説明

制振装置及びこれを備えた車両

【課題】制振すべき振動と基準波との間の位相ズレを低減して、適応フィルタの算出時における制振安定性を向上させるとともに、制御の応答性や制振効果を向上させた制振装置を提供する。
【解決手段】適応フィルタ32fを用いて振動発生源gnから制振すべき位置へ伝達した振動Vi3を相殺するために必要な疑似振動Vi3’の算出値に基づいて相殺振動Vi4を制振すべき位置に発生させる指令たる相殺信号を生成する。そして、振動Vi3と相殺振動Vi4との相殺誤差として検出された振動と適応フィルタ32fの基準波とに基づいて相殺誤差として残る振動が小さくなるように適応フィルタ32fの算出を繰り返し実行し、算出の積み重ねにより疑似振動Vi3’及び適応フィルタ32fを真値へ収束させる。さらに、相殺誤差として残る振動の位相と相殺振動Vi4の位相との位相差に基づいて適応フィルタ32fの基準波の位相を補正する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、発生する振動を適応制御により抑制する制振装置に係り、特に適応制御で用いる適応フィルタの算出を適正化した制振装置及びこれを備えた車両に関する。
【背景技術】
【0002】
従来から車両のエンジン等の振動発生源で生じた振動と加振手段を通じて発生させた相殺振動とを制振すべき位置で相殺する制振装置が知られている。このような従来の制振装置として特許文献1には、適応フィルタを用いて制振すべき振動に相当する疑似振動を算出し、算出した疑似振動に基づいて相殺信号を生成し、相殺信号に基づいてアクチュエータ等の加振手段を通じて相殺振動を制振すべき位置に発生させ、発生した相殺振動と制振すべき振動との相殺誤差として残る振動を加速度センサで検出し、検出した相殺誤差として残る振動が小さくなるように上記適応フィルタの算出を繰り返し実行し、算出の積み重ねにより疑似振動及び適応フィルタを真値へ収束させるものが開示されている。
【0003】
この制振装置では、適応フィルタの算出の基礎である正弦波等の基準波から適応フィルタの真値へ向かって適応フィルタの算出を積み重ねる構成であり、その他の制振装置でも一定の周期関数を適応フィルタの算出の基礎とする構成が通例である。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2003−202902号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
上記適応フィルタの算出にあたり、算出される適応フィルタに対応する疑似振動の位相と適応フィルタの真値の位相との位相ズレが所定許容量以下であるときは適応フィルタが真値へ収束するが、所定許容量を超えたときは適応フィルタの算出が発散してしまうので、位相ズレが常に所定許容量以下であることに留意すべきである。
【0006】
しかしながら、例えばエンジンの回転数やアクセル開度によって発生する加振力や位相は常に変化し、収束目標値である真値が常に変動することになるものの、適応フィルタの算出の基礎となる基準波は一定であるので、両者の位相ズレすなわち制振すべき振動と基準波との間の位相ズレが大きくなることがあり、その位相変化量が大きくなる場合に適応フィルタが追従できず、結果として振動を増幅してしまい、制振安定性を損なうことがある。
【0007】
また、算出の基礎となる基準波の位相と適応フィルタの真値の位相との位相ズレが大きいと、この位相ズレを適応フィルタの算出により埋めなければならないので、制御の応答性が低減する要因になる。
【0008】
本発明は、このような課題に着目してなされたものであって、その目的は、制振すべき振動と基準波との間の位相ズレを低減して、適応フィルタ係数の算出時における制振安定性を向上させるとともに、制御の応答性や制振効果を向上させた制振装置及びこれを備えた車両を提供することである。
【課題を解決するための手段】
【0009】
本発明は、かかる目的を達成するために、次のような手段を講じたものである。
【0010】
すなわち、本発明に係る制振装置は、振動発生源で生じる振動と加振手段を通じて発生させる相殺振動とを制振すべき位置で相殺するにあたり、適応フィルタを用いて前記振動発生源から前記制振すべき位置へ伝達した振動を相殺するために必要な疑似振動を算出する疑似振動算出手段と、前記疑似振動算出手段により算出された疑似振動に基づいて前記相殺振動を前記制振すべき位置に発生させる指令たる相殺信号を生成し生成した相殺信号を前記加振手段へ入力する相殺信号生成手段と、前記制振すべき位置において前記振動発生源で生じた振動と前記相殺振動との相殺誤差として残る振動を検出する振動検出手段とを具備し、前記疑似振動算出手段は、前記振動検出手段により検出された振動と前記適応フィルタの算出基礎となる基準波とに基づいて前記相殺誤差として残る振動が小さくなるように前記適応フィルタの算出を繰り返し実行し、算出の積み重ねにより疑似振動及び適応フィルタを真値へ収束させる制振装置であって、前記制振すべき位置での相殺誤差として残る振動の位相と前記疑似振動に基づき制振すべき位置に発生される相殺振動の位相との位相差を特定する位相差特定手段と、前記位相差特定手段により特定された位相差に基づいて前記適応フィルタの算出時に用いられる前記基準波の位相を補正する基準波位相補正手段とを設けたことを特徴とする。
【0011】
この構成によれば、振動発生源から制振すべき位置へ伝達した振動を相殺するために必要な疑似振動が適応フィルタを用いて疑似振動算出手段により算出され、算出された疑似振動に基づいて相殺振動を制振すべき位置に発生させる指令たる相殺信号が相殺信号生成手段により生成され、相殺信号が加振手段に入力されて相殺振動が制振すべき位置に加振手段を通じて発生され、制振すべき位置において振動発生源で生じた振動と相殺振動との相殺誤差として残る振動が振動検出手段により検出され、検出された振動と適応フィルタの算出基礎となる基準波とに基づいて相殺誤差として残る振動が小さくなるように疑似振動算出手段により適応フィルタが算出され、算出の積み重ねにより疑似振動及び適応フィルタを真値へ収束させる制振制御が実施される。この制振制御の実施に際し、位相差特定手段により制振すべき位置での相殺誤差として残る振動の位相と疑似振動に基づき制振すべき位置に発生される相殺振動の位相との位相差が特定され、特定された位相差に基づいて適応フィルタの算出時に用いられる基準波の位相が補正されるので、適応フィルタの算出時に算出基礎となる基準波の位相が適応フィルタの真値の位相に近づき、制振すべき振動と基準波との間の位相ズレに起因して適応フィルタが追従できずに結果として振動が増大することを回避して、制振安定性を向上させることができる。また、適応フィルタの算出時に算出基礎となる基準波の位相が適応フィルタの真値の位相に近づき、適応フィルタの算出により埋めなければならない位相ズレが小さくなるので、制振の応答性や制振効果を更に向上させることが可能となる。
【0012】
特に自動車のエンジンで生じる振動を制振する場合は、エンジンの回転数やアクセル開度によって発生する加振力や位相は常に変化して適応フィルタの真値が常に変動するので、適応フィルタが発散しやすく制振制御が難しいものであるが、本発明では適応フィルタの算出時に用いられる基準波の位相が補正されるので、適応フィルタの真値が常に変動するような場合であってもこれに対して算出の基礎となる基準波を追従させて適切に適応フィルタを導出することが可能となる点で有効である。
【0013】
制振すべき位置での相殺誤差として残る振動の位相と相殺振動の位相との位相差に起因する相殺誤差を低減し、制振効果を向上させるためには、前記相殺信号生成手段は、前記位相差特定手段により特定された位相差に基づいて当該位相差が無くなる方向へ位相を補正した前記相殺振動に対応する相殺信号を生成することが好ましい。
【0014】
制振制御の安定性を損なうことなく制振性を向上させるためには、前記位相の補正は、予め設定された補正一回当たりの上限補正量を超えない補正量を用いて行われるものであることが好ましい。
【0015】
乗員に快適な乗り心地を提供するためには、上記の制振装置を車両に備えることが挙げられる。
【発明の効果】
【0016】
本発明は、以上説明した構成であるから、適応フィルタの算出時に用いられる基準波の位相を補正し制振すべき振動と基準波との間の位相ズレを低減して、適応フィルタの算出時における制振安定性を向上させるとともに、制振の応答性や制振効果を向上させることが可能となる。
【図面の簡単な説明】
【0017】
【図1】本発明の一実施形態に係る制振装置の概略全体模式図。
【図2】同実施形態に係る制御手段の構成および機能の概略ブロック図。
【図3】同実施形態に係る制御手段の構成の詳細なブロック図。
【図4】同実施形態に係る位相補正量算出部で実行される位相補正量算出処理ルーチンを示すフローチャート。
【図5】加振手段から制振すべき位置へ伝達する振動に関する説明図。
【図6】振動発生源から制振すべき位置へ伝達した振動と相殺振動との相殺誤差として残る振動に関する説明図。
【図7】本実施形態の制振装置および従来型の制振装置の制振効果を比較して示す説明図。
【図8】本実施形態の制振装置および従来型の制振装置の制振効果を比較して示す説明図。
【図9】本発明の他の実施形態に係る制御手段の構成の詳細なブロック図。
【発明を実施するための形態】
【0018】
以下、本発明の一実施形態に係る制振装置を、図面を参照して説明する。
【0019】
本実施形態の制振装置は、図1に示すように、自動車等の車両に搭載されるものであり、座席st等の制振すべき位置posに設けた加速度センサ等の振動検出手段1と、所定の質量を有する補助質量2aを振動させることにより振動Vi2を発生するリニアアクチュエータを用いた加振手段2と、振動発生源gnであるエンジンの点火パルス信号と振動検出手段1からの検出信号とを入力し加振手段2で発生させた振動Vi2を制振すべき位置posへ伝達させることにより制振すべき位置posに相殺振動Vi4を発生させる制御手段3とを有し、車体フレームfrmにマウンタgnmを介して搭載されたエンジン等の振動発生源gnで生じる振動Vi1と加振手段2を通じて制振すべき位置posに発生させる相殺振動Vi4とを制振すべき位置posで相殺させて制振すべき位置posでの振動を低減するものである。
【0020】
制御手段3は、図2に示すように、振動発生源gnから制振すべき位置posへ伝達した振動Vi3を的確に相殺する相殺振動Vi4を制振すべき位置posに発生させるために、振動発生源gnから制振すべき位置posへ伝達した振動Vi3を模擬した疑似振動Vi3’を適応アルゴリズムの適応フィルタ32fを用いて算出し、算出した疑似振動Vi3’に基づいて加振手段2を通じて制振すべき位置posに相殺振動Vi4を発生させる。また、制御手段3は、加振手段2から制振すべき位置posへ伝達した相殺振動Vi4と振動Vi3との相殺誤差として残る振動(Vi3+Vi4)を振動検出手段1で検出し、検出した相殺誤差として残る振動(Vi3+Vi4)が小さくなるように適応フィルタ32fの算出を繰り返し実行し、算出の積み重ねにより疑似振動Vi3’及び適応フィルタ32fを真値へ収束させる制振制御を行う。本実施形態では、振動発生源gnから制振すべき位置posへ伝達した振動Vi3を相殺するために必要な疑似振動は、振動Vi3を模擬した疑似振動Vi3’であるが、この振動Vi3の模擬を行うことなく加振手段2から制振すべき位置posへ伝達した相殺振動Vi4を直接模擬したものであってもよい。
【0021】
この適応制御による制振制御を実行する制御手段3は、図2に示すように、基準波生成手段31と、疑似振動算出手段32と、相殺信号生成手段33とを有する。
【0022】
基準波生成手段31は、振動発生源gnで生ずる振動Vi1に関連する信号に基づいて制振すべき位置posでの振動の周波数を認識し、認識した周波数に基づいて基準波を生成する。認識した周波数は、疑似振動算出手段32で疑似振動を算出する際に疑似振動の周波数の基礎として用いられるものであり、生成した基準波は、制御手段3での信号処理においての波形の振幅及び位相等の基準、特に適応フィルタの算出の基礎とされるものである。本実施形態では、振動発生源gnで生ずる振動Vi1に関連する振動としてのエンジンの点火パルス信号をECU等から入力している。勿論、エンジンの点火パルス信号に代えて例えばエンジンクランクの回転数を検出するセンサからの検出パルス信号等、その他の信号を用いてもよい。
【0023】
疑似振動算出手段32は、基準波生成手段31により生成された基準波に対して適応フィルタ32fを用いて疑似振動Vi3’を算出すると共に、振動検出手段1より入力した相殺誤差として残る振動(Vi3+Vi4)が小さくなるように適応フィルタ32fを逐次更新する。具体的には、疑似振動算出手段32は、疑似振動算出部32aと、学習適応部32bとを有する。疑似振動算出部32aは、基準波生成手段31により生成された周波数と等しい周波数の基準波に対して適応フィルタ32fを用いたフィルタリングを施すことにより基準波の振幅及び位相を変化させて疑似振動Vi3’を算出する。学習適応部32bは、振動検出手段1より入力した相殺誤差として残る振動(Vi3+Vi4)が無くなるように適応フィルタ32fの算出の基礎である基準波から適応フィルタの真値へ向かって適応フィルタの算出を繰り返し実行し、この算出の積み重ねにより疑似振動Vi3’及び適応フィルタ32fを真値へ収束させるものである。
【0024】
相殺信号生成手段33は、疑似振動算出手段32が算出した疑似振動Vi3’に基づいて相殺振動Vi4を加振手段2を通じて制振すべき位置posに発生させる指令たる相殺信号を生成する。相殺信号生成手段33により生成された相殺信号が加振手段2に入力されると加振手段2が相殺振動Vi4を制振すべき位置posに発生する。この相殺信号を生成するにあたり、図5に示すように、振動発生源gnから制振すべき位置posへ伝達した振動Vi3に対してこの振動Vi3を逆波形にした振動−Vi3を加振すればよいが、加振手段2で発生させた振動Vi2は制振すべき位置posに伝達する過程で振幅又は位相が変化するので、この変化を考慮して制振すべき位置posに相殺振動Vi4が印加されるように振動Vi2を加振手段2で発生させる必要がある。具体的には、加振手段2から制振すべき位置posまで伝達する振動の振幅及び位相の変化させる振動伝達関数Gの逆伝達関数を逆伝達関数記憶部33aに予め記憶しておき、制振すべき位置posでの振動Vi3を模擬した疑似振動Vi3’を逆波形にした振動に対して逆伝達関数を加味して振動Vi2を算出する。ここでは、逆伝達関数の振幅成分を1/Gとし、位相成分をPとして逆伝達関数記憶部33aに記憶している。なお、振動発生源gnから制振すべき位置posへ伝達する振動の振幅又は位相を変化させる振動伝達関数をG’と示している。
【0025】
上記の構成に対して本実施形態ではさらに、図2に示すように、位相差特定手段34と、基準波位相補正手段35とを備えている。
【0026】
位相差特定手段34は、図6に示すように、制振すべき位置posでの相殺誤差として残る振動(Vi3+Vi4)を検出して検出した振動の位相φを特定し特定された制振すべき位置posでの相殺誤差として残る振動(Vi3+Vi4)の位相φと疑似振動Vi3’に基づき制振すべき位置posに発生される相殺振動Vi4の位相φ’との位相差Δφ(=φ−φ’)を即時に特定するものである。位相φ及び位相φ’は、基準波生成手段31により生成される基準波の位相成分θ(=ωt)を基準としたものである。具体的には、図2に示すように、位相差特定手段34は、即時位相特定部34aと、疑似振動位相特定部34bと、位相差特定部34cとを有する。即時位相特定部34aは、振動検出手段1により検出された振動に基づいてその振動の位相を即時に特定する。疑似振動位相特定部34bは、疑似振動算出部32aでの算出結果を参照して疑似振動の位相を特定する。位相差特定部34cは、即時位相特定部34aにより特定された制振すべき位置posでの振動の位相と疑似振動位相特定部34bにより特定された疑似振動の位相との位相差を特定する。
【0027】
基準波位相補正手段35は、位相差特定手段34により特定された位相差に基づいて位相差が無くなる方向へ位相を補正させる位相補正指令を基準波生成手段31に対して指令することにより基準波の位相を補正するものである。基準波位相補正手段35は、上限補正量記憶部35aと、不感帯記憶部35bとを有しており、位相差特定手段34により特定された位相差があるときに上限補正量記憶部35bに予め記憶された補正一回当たりの上限補正量を超えない補正量を用いて基準波の位相の補正を実施したり、位相差のズレ量が不感帯記憶部35cに予め記憶された閾値よりも大きいときに基準波の位相の補正を実施し、位相差のズレ量が閾値以下であるときに基準波の位相の補正を実施しないように構成されている。
【0028】
このような制御手段3を実現する具体的な制御ブロックを図3に示して説明する。
【0029】
図3に示すように、基準波生成手段31は、周波数検出部41と、基準電気角算出部42と、基準波生成部43とを含んで構成されている。周波数検出部41は、入力したエンジンパルス信号に基づいて制振すべき位置posでの振動の周波数fを認識する。基本電気角算出部42は、認識された周波数fを入力して基本電気角θ(=ωt)を算出する。基準波生成部43は、算出された基本電気角θを基礎として基準波である基準正弦波sinθ及び基準余弦波cosθを生成する。これら基準波は制御手段3での信号処理においての波形の振幅及び位相等の基準となるものであり、特に後述する疑似振動算出手段32を構成する乗算器46、47および即時位相特定部34aを構成する乗算器61、62で用いられる。なお、基準波生成部43は、基本電気角θだけでなく後述する位相補正量P’も入力し、位相成分P’の補正を加えた基準波たる基準正弦波sin(θ+P’)及び基準余弦波cos(θ+P’)を生成するが、以下では説明の簡略化のために基準波の位相成分を単にθとして説明する。
【0030】
加速度センサである振動検出手段1で検出される制振すべき位置posでの振動には、振動発生源gnで生じた振動以外にも他の振動が含まれているので、振動検出手段1の出力信号に対して周波数検出部41で認識された周波数f成分の信号のみを取り出すBPF(バンドパスフィルタ)44を施すことにより振動発生源gnで生じた振動のみを振動信号として検出している。
【0031】
この振動信号を模擬するために、振動信号をAsin(θ+φ)、θ=ωtと仮定し、以下の式を利用する。
【0032】
まず、振動信号Asin(θ+φ)にsinθを乗算したものを積和定理を用いて表すと、
Asin(θ+φ)×sinθ=(−A/2)(cos(2θ+φ)−cosφ)
と変形できる。この式に2を乗算すると、
2Asin(θ+φ)×sinθ=Acosφ−Acos(2θ+φ)
となる。この式を収束係数μを用いて積分すると、右辺第二項Acos(2θ+φ)の積分は(μA/2ω)sin(2θ+φ)となり、μをAに比べて非常に小さな値に設定すると振幅が小さく且つ周期関数の積分であるため(μA/2ω)sin(2θ+φ)を無視でき、右辺全体が真値Aに近い値A’の振幅成分及び真値φに近い値φ’の位相成分を有するA’cosφ’に収束する。
【0033】
同様に、振動信号Asin(θ+φ)にcosθを乗算したものを積和定理を用いて表すと、
Asin(θ+φ)×cosθ=(A/2)(sin(2θ+φ)+sinφ)
と変形できる。この式に2を乗算すると、
2Asin(θ+φ)×cosθ=Asinφ+Asin(2θ+φ)
となる。この式を収束係数μを用いて積分すると、右辺第二項Asin(2θ+φ)の積分も上記と同様に周期関数の積分であるため無視でき、右辺全体が真値Aに近い値A’の振幅成分及び真値φに近い値φ’の位相成分を有するA’sinφ’に収束する。
【0034】
上記で求めたA’cosφ’及びA’sinφ’にsinθ及びcosθをそれぞれ乗算して足し合わせものを加法定理を用いて表すと、
sinθ×A’cosφ’+cosθ×A’sinφ’=A’sinθ×cosφ’+A’cosθ×sinφ’=A’sin(θ+φ’)
となる。したがって、振動信号に対して上記の演算を実施することにより振動信号Asin(θ+φ)を模擬した疑似振動A’sin(θ+φ’)を算出できる。これらA’cosφ’及びA’sinφ’は、いわゆる適応制御における適応フィルタであり、振動信号の入力により疑似振動の振幅A’及び位相φ’を真値たる振幅A及び位相φに収束させるべく自己適応する。また、適応フィルタは、適応フィルタに対して基準波を乗算して足し合わせることにより疑似振動に変形するので、疑似振動と基準波との振幅差及び位相差を表すものといえる。
【0035】
上記の演算処理を用いて振動信号Asin(θ+φ)に基づいて適応フィルタ32fを学習更新しつつ疑似振動を算出するために、図3に示すように疑似振動算出手段32を構成している。すなわち、乗算器45は、振動信号Asin(θ+φ)と収束係数2μとを乗算する。乗算器46、47は、乗算器45での乗算結果に対して基準波生成部43から出力される基準正弦波sinθと基準余弦波cosθをそれぞれ乗算して、積分器48、49へ出力する。積分器48、49は、乗算器46、47からの出力を積分し、疑似振動と基準波との振幅差及び位相差を表す適応フィルタ32fとしてのA’cosφ’及びA’sinφ’を出力する。
【0036】
この適応フィルタ32fに対して基準正弦波sinθ及び基準余弦波θをそれぞれ乗算した後に足し合わせると上記の通り疑似振動A’sin(θ+φ’)となるが、本実施形態では、振幅成分及び位相成分の逆伝達関数を加味した基準波を適応フィルタ32fとの乗算前に生成している。勿論、疑似振動を算出した後に振幅成分及び位相成分の逆伝達関数を加味してもよい。具体的に本実施形態では、逆伝達関数振幅設定部53は、周波数に対応した逆伝達関数の振幅成分が予め記憶されており、認識した周波数fを入力して逆伝達関数の振幅成分1/Gを特定する。同様に、逆伝達関数位相設定部50は、周波数に対応した逆伝達関数の位相成分が予め記憶されており、認識した周波数fを入力して逆伝達関数の位相成分Pを特定する。特定された位相成分Pと基本電気角θとが加算器51で加算されて発振器52に入力される。発振器52は、逆伝達関数の位相成分Pが加味された正弦波sin(θ+P)及び余弦波cos(θ+P)を生成する。乗算器54、55は、生成された正弦波sin(θ+P)及び余弦波cos(θ+P)に対して逆伝達関数振幅設定部53により特定された逆伝達関数の振幅成分1/Gとをそれぞれ乗算して、振幅及び位相の逆伝達関数を加味した基準波を生成する。
【0037】
これら乗算器54、55により生成された振幅及び位相の逆伝達関数を加味した基準波(1/G)sin(θ+P)及び(1/G)cos(θ+P)に対して上記の適応フィルタ32fとしてのA’cosφ’及びA’sinφ’を乗算器56、57でそれぞれ乗算する。乗算器56、57での乗算結果を加算器58で足し合わせ、足し合わせた結果に−1を乗算器59で乗算すると、相殺振動[−(A’/G)sin(θ+φ’+P)]の発生を指令する相殺信号が生成され、加振手段2で相殺振動[−(A’/G)sin(θ+φ’+P)]が加振される。
【0038】
上記の適応制御を用いた制振制御を行う構成に加えてさらに、位相差特定手段34を構成する即時位相特定部34a、疑似振動位相特定部34b及び位相差特定部34cと、基準波位相補正手段35を構成する位相補正量算出部70とを有している。
【0039】
位相差特定手段34を構成する即時位相特定部34aは、振動検出手段1を介して検出した振動信号Asin(θ+φ)を入力して、その位相φを即時に特定するものである。具体的には、まず、除算器60aにおいて振動信号Asin(θ+φ)をリアルタイム振幅検出部60で検出した振幅Aで除算して、振幅1のsin(θ+φ)を得る。
【0040】
リアルタイム振幅検出部60は、振幅1の正弦波sinθの半周期0〜πの積分値が(−cosπ)−(−cos0)=(1)−(−1)=2であり、その平均値は0〜πまでの平均であることから2/πとなることを利用したもので、振動信号Asin(θ+φ)を入力して、絶対値処理を加え、二倍の周波数成分を除去するノッチフィルタを介し、脈動分をLPF(ローパスフィルタ)で除去して2/πを乗ずることにより即時で振幅Aを取得するものである。
【0041】
乗算器61、62は、除算器60aでの除算結果であるsin(θ+φ)に対して2sinθ及び2cosθをそれぞれ乗算して積和定理より、cosφ−cos(2θ+φ)とsinφ+sin(2θ+φ)とを得る。乗算器61の演算結果であるcosφ−cos(2θ+φ)に対して二倍の周波数成分を除去するノッチ処理63を施し、脈動分をLPF(ローパスフィルタ)処理65で除去してcosφを得る。同様に、乗算器62の演算結果であるsinφ+sin(2θ+φ)に対して二倍の周波数成分を除去するノッチ処理64を施し、脈動分をLPF(ローパスフィルタ)処理66で除去してsinφを得る。このように即時位相特定部34aは、振動信号Asin(θ+φ)の位相成分を有するcosφ及びsinφを即時に特定する。
【0042】
位相差特定手段34を構成する疑似振動位相特定部34bは、上記の適応フィルタ32fであるA’cosφ’及びA’sinφ’が疑似振動の位相成分を有するのでこれをそのまま利用すべく、適応フィルタ32fを位相差特定部34cへ入力するものである。
【0043】
位相差特定手段34を構成する位相差特定部34cは、即時位相特定部34aにより特定されたcosφ及びsinφと適応フィルタ32fであるA’cosφ’及びA’sinφ’とに基づいて位相差を特定するものである。具体的には、これら位相φ及び位相φ’は、共通の基本電気角θを基準とした位相ズレを表すものであるので、疑似振動の位相と制振すべき位置posでの振動の位相とが一致している場合はφとφ’が等しいものとなる。したがって、位相差Δφをφ−φ’と定義して、以下の式を用いて算出される位相差の正弦成分α及び余弦成分βにより位相差を表現している。
正弦成分α=A’sin(φ−φ’)=A’(sinφcosφ’−cosφsinφ’)=sinφ(A’cosφ’)−cosφ(A’sinφ’)
余弦成分β=A’cos(φ−φ’)=A’(cosφcosφ’+sinφsinφ’)=cosφ(A’cosφ’)+sinφ(A’sinφ’)
【0044】
上記の適応制御アルゴリズムは、位相差Δφが±60度の範囲を超えた場合は制御が発散して制振不能となることが判明しているので、余弦成分β>0の条件で正弦成分αの符号によりΔφが進んでいるか遅れているか否かを判断でき、正弦成分αの大きさにより位相差Δφのズレ量を把握できる。
【0045】
図3に示すように、基準波位相補正手段35を構成する位相補正量算出部70は、位相差特定部34cで特定された正弦成分αに基づいて位相補正量P’を算出して加算器71へ出力し、この位相補正量P’と基本電気角算出部42により算出された基本電気角θとを加算させることにより基準波生成部43で生成される基準波の位相を補正するものである。位相補正量算出部70は、図4に示すように、正弦成分αの大きさが不感帯記憶部35bに記憶されている閾値以下であるか否かを判定し(A1)、閾値以下であると判定した場合(A1:YES)には、位相補正量P’=0とする(A6)。一方、閾値以下でないと判定した場合(A1:NO)には、上限補正量記憶部35aに記憶されている補正一回当たりの上限補正量である一定値のステップS(S>0)を取得し(A2)、正弦成分αの符号が正であるか否かを判定する(A3)。αの符号が正であると判定した場合には(A3:YES)、位相補正量P’を−ステップS、すなわちP’を負値とする(A4)。一方、αの符号が正でないと判定した場合には(A3:NO)、位相補正量P’をステップS、すなわちP’を正値とし(A5)、基準波の位相θを位相(θ+P’)として位相差Δφが無くなる方向へ補正する。そして、位相補正された基準波たる基準波正弦波sin(θ+P’)及び基準余弦波cos(θ+P’)が、乗算器46、47で適応フィルタ32fの算出の基礎とされ、疑似振動算出手段32で一層真値に近い位相成分(θ+P’)を有する基準波から適応フィルタの真値へ向かって適応フィルタの算出が積み重ねられる。
【0046】
また、逆伝達関数位相設定部50に予め記憶されている逆伝達関数の位相成分Pと実際の逆伝達関数の位相成分とが経年変化等により一致しなくなり、この不一致が位相差特定部34cにより位相差Δφとして検出されることがある。この不一致を是正するため、位相補正量算出部70により算出した位相補正量P’を加算器51を介して発振器52に入力して疑似振動Vi3’ひいては相殺振動Vi4の位相を補正している。位相補正量算出部70により位相が補正される前の相殺振動は[−(A’/G)sin(θ+φ’+P)]で表され、補正後の相殺振動は[−(A’/G)sin(θ+φ’+P+P’)]で表される。
【0047】
ここで、適応フィルタ32fの算出の基礎となる基準波の位相の補正を実施する本実施形態の制振装置と、本実施形態とほぼ同様の構成であるが基準波の位相の補正を実施しない従来型の制振装置との制振効果に関するシミュレーション結果を比較して図7及び図8に示す。このシミュレーションでは、適応フィルタ32fの収束目標値である真値が変動するように設定し、適応フィルタ32fの算出の基礎となる基準波と適応フィルタ32fの真値との位相ズレ、すなわち制振すべき振動と基準波との間の伝達関数の位相ズレが生じる条件に設定している。
【0048】
図7に、逆伝達関数記憶部33aに予め記憶されている加振手段2から制振すべき位置posまでの振動伝達特性の逆伝達関数の位相成分Pと実際の逆伝達関数の位相成分とが一致している場合のシミュレーション結果を示す。この場合、基準波の位相の補正を実施しない従来型の制振装置では、図7(a)に示すように、リアルタイム振幅検出部60により検出される振幅値Aが発散して振動Vi3[=Asin(θ+φ)]にうねりが生じており、制振制御が追従していない。一方、基準波の位相を補正する本実施形態の制振装置では、図7(b)に示すようにリアルタイム振幅検出部60により検出される振幅値Aが振動Vi3にほぼ合致して振動Vi3も安定しており、制御が安定している。
【0049】
また、図8に、逆伝達関数記憶部33aに予め記憶されている加振手段2から制振すべき位置posまでの振動伝達特性の逆伝達関数の位相成分Pと実際の逆伝達関数の位相成分とが一致していない場合のシミュレーション結果を示す。この場合、従来型の基準波の位相の補正を実施しない制振装置では、図8(a)に示すように、リアルタイム振幅検出部60により検出される振幅値Aが発散して制振制御が追従していない。一方、基準波の位相を補正する本実施形態の制振装置では、図8(b)に示すようにリアルタイム振幅検出部60により検出される振幅値Aの発散が図8(a)に示す従来型よりも低減しており制振制御の安定性が向上している。
【0050】
以上のように、本実施形態に係る制振装置は、振動発生源gnで生じる振動Vi3と加振手段2を通じて発生させる相殺振動Vi4とを制振すべき位置posで相殺するにあたり、適応フィルタ32fを用いて振動発生源gnから制振すべき位置posへ伝達した振動Vi3を相殺するために必要な疑似振動Vi3’を算出する疑似振動算出手段32と、疑似振動算出手段32により算出された疑似振動Vi3’に基づいて相殺振動Vi4を前記制振すべき位置posに発生させる指令たる相殺信号を生成し生成した相殺信号を加振手段2へ入力する相殺信号生成手段33と、制振すべき位置posにおいて振動発生源gnで生じた振動Vi3と相殺振動Vi4との相殺誤差として残る振動(Vi3+Vi4)を検出する振動検出手段1とを具備し、疑似振動算出手段32は、振動検出手段1により検出された振動(Vi3+Vi4)と適応フィルタ32fの算出基礎となる基準波とに基づいて相殺誤差として残る振動(Vi3+Vi4)が小さくなるように適応フィルタ32fの算出を繰り返し実行し、算出の積み重ねにより疑似振動Vi3’及び適応フィルタ32fを真値へ収束させるものであり、制振すべき位置posでの相殺誤差として残る振動(Vi3+Vi4)の位相φと疑似振動Vi3’に基づき制振すべき位置posに発生される相殺振動Vi4の位相φ’との位相差Δφを特定する位相差特定手段34と、位相差特定手段34により特定された位相差Δφに基づいて適応フィルタ32fの算出時に用いられる基準波の位相を補正する基準波位相補正手段35とを設けたことを特徴とする。
【0051】
本実施形態によれば、振動発生源gnから制振すべき位置posへ伝達した振動Vi3を相殺するために必要な疑似振動Vi3’が適応フィルタ32fを用いて疑似振動算出手段32により算出され、算出された疑似振動Vi3’に基づいて相殺振動Vi4を制振すべき位置posに発生させる指令たる相殺信号が相殺信号生成手段33により生成され、相殺信号が加振手段2に入力されて相殺振動Vi4が加振手段2を通じて制振すべき位置posに発生され、制振すべき位置posにおいて振動発生源gnで生じた振動Vi3と相殺振動Vi4との相殺誤差として残る振動(Vi3+Vi4)が振動検出手段1により検出され、検出された振動(Vi3+Vi4)と適応フィルタ32fの算出基礎となる基準波とに基づいて相殺誤差として残る振動(Vi3+Vi4)が小さくなるように疑似振動算出手段32により適応フィルタ32fが算出され、算出の積み重ねにより疑似振動Vi3’及び適応フィルタ32fを真値へ収束させる制振制御が実施される。この制振制御の実施に際し、位相差特定手段34により制振すべき位置posでの相殺誤差として残る振動(Vi3+Vi4)の位相φと疑似振動Vi3’に基づき制振すべき位置posに発生される相殺振動Vi4の位相φ’との位相差Δφが特定され、特定された位相差Δφに基づいて適応フィルタ32fの算出時に用いられる基準波の位相が補正されるので、適応フィルタ32fの算出時に算出基礎となる基準波の位相が適応フィルタ32fの真値の位相φに近づき、制振すべき振動と基準波との間の位相ズレに起因して適応フィルタが追従できずに結果として振動が増大することを回避して、制振安定性を向上させることができる。また、適応フィルタ32fの算出時に算出基礎となる基準波の位相が適応フィルタ32fの真値の位相φに近づき、適応フィルタ32fの算出により埋めなければならない位相ズレが小さくなるので、制振の応答性や制振効果を更に向上させることが可能となる。
【0052】
特に自動車のエンジンで生じる振動を制振する場合は、エンジンの回転数やアクセル開度によって発生する加振力や位相は常に変化して適応フィルタの真値が常に変動するので、適応フィルタ32fが発散しやすく制振制御が難しいものであるが、本実施形態では適応フィルタ32fの算出時に用いられる基準波の位相が補正されるので、適応フィルタ32fの真値が常に変動するような場合であってもこれ対して算出の基礎となる基準波を追従させて適切に適応フィルタ32fを導出することが可能となる点で有効である。
【0053】
さらに、例えば経年変化や温度変化等により加振手段2から制振すべき位置posまでの振動伝達特性の位相の変化等により逆伝達関数記憶部33aに予め記憶されている逆伝達関数の位相成分Pと実際の逆伝達関数の位相成分とが一致しない場合であっても、本実施形態では、制振すべき位置posでの相殺誤差として残る振動(Vi3+Vi4)の位相φと疑似振動Vi3’
に基づき制振すべき位置posに発生される相殺振動Vi4の位相φ’との位相差Δφが無くなる方向へ位相を補正した相殺振動Vi4を発生させる指令である相殺信号が生成されるので、逆伝達関数記憶部33aに予め記憶されている逆伝達関数の位相成分Pと実際の逆伝達関数の位相成分とが一致しなくなることに起因する相殺誤差としての振動(Vi3+Vi4)を低減し、制振効果を向上させることが可能となる。
【0054】
さらにまた、本実施形態では、位相の補正が、予め設定された補正一回当たりの上限補正量を超えない補正量である一定値のステップSを用いて行われるものであるので、場合によるが位相補正を複数回に分けて少しずつ実施し、補正一回当たりの上限補正量を超えた大きな補正量で補正を実施することにより位相が急激に変化して制御が不安定になることを防止でき、制振制御の安定性を損なうことなく制振性を向上させることができる。
【0055】
さらに、本実施形態では、位相の補正が、位相差特定手段34により特定された位相差Δφのズレ量が予め設定された閾値よりも大きいときに位相の補正を実施し、位相差Δφのズレ量が閾値以下であるときに位相の補正を実施しないので、位相差Δφが軽微であるときには位相の補正を実施しない不感帯を設け、演算の省略ができるとともに、得られる効果が乏しい位相補正の実施を防止することができる。
【0056】
その他、本実施形態では、上記制振装置を自動車等の車両に備えているので、乗員に快適な乗り心地を提供することができる。
【0057】
以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本発明の範囲は、上記した実施形態の説明だけではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
【0058】
例えば、本実施形態では、逆伝達関数位相設定部50に予め記憶されている逆伝達関数の位相成分Pを発振器52にのみ入力しているが、図9に示すように、逆伝達関数の位相成分Pを基準波生成部43にも入力するように構成してもよい。
【0059】
さらに、正弦成分αは変動が激しいので正弦成分αにLPF(ローパスフィルタ)を掛けて脈動分を除去し、このLPFを通した正弦成分αに基づいて位相補正量算出部70で位相補正量P’を算出するようにしてもよい。このように構成すると、安定した位相補正の実現に資することが可能となる。
【0060】
さらにまた、本実施形態では、基準波位相補正手段35は、位相差Δφのズレ量に係わらず補正一回当たりの上限補正量である一定値のステップSを補正量として決定し、この補正量を付加して補正を実施しているが、位相差Δφのズレ量に応じた大きさの補正量を決定し、この補正量を用いて位相補正を実施するようにしてもよい。このように構成すると、位相差Δφのズレ量が大きい場合には位相の補正量を大きくし、位相差Δφのズレ量が小さい場合には位相の補正量を小さくして、位相の補正回数を低減し、位相の補正を迅速かつ適切に実施することが可能となる。
【0061】
その他、各部の具体的な構成は、上述した実施形態のみに限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。
【符号の説明】
【0062】
1…………振動検出手段(加速度センサ)
2…………加振手段(リニアアクチュエータ)
3…………制御手段
31………基準波生成手段
32………疑似振動算出手段
32f……適応フィルタ
33………相殺信号生成手段
34………位相差特定手段
35………基準波位相補正手段
φ、φ’…位相
Δφ………位相差
gn………振動発生源
pos……制振すべき位置
Vi1……振動発生源で生ずる振動
Vi2……加振手段で発生する振動
Vi3……制振すべき位置での振動
Vi3’…制振すべき位置での振動を模擬した疑似振動
Vi4……相殺振動


【特許請求の範囲】
【請求項1】
振動発生源で生じる振動と加振手段を通じて発生させる相殺振動とを制振すべき位置で相殺するにあたり、適応フィルタを用いて前記振動発生源から前記制振すべき位置へ伝達した振動を相殺するために必要な疑似振動を算出する疑似振動算出手段と、前記疑似振動算出手段により算出された疑似振動に基づいて前記相殺振動を前記制振すべき位置に発生させる指令たる相殺信号を生成し生成した相殺信号を前記加振手段へ入力する相殺信号生成手段と、前記制振すべき位置において前記振動発生源で生じた振動と前記相殺振動との相殺誤差として残る振動を検出する振動検出手段とを具備し、前記疑似振動算出手段は、前記振動検出手段により検出された振動と前記適応フィルタの算出基礎となる基準波とに基づいて前記相殺誤差として残る振動が小さくなるように前記適応フィルタの算出を繰り返し実行し、算出の積み重ねにより疑似振動及び適応フィルタを真値へ収束させる制振装置であって、
前記制振すべき位置での相殺誤差として残る振動の位相と前記疑似振動に基づき制振すべき位置に発生される相殺振動の位相との位相差を特定する位相差特定手段と、
前記位相差特定手段により特定された位相差に基づいて前記適応フィルタの算出時に用いられる前記基準波の位相を補正する基準波位相補正手段とを設けたことを特徴とする制振装置。
【請求項2】
前記相殺信号生成手段は、前記位相差特定手段により特定された位相差に基づいて当該位相差が無くなる方向へ位相を補正した前記相殺振動に対応する相殺信号を生成する請求項1に記載の制振装置。
【請求項3】
前記位相の補正は、予め設定された補正一回当たりの上限補正量を超えない補正量を用いて行われるものである請求項1又は2に記載の制振装置。
【請求項4】
請求項1〜3のいずれかに記載の制振装置を備えた車両。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2011−112163(P2011−112163A)
【公開日】平成23年6月9日(2011.6.9)
【国際特許分類】
【出願番号】特願2009−269275(P2009−269275)
【出願日】平成21年11月26日(2009.11.26)
【出願人】(000002059)シンフォニアテクノロジー株式会社 (1,111)
【Fターム(参考)】