説明

半導体装置及びその製造方法

【課題】 High−k膜を用い電気的膜厚の異なるゲート絶縁膜を同じ半導体基板表面に高い再現性の下に高精度にしかも簡便に形成する。
【解決手段】 シリコン基板1のnウェル層2表面部が素子分離領域3で区画され、周辺回路部のMISFETでは、膜厚4〜6nmのベース酸化膜4およびその改質層である窒化層4a、High−k膜5およびその改質層である窒化層5aの積層膜で成る第1ゲート絶縁膜6が形成され、内部回路部のMISFETでは、膜厚1nm程度の下地膜12およびその改質層である窒化層12a、上記High−k膜5およびその改質層である窒化層5aの積層膜で成る第2ゲート絶縁膜13が形成される。High−k膜5は、HfSiOx、ZrSiOx、HfAlOxあるいはZrAlOxの絶縁膜が好適となる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体装置及びその製造方法に関するもので、詳しくは、半導体装置に形成された高誘電率絶縁膜(High−k膜)から成る複数種類のゲート絶縁膜を有する絶縁ゲート電界効果トランジスタ(MISFET)およびその半導体基板上への形成方法に関する。
【背景技術】
【0002】
半導体装置を構成するMISFET等の半導体素子はスケーリング則に沿って微細化してきたが、近年、半導体装置の周辺回路部と内部回路部とで異なる駆動電圧を使用することが一般化している。そして、前者では比較的に高い電圧が印加されるため、膜厚の厚いゲート絶縁膜が形成され、後者ではその動作の高速化あるいは低消費電力化のために、膜厚の薄いゲート絶縁膜が形成される。
【0003】
また、最近では、システム・オン・チップ(SoC;System on Chip)と言われるように、デジタル回路(例えばロジック回路、メモリ回路)あるいはアナログ回路をシリコン半導体チップ上に混載させることによる半導体装置の多機能化あるいはシステム化が精力的に進められている。このような半導体装置にあっては、半導体装置は複数種の電圧でもって駆動される。そして、シリコン半導体チップ内には電気的膜厚の異なるゲート絶縁膜が形成され、半導体装置の各構成回路部にそれぞれ上記異なるゲート絶縁膜を有するMISFETが使用される。たとえば、ロジック回路部では材質が異なりシリコン酸化膜の換算膜厚の薄いゲート絶縁膜が形成され、メモリ回路部あるいはアナログ回路部では換算膜厚の厚いゲート絶縁膜が形成される。ここで、電気的膜厚の異なるゲート絶縁膜とは材質が同じで膜厚の異なるゲート絶縁膜、あるいは、材質又は比誘電率が異なるゲート絶縁膜のことであり、以下、簡便のためにシリコン酸化膜の換算膜厚で説明し換算膜厚が異なるゲート絶縁膜ともいう。
【0004】
上述した膜厚の異なるゲート絶縁膜を形成するための従来の製造方法について図9を参照して具体的に説明する(以下、この場合を第1の従来例と記す)。この従来技術は、半導体素子の設計基準が130nm程度の半導体装置製品の量産技術として使用されている。
【0005】
図9(a)に示すように、シリコン基板101の表面部に、周知の方法で浅いトレンチ分離(STI;Shallow Trench Isolation)による素子分離領域102を形成し、熱酸化により基板表面全体に厚さ6nm程度の第1のシリコン酸化膜103を形成する。ここで、図示しないがシリコン基板101表面にイオン注入を施しウェル領域あるいはチャネル領域を形成する。
【0006】
次に、図9(b)に示すように、フォトリソグラフィ技術によりレジストマスク104を形成し、レジストマスク104をエッチングマスクとし弗酸(HF)系化学薬液でのウェットエッチングを行い、マスク開口部の第1のシリコン酸化膜103を除去してシリコン基板101表面を露出させる。続いて、図9(c)に示すように、レジストマスク104を除去し、シリコン基板101表面の所定の領域にのみ第1のシリコン酸化膜103を残す。
【0007】
このようにした後、再度シリコン基板101の熱酸化を行い、例えば3nm程度の膜厚の薄い第2のシリコン酸化膜105を形成する。このとき、第1のシリコン酸化膜103は少し膜厚が増加し膜厚は7nm強になる。このようして、シリコン基板101表面に形成した膜厚の異なる第1のシリコン酸化膜103、第2のシリコン酸化膜105をゲート絶縁膜とし、後は図示しないが公知の方法でこれらのゲート絶縁膜上にゲート電極を形成し、更にソース・ドレイン拡散層を形成することで、上述したところの電気的膜厚の異なるゲート絶縁膜を有するMISFETが形成されるようになる。
【0008】
上述した膜厚の異なるゲート絶縁膜を形成するための別の従来の製造方法(以下、第2の従来例と記す)について図9,10を参照して説明する(例えば、特許文献1参照)。この第2の従来例は、半導体素子の設計基準が90nm程度の半導体装置に適用できるものである。
【0009】
図9(a)に示した工程では、上述したようにシリコン基板101上に素子分離領域102を形成し基板表面全体に熱酸化により10nm程度の第1のシリコン酸化膜103を形成する。但し、この従来技術の場合では、第1のシリコン酸化膜103は後に完全に除去されて製品には残らない犠牲酸化膜となる。そして、第1のシリコン酸化膜103を通してイオン注入を行い、ウェル層およびチャネル領域(不図示)を形成する。続いて、第1の従来例と全く同様に図9(b)、図9(c)に示す工程を通して、シリコン基板101表面の一領域を露出させ、他領域にのみ第1のシリコン酸化膜103を残す。
【0010】
次に、図10(a)に示すように、NOガスあるいはNOガス雰囲気中でアニール(熱酸窒化)を行い、シリコン基板101の上記露出した領域にシリコン酸窒化膜106を形成する。この熱酸窒化では、第1のシリコン酸化膜103も酸窒化されるが、第1のシリコン酸化膜103の膜厚が比較的に厚いために膜中に導入される窒素量は少ない。
【0011】
次に、図10(b)に示すように、希弗酸処理により第1のシリコン酸化膜103を除去するように全面のウェットエッチング処理を施し第1のシリコン酸化膜103を完全に除去する。この希弗酸処理では、シリコン酸窒化膜106は膜中に高濃度の窒素を含んでいるために、そのエッチング速度は第1のシリコン酸化膜103のそれよりも小さく、この結果、シリコン酸窒化膜106の全部はエッチングされずに薄いシリコン酸窒化膜106aとして残存するようになる。
【0012】
そして、このようにした後、図10(c)に示すように、再度の熱酸化を行う。この熱酸化により、第1のシリコン酸化膜103を除去し露出したシリコン基板101表面では酸化速度が高く、良質の厚い第2のシリコン酸化膜108が形成される。これに対し、薄いシリコン酸窒化膜106aが存在する領域では酸化速度は低く、膜中に窒素を含む薄い酸窒化膜107が形成されることなる。そして、このようにして得られた薄い酸窒化膜107および第2のシリコン酸化膜108が、それぞれMISFETのゲート絶縁膜として用いられる。
【0013】
この方法では、第1の従来例のように、レジストマスク104で直接に被覆された第1のシリコン酸化膜103は、ゲート絶縁膜として使用されることがないために、MISFETのゲート絶縁膜品質が向上するとしている。
【0014】
膜厚の異なるゲート絶縁膜を形成するための従来の製造方法としては、この他にシリコン基板表面に窒素原子を導入する方法(以下、第3の従来例と記す)が提案されている。この方法は、窒素原子の導入によりシリコン基板表面の熱酸化速度が低くなることを利用した技術である。具体的には、シリコン基板表面領域にイオン注入等で窒素原子を選択的に導入した後に、シリコン基板に熱酸化を施すことで、窒素原子を導入したシリコン基板表面に薄いシリコン酸化膜を形成し、窒素原子を導入しないシリコン基板表面に厚いシリコン酸化膜を同時に形成する方法である。更には、シリコン基板表面の各領域に導入する窒素原子量を種々に変えることで、それに対応した種々の膜厚のシリコン酸化膜を基板表面に同時に形成する方法である。
【特許文献1】特開2002−110812号公報(段落[0044]〜[0050]、図1)
【発明の開示】
【発明が解決しようとする課題】
【0015】
半導体装置を構成する半導体素子の微細化は半導体装置の高性能化およびSoC化において最重要な技術事項であり、フォトリソグラフィ技術およびドライエッチング技術のような微細加工技術、薄膜形成技術等を含む半導体製造に用いられる製造技術が種々に研究開発され、現在の量産製造レベルの130nm〜90nmの製造技術から設計基準が65nm更には45nmの製造技術に向けて精力的に進められている。ここで、設計基準65nmの製造技術では、駆動電圧0.9Vのデジタル回路領域に用いられる最も薄いゲート絶縁膜の膜厚は、換算膜厚で1.2nm程度あるいはそれ以下になってくる。
【0016】
このように半導体素子の微細化が進みゲート絶縁膜の換算膜厚が薄くなってくると、第1,2,3の従来例で説明したシリコン酸化膜あるいは酸窒化膜のような窒素含有のシリコン酸化膜から成るゲート絶縁膜では、MISFETの駆動において、ゲート絶縁膜中のリーク電流すなわちゲート漏れ電流が非常に多くなり、半導体装置の消費電力が増大すると共に、その誤動作の大きな要因になる。このゲート絶縁膜中のリーク電流値を抑制し低減させるためには、金属酸化膜のようなHigh−k膜をゲート絶縁膜に適用することが必須になってくる。また、High−k膜を適用したゲート絶縁膜において、換算膜厚の異なるゲート絶縁膜を同一チップ内に形成することも必須になってくる。ここで、High−k膜は、二酸化シリコン膜(比誘電率3.9)よりも比誘電率の大きな絶縁膜であり、種々の金属酸化膜、金属シリケート、金属アルミネートの絶縁膜である。
【0017】
しかし、これまでに、High−k膜をMISFETのゲート絶縁膜に用い、換算膜厚の異なるゲート絶縁膜を同一チップ内に実用化レベルで適用できる具体的な提案はなされていない。その第1の理由は、一般にHigh−k膜の熱的安定性が小さいために、半導体装置の製造工程における熱プロセスで膜の組成変化が生じ易く、半導体装置の製造プロセスとの整合性がとりにくいからである。その第2の理由は、High−k膜がシリコン基板あるいはゲート電極を構成する多結晶シリコン膜と界面反応を起こし易く、その膜厚制御が難しくなるからである。そして、その第3の理由は、High−k膜中のいわゆるボロン突き抜け生じ易く、特にpチャネルMISFETの閾値制御が難しくなるからである。
【0018】
本発明は、上述の事情に鑑みてなされたもので、MISFETのゲート絶縁膜にHigh−k膜を適用し、実用レベルにおいて電気的膜厚の異なるゲート絶縁膜をシリコン半導体チップ上に形成した半導体装置及びその製造方法を提供することを目的としている。
【課題を解決するための手段】
【0019】
上記課題を解決するために、半導体装置にかかる第1の発明は、電気的膜厚の異なるゲート絶縁膜が同じ半導体基板上に形成された絶縁ゲート電界効果トランジスタを含んで成る半導体装置であって、前記半導体基板上に形成され、その表面が窒素含有層に改質された第1の酸化膜と、その表面が窒素含有層に改質された高誘電率絶縁膜とをこの順に積層した構造を含んで成る第1のゲート絶縁膜を有する絶縁ゲート電界効果トランジスタと、前記半導体基板上に形成され、前記第1の酸化膜の膜厚より薄くその表面が窒素含有層に改質された第2の酸化膜と、その表面が窒素含有層に改質された前記高誘電率絶縁膜とをこの順に積層した構造を含んで成る第2のゲート絶縁膜を有する絶縁ゲート電界効果トランジスタと、を含む構成となっている。
【0020】
あるいは、半導体装置にかかる発明は、電気的膜厚の異なるゲート絶縁膜が同じ半導体基板上に形成された絶縁ゲート電界効果トランジスタを含んで成る半導体装置であって、前記半導体基板上に形成され、その表面が窒素含有層に改質された第1の酸化膜と、その表面が窒素含有層に改質された高誘電率絶縁膜と、前記第1の酸化膜の膜厚より厚い第2の酸化膜とをこの順に積層した構造を含んで成る第1のゲート絶縁膜を有する絶縁ゲート電界効果トランジスタと、前記第1の酸化膜と、前記高誘電率絶縁膜とをこの順に積層した構造を含んで成る第2のゲート絶縁膜を有する絶縁ゲート電界効果トランジスタと、を含む構成となっている。
【0021】
上記発明において、前高誘電率絶縁膜は、ハフニア(HfO)、ジルコニア(ZrO)、ハフニウムシリケート(HfSiOx)、ジルコニウムシリケート(ZrSiOx)、ハフニウムアルミネート(HfAlOx)、ジルコニウムアルミネート(ZrAlOx)からなる群より選択された少なくとも一種の絶縁膜である。
【0022】
そして、半導体装置の製造方法にかかる第1の発明は、電気的膜厚の異なるゲート絶縁膜が同じ半導体基板上に形成された絶縁ゲート電界効果トランジスタを含んで成る半導体装置の製造方法であって、前記半導体基板表面に第1の酸化膜を形成する工程と、第1のゲート絶縁膜の形成予定領域の前記第1の酸化膜をマスクで保護し第2のゲート絶縁膜の形成予定領域の前記第1の酸化膜を選択的にエッチング除去する工程と、前記マスクを除去した後、前記第2のゲート絶縁膜の形成予定領域に前記第1の酸化膜より膜厚の薄い第2の酸化膜を形成する工程と、前記第1の酸化膜および前記第2の酸化膜に窒化処理を施し前記第1の酸化膜表面および前記第2の酸化膜表面を窒素含有層に改質する工程と、前記第1の酸化膜および前記第2の酸化膜を被覆する高誘電率絶縁膜を形成する工程と、前記高誘電率絶縁膜に窒化処理を施し前記高誘電率絶縁膜の表面を窒素含有層に改質する工程と、を有し、前記第1の酸化膜と前記高誘電率絶縁膜の積層膜で第1のゲート絶縁膜を形成し、前記第2の酸化膜と前記高誘電率絶縁膜の積層膜で第2のゲート絶縁膜を形成する構成になっている。
【0023】
あるいは、半導体装置の製造方法にかかる発明は、電気的膜厚の異なるゲート絶縁膜が同じ半導体基板上に形成された絶縁ゲート電界効果トランジスタを含んで成る半導体装置の製造方法であって、前記半導体基板表面に第1の酸化膜を形成する工程と、前記第1の酸化膜に窒化処理を施し前記第1の酸化膜表面を窒素含有層に改質する工程と、前記第1の酸化膜を被覆する高誘電率絶縁膜を形成する工程と、前記高誘電率絶縁膜に窒化処理を施し前記高誘電率絶縁膜の表面を窒素含有層に改質する工程と、前記高誘電率絶縁膜を被覆する第2の酸化膜を形成する工程と、第1のゲート絶縁膜の形成予定領域の前記第2の酸化膜をマスクで保護し第2のゲート絶縁膜の形成予定領域の前記第2の酸化膜を選択的にエッチング除去する工程と、を有し、前記第1の酸化膜、前記高誘電率絶縁膜および前記第2の酸化膜の積層膜で第1のゲート絶縁膜を形成し、前記第1の酸化膜と前記高誘電率絶縁の積層膜で第2のゲート絶縁膜を形成する構成になっている。
【発明の効果】
【0024】
本発明によれば、半導体装置を構成するMISFETのゲート漏れ電流を低減させるHigh−k膜を用いた電気的膜厚の異なるゲート絶縁膜が、同一の半導体基板上に高い再現性の下に高精度にしかも簡便に形成できる。
【発明を実施するための最良の形態】
【0025】
以下に、図面を参照して本発明の実施の形態の幾つかを詳細に説明する。
(実施の形態1)
図1は、本発明の実施の形態1にかかる半導体装置の主要部の断面図であり、図2,3はその製造方法を示す工程別素子断面図である。ここでは、半導体素子の設計基準が65nm〜45nmとなる技術世代について示す。この世代では、半導体装置の内部回路には電圧1V以下で動作するMISFETが形成され、そのゲート絶縁膜の膜厚は、シリコン酸化膜換算で1.2nm程度あるいはそれ以下になる。そして、半導体装置の周辺回路、例えば入出力回路には(電源)電圧1.5V〜3.3Vで動作するMISFETが形成され、そのゲート絶縁膜の膜厚は、シリコン酸化膜換算で3nm〜6nm程度になる。ここで、周辺回路は半導体装置により大きく異なるために、その駆動電圧およびゲート絶縁膜の膜厚の使用範囲に幅が生じてくる。
【0026】
以下の説明ではpチャネル型MISFETについて説明するが、nチャネル型MISFETも同様にして形成される。図1に示すように、例えばp導電型のシリコン基板1上の周辺回路部に相当する領域と内部回路部に相当する領域に、換算膜厚の異なるゲート絶縁膜を有する少なくとも2種類のMISFETが形成される。
【0027】
すなわち、上記シリコン基板1表面部にnウェル層2が形成され、nウェル層2の表面部がSTIによる素子分離領域3で区画されている。そして、周辺回路部のMISFETでは、膜厚4〜6nmのベース酸化膜4およびその表面が窒素含有層に改質された窒化層4a、High−k膜5およびその表面が窒素含有層に改質された窒化層5aの積層膜で成る第1ゲート絶縁膜6が形成されている。そして、第1ゲート絶縁膜6上に形成されたp導電型あるいはn導電型の不純物を含有する多結晶シリコン層7、およびシリサイド層8によりゲート電極9が構成され、上記第1ゲート絶縁膜6およびゲート電極9の側壁にはサイドウォール絶縁膜10が設けられている。ここで、ベース酸化膜4はシリコン酸化膜で構成され、High−k膜5は、ハフニア(HfO)、ジルコニア(ZrO)、ハフニウムシリケート(HfSiOx)、ジルコニウムシリケート(ZrSiOx)、ハフニウムアルミネート(HfAlOx)、ジルコニウムアルミネート(ZrAlOx)から成る膜厚が2〜3nmの絶縁膜が好適である。あるいは、High−k膜5は、上記高誘電率絶縁膜のうち2種類以上の絶縁膜を選択し積層した積層構造の絶縁膜で構成されても良い。そして、nウェル層2表面部にソース・ドレイン拡散層11およびシリサイド層8から成るソース・ドレイン領域が設けられている。
【0028】
一方、内部回路部のMISFETでは、膜厚1nm程度の下地膜12およびその表面が窒素含有層に改質された窒化層12a、上記High−k膜5およびその表面の改質層である窒化層5aの積層膜により第2ゲート絶縁膜13が形成され、この第2ゲート絶縁膜13上に上述した多結晶シリコン層7およびシリサイド層8が設けられている。そして、第2ゲート絶縁膜13およびゲート電極9の側壁にはサイドウォール絶縁膜10が設けられ、nウェル層2表面部にソース・ドレイン拡散層11およびシリサイド層8から成るソース・ドレイン領域が設けられている。上記MISFETの第2ゲート絶縁膜13において、下地膜12は、その基本構造はシリコン酸化膜構造になっており、nウェル層2表面においてHigh−k膜5とシリコン基板1との間に介在し、ボロン突き抜け防止とキャリア電荷(正孔)の表面移動度改善等の機能を有している。
【0029】
次に、本発明にかかる上記半導体装置の製造方法をについて、図2,3を参照して説明する。ここで、図1と同じものは同一符号で示している。
【0030】
p導電型のシリコン基板1の表面部にnウェル層2を形成し、nウェル層2の表面部にSTIの素子分離領域3を形成し、シリコン基板1表面に5nm程度のベース酸化膜4を熱酸化で形成する。(図2(a))。
【0031】
次に、公知のフォトリソグラフィ技術により、半導体装置の周辺回路部に相当する領域にレジストマスク14を形成し、レジストマスク14をエッチングマスクとし、純水による2vol%希釈の希弗酸でのウェットエッチング処理を施し、内部回路部に相当する領域に形成されているベース酸化膜4を除去して、内部回路が形成される領域となるシリコン基板1のnウェル層2表面を露出させる(図2(b))。
【0032】
続いて、レジストマスク14を除去しシリコン基板1表面の洗浄を行う。この洗浄工程では、シリコン基板1表面のパーティクル除去が必要になるためにアンモニア(NHOH)水と過酸化水素(H)水と純水との混合液(APM)のような化学薬液中での洗浄を行うと良い。あるいは、硫酸(HSO)溶液と過酸化水素(H)水と純水との混合液(SPM)、塩酸(HCl)溶液と過酸化水素(H)水と純水との混合液(HPM)のような化学薬液を用いた洗浄でも良い。
【0033】
次に、0.1vol%の希弗酸にシリコン基板1を1秒程度のあいだ浸漬し、シリコン基板1表面を水素原子で被覆させる。この被覆処理により、空気中でのシリコン基板1表面の自然酸化は進行し難くなる。しかし、シリコン基板1の保管時間と共に上記水素原子は剥がれ自然酸化膜がシリコン基板1の露出表面に形成してくるので、上記洗浄あるいは被覆処理の後は、シリコン基板1の保管は窒素ガスのような不活性ガスを充満させた空間で行い、シリコン基板1と空気との接触をできるだけ回避するのが良い。
【0034】
そして、時間をあけることなく、希釈酸素の雰囲気における熱酸化あるいは低温(例えば、300℃温度)でのプラズマ酸化を行い、膜厚が1nm程度の下地膜12を形成する。ここで、下地膜12はシリコン酸化膜である(図2(c))。
【0035】
次に、プラズマ窒化法によりベース酸化膜4および下地膜12の表面を窒化し、これらのシリコン酸化膜表面を改質し窒素含有層として窒化層4aおよび12aを形成する(図2(d))。このプラズマ窒化法では、原料ガスであるNガス、N2O、NO、N22、NH3ガスのECR(Electron Cyclotron Resonance)でのプラズマ励起、ICP(Inductively Coupled Plasma)、(マグネトロン型)RFプラズマまたはヘリコン波プラズマでの励起により窒素の活性種を生成し、この活性種を上記シリコン酸化膜の表面に曝露させる。上記活性種には窒素原子イオン、分子イオンあるいは中性ラジカル等が含まれるが、ここで、活性種に窒素の中性ラジカルのみを取り出して窒化層4a、12aを形成すると好適である。例えば、プラズマ励起室で形成した窒素の活性種のうち、寿命の比較的長い中性ラジカルをダウンフロー方式で取り出し、この中性ラジカルを上記ベース酸化膜4および下地膜12表面に照射する。このようにして、中性ラジカルとシリコン酸化膜表面の反応で窒化層4a、12aを形成すると良い。
【0036】
上記窒素の中性ラジカルを用いたプラズマ窒化の方法であると、窒素の活性種が一種類に制御されるために、形成される窒化層4a、12a中の窒素濃度および窒化層の深さが高精度に制御できるようになる。また、この方法はいわゆるリモートプラズマ手法であり、上記イオン照射あるいはプラズマ発光照射を防止できるために、ベース酸化膜4中および下地膜12中の照射損傷が大幅に低減し、高品質のゲート絶縁膜を確保することができる。
【0037】
ここで、活性種がN22、NHガスのように水素を含む原料ガスのプラズマ励起により生成されると、上記窒化層およびシリコン酸化膜内に水素が多量に混入し膜質を低下させる。そこで、この場合には、上記プラズマ窒化後に不活性ガス中での熱処理を施し膜中の水素を脱離させることが好ましい。
【0038】
上述したプラズマ窒化法において、ベース酸化膜4および下地膜12内への窒素の導入量あるいは導入深さは、プラズマ励起の電力パワーのようなプラズマ処理条件あるいは処理時間によって容易に制御できる。図4に窒化層12aでの窒素分布の一例を示す。ここで、上記プラズマ窒化は、NガスをECRでプラズマ励起しダウンフロー方式で窒素の中性ラジカルを下地膜12表面に照射して行った。図4は、窒化層12aのXPS(Xray Photoelectron Spectroscopy)分析により得られた窒素分布図である。図4から判るように窒化層12aの表面の窒素濃度は15at.%〜20at.%であり、表面から深くなるほど窒素濃度は減少し、1nmより深い領域には窒素は存在しなくなる。したがって、下地膜12とnウェル層2の界面には窒素はほとんど存在しない。
【0039】
次に、ベース酸化膜4および下地膜12を被覆するように全面にHigh−k膜5を堆積させる。High−k膜5として、例えば比誘電率が10〜20になるところの、HfAlOx、HfSiOxあるいはHfOの薄膜を形成する。このようなHigh−k膜の成長にはALD(Atomic Layer Deposition)法やMOCVD(Metal Organic Chemical Vapor Deposition)法を用いることが好ましい。例えば、High−k膜としてHfAlOxを上記ALD法を用いて成膜する場合には、基板温度が300℃、成膜の原料物質として四塩化ハフニウム(HfCl)とトリメチルアルミニウム(TMA)を用い、水蒸気(HO)またはオゾン(O)を酸化剤として、膜厚2nm〜3nmのHfAlOxの薄膜を形成する(図3(a))。このHigh−k膜5の成膜において、薄い下地膜12が、nウェル層2表面においてHigh−k膜5とシリコン基板1との界面反応を防止する。
【0040】
なお、上記High−k膜5の形成後に、極微量酸素雰囲気中での熱処理を施しても良い。上述したHfAlOxの薄膜材料を用いる場合では、ランプ式急速昇降温アニール(RTA)装置により、例えば1000℃程度の温度で数秒間熱処理を行う。この熱処理よりHigh−k膜5中の酸素欠損が補償され、同時にHigh−k膜5中に含まれる導電型不純物の濃度を減少させることができる。そして、HfAlOx薄膜の膜質は改善され、ゲート漏れ電流をより一層下げることができる。
【0041】
次に、図2(d)で説明したのと同様にして、プラズマ窒化法によりHigh−k膜5の表面を窒化し、High−k膜5表面を改質し窒素含有層として窒化層5aを形成する(図3(b))。この場合のプラズマ窒化では、プラズマ励起の電力パワーのようなプラズマ処理条件あるいは処理時間は図2(d)で説明したのとほぼ同じで良い。ここで、High−k膜5のプラズマ窒化で形成される窒化層5aの深さは1nm以下となり、ベース酸化膜4あるいは下地膜12のシリコン酸化膜のプラズマ窒化で形成される窒化層4a、12aの深さよりも浅くなる。また、窒化層5aの表面の窒素濃度は20at.%程度になる。
【0042】
次に、プラズマ窒化した上述したHigh−k膜5上に、シリコン膜15を堆積させる。このシリコン膜15の成膜には、化学気相成長(CVD)法である減圧式CVD(LPCVD:Low Pressure Chemical Vapor Deposition)法を用い、その反応ガスとして例えばモノシラン(SiH)ガスあるいはその窒素希釈ガスを用いる。そして、例えば、成膜温度が600℃、成膜圧力が2Paの条件で約40分間の成膜を行う。このようにして、膜厚が150nmの多結晶シリコン膜を形成する(図3(c))。上記シリコン膜15の成膜では、反応ガスにジシラン(Si)ガスを用いても良い。また、熱触媒分解式CVD(Cat−CVD)法やプラズマCVD法で成膜しても良い。
【0043】
上記モノシランガス、あるいはジシランガスのようなシリコン(Si)化合物ガスを原料ガスとしたCVD法によるシリコン膜の成膜においては、通常、中間生成物であるSiH等がその表面で熱分解し、中間生成物であるSi活性種の解離吸着と水素の発生が生じる。そして、シリコン成膜においてHigh−k膜5表面で活性状態になったSi活性種等の中間生成物あるいはこの発生した水素が、特に上記膜上にシリコン膜が成長を始める初期段階において、High−k膜5を還元したり、その表面で活性な状態になった上記解離吸着のSiが膜中の酸素と反応し、上記膜よりも比誘電率の小さいSiOxを含む低誘電率層を形成したりする。しかし、High−k膜5表面が改質され窒化層5aが形成されていると、上記低誘電率層の形成はなくなる。ここで、窒化層5aの表面の窒素濃度は15at.%〜20at.%が好適である。
【0044】
次いで、イオン注入および熱処理(850℃程度)で、シリコン膜15にnあるいはp導電型不純物を導入後、公知のフォトリソグラフィ技術およびエッチング技術を用いて、シリコン膜15、High−k膜5、ベース酸化膜4、下地膜12等を順次にパターニングして、MISFETのゲート部を構成する多結晶シリコン層7、第1ゲート絶縁膜6および第2ゲート絶縁膜13を形成する(図3(d))。
【0045】
その後、図1で説明したように、多結晶シリコン層7をマスクとして自己整合的にボロンをイオン注入し、ソース・ドレイン領域のエクステンション層を形成する。そして、周知の方法によりシリコン酸化膜もしくはシリコン窒化膜からなるサイドウォール絶縁膜10を形成し、多結晶シリコン層7およびサイドウォール絶縁膜10をマスクとして自己整合的にボロンをイオン注入し熱処理(850℃)を施しソース・ドレイン拡散層11を形成する。この後、サリサイド技術と呼ばれる公知の自己整合シリサイド形成技術を用いて、シリサイド層8を多結晶シリコン層7上及びソース・ドレイン拡散層11上に形成する。以下、図示しないが、層間絶縁膜や配線を形成する。このようにして、pチャネル型のMISFETを形成する。
【0046】
上記のようにして作製される半導体装置の入出力回路を構成するMISFETでは、換算膜厚5nm程度の第1ゲート絶縁膜6が形成され、半導体装置の内部回路を構成するMISFETでは、換算膜厚が1nm程度の第2ゲート絶縁膜13が形成される。そして、互いに電気的膜厚の異なるゲート絶縁膜を有するMISFETがシリコン基板1上に形成される。
【0047】
この実施の形態1では、特に内部回路を構成するMISFETの第2ゲート絶縁膜13の下地膜12において、図4で説明したように、窒化層12aの窒素原子はシリコン基板1のnウェル層2界面近傍で少なくなっている。このために、正孔の表面移動度は、従来の技術のようにHigh−k膜とシリコン基板との間に酸窒化膜を形成する場合に比べて高くなる。これについて図5を参照して説明する。ここで、縦軸に正孔の表面移動度を示し、横軸にMISFETのゲート絶縁膜に加わるゲート電界強度を示す。通常、上記移動度は、ゲート電界強度の増加と共に増加しある電界強度以上になるとその値は飽和するようになる。図5に示すように、上記飽和領域において、本発明の実施の形態では従来の技術に比べて、正孔の表面移動度は25〜30%向上するようになる。この正孔の表面移動度の増加により、半導体装置の内部回路の動作速度が30%程度向上するようになる。
【0048】
また、実施の形態1では、High−k膜5表面に窒化層5aを形成するために、上述したシリコン膜15成膜時でのHigh−k膜5表面の組成変化が防止される。そして、上述したプラズマ窒化によりHigh−k膜5の熱的安定性が向上するために半導体装置の製造工程における熱プロセス、特に不純物の活性化のための熱処理(例えば850℃温度)においても膜の組成変化は生じなくなる。しかも、上記窒化層5aを形成するプラズマ窒化法は極めて簡便な方法である。これらのために、ゲート絶縁膜の膜厚制御が容易になり、再現性よく電気的膜厚の異なるゲート絶縁膜を形成することができるようになる。
【0049】
更には、上記High−k膜5表面の窒化層5a、ベース酸化膜4表面の窒化層4aあるいは下地膜12表面の窒化層12aは、pチャネル型MISFETの多結晶シリコン層7にボロン不純物を導入する場合に発生する問題、すなわちボロン不純物がゲート絶縁膜を突き抜けチャネル領域に到達しMISFETの閾値を変えたり、多結晶シリコン層7中の不純物濃度の低下により多結晶シリコン層7界面領域に空乏層が形成されMISFETの駆動能力が低下する問題を解消させることができる。
【0050】
上記実施の形態1では、半導体装置の周辺回路を構成するMISFETのベース酸化膜4を形成した後は、内部回路部のゲート絶縁膜と周辺回路部のゲート絶縁膜は全て同一のプロセス処理により形成される。このために、換算膜厚の異なるゲート絶縁膜を有するMISFETから成る半導体装置の製造が簡便になり、その製造コストが低減できる。
【0051】
(実施の形態2)
図6は、本発明の実施の形態2にかかる半導体装置の主要部の断面図であり、図7,8はその製造方法を示す工程別素子断面図である。ここで、半導体素子の設計基準が65nm以下の例えば45nmとなる技術世代にも適用できるものであり、半導体装置のロジック回路を構成するMISFETのゲート絶縁膜の膜厚が、シリコン酸化膜換算で1.0nm以下となり、半導体装置のメモリ回路を構成するMISFETのゲート絶縁膜の膜厚は、シリコン酸化膜換算で2nm程度となる場合である。
【0052】
以下のMISFETは、pチャネル型、nチャネル型どちらでもよく、それに合わせた導電型不純物を使用すればよい。図6に示すように、シリコン基板21上のメモリ回路部に相当する領域とロジック回路部に相当する領域に、換算膜厚の異なるゲート絶縁膜を有する少なくとも2種類のMISFETが形成される。
【0053】
すなわち、上記シリコン基板21表面部がSTIによる素子分離領域22で区画され、メモリ回路部のMISFETでは、膜厚1nm以下の下地膜23およびその表面の改質層である窒化層23a、High−k膜24およびその表面の改質層である窒化層24a、そして上部酸化膜25の積層膜で成る第1ゲート絶縁膜26が形成されている。そして、第1ゲート絶縁膜26上に形成された不純物含有の多結晶シリコン層27、およびシリサイド層28によりゲート電極29が構成され、上記第1ゲート絶縁膜26およびゲート電極29の側壁にはサイドウォール絶縁膜30が設けられている。ここで、下地膜23は、実施の形態1で説明した下地膜12と同じような材料膜で良い。High−k膜24は、ハフニア(HfO)、ジルコニア(ZrO)、ハフニウムシリケート(HfSiOx)、ジルコニウムシリケート(ZrSiOx)、ハフニウムアルミネート(HfAlOx)、ジルコニウムアルミネート(ZrAlOx)から成る膜厚が2〜3nmの絶縁膜が好適である。上部酸化膜25はCVDで成膜するシリコン酸化膜で良い。そして、シリコン基板21表面部にソース・ドレイン拡散層31およびシリサイド層28から成るソース・ドレイン領域が設けられている。
【0054】
一方、ロジック回路部のMISFETでは、上述した膜厚1nm以下の下地膜23およびその表面の改質層である窒化層23a、High−k膜24およびその表面の改質層である窒化層24aにより第2ゲート絶縁膜32が形成され、第2ゲート絶縁膜32上に上述した多結晶シリコン層27およびシリサイド層28が設けられている。そして、第2ゲート絶縁膜32およびゲート電極29の側壁にはサイドウォール絶縁膜30が設けられ、シリコン基板21表面部にソース・ドレイン拡散層31およびシリサイド層28から成るソース・ドレイン領域が設けられている。
【0055】
次に、本発明にかかる上記半導体装置の製造方法をについて、図7,8を参照して説明する。ここで、図6と同じものは同一符号で示している。
【0056】
シリコン基板21の表面部にSTIの素子分離領域22を形成し、シリコン基板21表面に1nm以下の下地膜23を、図2(c)で説明したのと同様な熱酸化あるいはプラズマ酸化の方法により形成する。(図7(a))。
【0057】
次に、実施の形態1で説明したプラズマ窒化法により下地膜23の表面を窒化し、その表面を改質し窒素含有層として窒化層23aを形成する(図7(b))。ここで、プラズマ励起で生成する活性種のうち窒素の中性ラジカルのみを取り出して窒化層23aを形成すると好適である。
【0058】
次に、全面に膜厚が2nm〜3nmのHigh−k膜24を堆積させる。ここで、High−k膜24は、実施の形態1と全く同様にして形成する(図7(c))。
【0059】
そして、上述したようにプラズマ窒化法によりHigh−k膜24の表面を窒化し、High−k膜24表面を改質し窒素含有層として窒化層24aを形成する(図7(d))。この場合のプラズマ窒化では、図2(d)で説明した場合よりもプラズマ励起の電力パワーを大きくし処理時間も長くする。ここで、High−k膜5のプラズマ窒化で形成される窒化層5aの深さは1.5nm程度となり、窒化層24aの表面の窒素濃度は30at.%程度に高くなる。
【0060】
次に、例えばシランガスおよび亜酸化窒素(NO)ガスを原料ガスとしたCVD法により、膜厚が2nm程度のシリコン酸化膜を成膜し、上部酸化膜25をHigh−k膜24の窒化層24a上に形成する(図8(a))。このシリコン酸化膜の成膜工程において、窒化層24aは、図3で説明したシリコン膜15の成膜において説明したのと同様に、High−k膜24の表面が一部SiO膜に組成変化するのを防止する機能を有する。
【0061】
次に、公知のフォトリソグラフィ技術により、半導体装置のメモリ回路部に相当する全領域にレジストマスク26を形成し、レジストマスク26をエッチングマスクとし、純水による0.2vol%希釈の希弗酸でのウェットエッチング処理を施し、内部回路部に相当する領域に形成されている上部酸化膜25を除去して、内部回路部の窒化層24a表面を露出させる(図8(b))。ここで、上述したように窒化層24a表面の窒素濃度が30at.%程度であると上記希弗酸に対してエッチング耐性が高く、窒化層24aは、上記ウェットエッチング処理においてHigh−k膜24をエッチングから完全に保護する。
【0062】
続いて、レジストマスク26を除去しシリコン基板21の洗浄を行う。この洗浄工程では、上述したAPM、SPM、HPMのような化学薬液を用いると好適である。
【0063】
次に、実施の形態1の図3(c)で説明したのと同様にしてシリコン膜を全面に堆積させ、イオン注入および熱処理によりシリコン膜に導電型不純物を導入後、公知のフォトリソグラフィ技術およびエッチング技術を用いて、シリコン膜、上部酸化膜25、High−k膜24、下地膜23等を順次にパターニングして、MISFETのゲート部を構成する多結晶シリコン層27、第1ゲート絶縁膜26および第2ゲート絶縁膜32を形成する(図8(c))。
【0064】
その後は、図6で説明したように、多結晶シリコン層27をマスクとして自己整合的に所望の不純物のイオン注入し、ソース・ドレイン領域のエクステンション層を形成する。そして、周知の方法によりシリコン酸化膜もしくはシリコン窒化膜からなるサイドウォール絶縁膜30を形成し、多結晶シリコン層27およびサイドウォール絶縁膜30をマスクとして自己整合的に所望の不純物をイオン注入し熱処理を施しソース・ドレイン拡散層31を形成する。この後、サリサイド技術を用いて、シリサイド層28を多結晶シリコン層27上及びソース・ドレイン拡散層31上に形成する。
【0065】
以下、図示しないが層間絶縁膜や配線を形成し、nチャネル型あるいはpチャネル型のMISFETを形成する。上記のようにして作製される半導体装置のメモリ回路を構成するMISFETでは、換算膜厚2nm程度の第1ゲート絶縁膜26が形成され、半導体装置のロジック回路を構成するMISFETでは、換算膜厚が1nm以下の第2ゲート絶縁膜32が形成される。そして、互いに電気的膜厚の異なるゲート絶縁膜を有するMISFETがシリコン基板21上に形成されるようになる。
【0066】
実施の形態2においては、上部酸化膜25に替えて、High−k膜24とは別種の高誘電率絶縁膜をHigh−k膜24上に積層するように形成しても良い。あるいは、上部酸化膜25に替えて金属窒化膜あるいはシリコン窒化膜を形成しても良い。ここで、金属窒化膜としてはHfON膜、AlN膜等がある。
【0067】
上記実施の形態2では、実施の形態1の場合と異なり、上部酸化膜25の堆積により換算膜厚の異なるゲート絶縁膜を形成する。ここで、上部酸化膜25として比誘電率の高い絶縁膜を使用することが容易になることから、実施の形態1の場合よりも換算膜厚の薄いゲート絶縁膜を有するMISFETが簡便に製造できる。そして、実施の形態1で説明した効果は全く同様に生じる。
【0068】
以上、この発明の実施の形態を図面を参照して詳述してきたが、具体的な構成はこの実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があってもこの発明に含まれる。例えば、MISFETのソース・ドレイ拡散層を形成後にそのゲート電極を層間絶縁膜の開口部に埋め込む、いわゆる、ダマシンゲート電極の構造となるMISFETに本発明の方法を適用してもよい。
【0069】
また、電気的膜厚の異なるゲート絶縁膜としては、3種類以上の電気的膜厚の異なるゲート絶縁膜であってもよい。3種類以上のゲート絶縁膜を形成する場合には、実施の形態1においてはベース酸化膜4の膜厚を2種類以上に形成することで簡単に対応できる。また、実施の形態2においては上部酸化膜25を2種類以上にすることで同様に対応できる。
【0070】
また、High−k膜に用いる金属酸化膜としては、La、Y等のランタノイド系元素の酸化膜、酸化タンタル膜、酸化ハフニウム膜、酸化ジルコニウム膜、チタン酸ストロンチウム膜(STO膜)、チタン酸バリウムストロンチウム膜(BST膜)のような高誘電率絶縁膜あるいはチタン酸ジルコン酸鉛膜(PZT膜)のような強誘電体膜を用いてもよい。
【0071】
また、High−k膜に用いる金属シリケート膜としては、実施の形態で説明したハフニウムシリケート膜あるいはジルコニウムシリケート膜の他に、La、Y等のランタノイド系元素のシリケート膜あるいは高融点金属のシリケート膜、更には、これらのシリケート膜の複合したシリケート膜を用いてもよい。
【0072】
また、High−k膜に用いる金属アルミネート膜としては、実施の形態で説明したハフニウムアルミネート膜あるいはジルコニウムアルミネート膜の他に、La、Y等のランタノイド系元素のアルミネート膜あるいは高融点金属のアルミネート膜、更には、これらのアルミネート膜の複合膜を用いてもよい。あるいは、シリケート膜とアルミネート膜の複合膜を使用することもできる。
【0073】
更には、シリコン基板上に半導体装置を形成する場合の他に、GaAs基板、GaN基板のような化合物半導体基板にMISFETを構成する場合にも同様に適用できる。
【図面の簡単な説明】
【0074】
【図1】本発明の実施の形態1にかかる半導体装置の断面図である。
【図2】本発明の実施の形態1にかかる半導体装置の製造方法を示す工程別素子断面図である。
【図3】図2に示す工程の続きの工程別断面図である。
【図4】本発明の実施の形態で形成した下地膜中の窒素の濃度分布図である。
【図5】本発明の実施の形態の効果を説明するためのグラフである。
【図6】本発明の第2の実施の形態にかかる半導体装置の断面図である。
【図7】本発明の第2の実施の形態にかかる半導体装置の製造方法を示す工程別素子断面図である。
【図8】図7に示す工程の続きの工程別断面図である。
【図9】従来の技術を説明するための半導体装置の製造方法を示す工程別素子断面図である。
【図10】従来の技術を説明するための半導体装置の製造方法を示す工程別素子断面図である。
【符号の説明】
【0075】
1,21 シリコン基板
2 nウェル層
3,22 素子分離領域
4 ベース酸化膜
4a、5a、12a、23a、24a 窒化層
5,24 High−k膜
6,26 第1ゲート絶縁膜
7,27 多結晶シリコン層
8,28 シリサイド層
9,29 ゲート電極
10,30 サイドウォール絶縁膜
11,31 ソース・ドレイン拡散層
12,23 下地膜
13,32 第2ゲート絶縁膜
14,26 レジストマスク
15 シリコン膜
25 上部酸化膜

【特許請求の範囲】
【請求項1】
電気的膜厚の異なるゲート絶縁膜が同じ半導体基板上に形成された絶縁ゲート電界効果トランジスタを含んで成る半導体装置であって、
前記半導体基板上に形成され、その表面が窒素含有層に改質された第1の酸化膜と、その表面が窒素含有層に改質された高誘電率絶縁膜とをこの順に積層した構造を含んで成る第1のゲート絶縁膜を有する絶縁ゲート電界効果トランジスタと、
前記半導体基板上に形成され、前記第1の酸化膜の膜厚より薄くその表面が窒素含有層に改質された第2の酸化膜と、その表面が窒素含有層に改質された前記高誘電率絶縁膜とをこの順に積層した構造を含んで成る第2のゲート絶縁膜を有する絶縁ゲート電界効果トランジスタと、
を有することを特徴とする半導体装置。
【請求項2】
電気的膜厚の異なるゲート絶縁膜が同じ半導体基板上に形成された絶縁ゲート電界効果トランジスタを含んで成る半導体装置であって、
前記半導体基板上に形成され、その表面が窒素含有層に改質された第1の酸化膜と、その表面が窒素含有層に改質された高誘電率絶縁膜と、前記第1の酸化膜の膜厚より厚い第2の酸化膜とをこの順に積層した構造を含んで成る第1のゲート絶縁膜を有する絶縁ゲート電界効果トランジスタと、
前記第1の酸化膜と、前記高誘電率絶縁膜とをこの順に積層した構造を含んで成る第2のゲート絶縁膜を有する絶縁ゲート電界効果トランジスタと、
を有することを特徴とする半導体装置。
【請求項3】
前高誘電率絶縁膜は、ハフニア(HfO)、ジルコニア(ZrO)、ハフニウムシリケート(HfSiOx)、ジルコニウムシリケート(ZrSiOx)、ハフニウムアルミネート(HfAlOx)、ジルコニウムアルミネート(ZrAlOx)からなる群より選択された少なくとも一種の絶縁膜であることを特徴とする請求項1又は2に記載の半導体装置。
【請求項4】
電気的膜厚の異なるゲート絶縁膜が同じ半導体基板上に形成された絶縁ゲート電界効果トランジスタを含んで成る半導体装置の製造方法であって、
前記半導体基板表面に第1の酸化膜を形成する工程と、
第1のゲート絶縁膜の形成予定領域の前記第1の酸化膜をマスクで保護し第2のゲート絶縁膜の形成予定領域の前記第1の酸化膜を選択的にエッチング除去する工程と、
前記マスクを除去した後、前記第2のゲート絶縁膜の形成予定領域に前記第1の酸化膜より膜厚の薄い第2の酸化膜を形成する工程と、
前記第1の酸化膜および前記第2の酸化膜に窒化処理を施し前記第1の酸化膜表面および前記第2の酸化膜表面を窒素含有層に改質する工程と、
前記第1の酸化膜および前記第2の酸化膜を被覆する高誘電率絶縁膜を形成する工程と、
前記高誘電率絶縁膜に窒化処理を施し前記高誘電率絶縁膜の表面を窒素含有層に改質する工程と、
を有し、
前記第1の酸化膜と前記高誘電率絶縁膜の積層膜で第1のゲート絶縁膜を形成し、前記第2の酸化膜と前記高誘電率絶縁膜の積層膜で第2のゲート絶縁膜を形成することを特徴とする半導体装置の製造方法。
【請求項5】
電気的膜厚の異なるゲート絶縁膜が同じ半導体基板上に形成された絶縁ゲート電界効果トランジスタを含んで成る半導体装置の製造方法であって、
前記半導体基板表面に第1の酸化膜を形成する工程と、
前記第1の酸化膜に窒化処理を施し前記第1の酸化膜表面を窒素含有層に改質する工程と、
前記第1の酸化膜を被覆する高誘電率絶縁膜を形成する工程と、
前記高誘電率絶縁膜に窒化処理を施し前記高誘電率絶縁膜の表面を窒素含有層に改質する工程と、
前記高誘電率絶縁膜を被覆する第2の酸化膜を形成する工程と、
第1のゲート絶縁膜の形成予定領域の前記第2の酸化膜をマスクで保護し第2のゲート絶縁膜の形成予定領域の前記第2の酸化膜を選択的にエッチング除去する工程と、
を有し、
前記第1の酸化膜、前記高誘電率絶縁膜および前記第2の酸化膜の積層膜で第1のゲート絶縁膜を形成し、前記第1の酸化膜と前記高誘電率絶縁の積層膜で第2のゲート絶縁膜を形成することを特徴とする半導体装置の製造方法。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2006−60155(P2006−60155A)
【公開日】平成18年3月2日(2006.3.2)
【国際特許分類】
【出願番号】特願2004−243126(P2004−243126)
【出願日】平成16年8月24日(2004.8.24)
【出願人】(000005821)松下電器産業株式会社 (73,050)
【Fターム(参考)】