏光成分とに分光する工程と、
P偏光成分を測定して散乱光の強度を検出する工程と、
S偏光成分を測定して非点収差法により試料位置を求める工程と、
を有する光学的測定方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2011−149822(P2011−149822A)
【公開日】平成23年8月4日(2011.8.4)
【国際特許分類】
【出願番号】特願2010−11349(P2010−11349)
【出願日】平成22年1月21日(2010.1.21)
【出願人】(000002185)ソニー株式会社 (34,172)
【Fターム(参考)】