説明

圧電式センサ

【課題】人や機械などの運動検出対象に取り付けるセンサ自体がセンシングするのに電源を必要とせず、センサ内部で発生する電気エネルギーを用いて光通信をする、比較的シンプルな構成で使用しやすい圧電式センサを提供することである。
【解決手段】圧電式センサは、運動検出対象13の運動に応じて変形運動を起こす様に設置された圧電素子を含む圧電バイモルフ素子1などの圧電構造体と、変形運動により生じる電気エネルギーを用いて変形運動に対応して発光する発光素子2を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、人間工学、医療、精神心理学等の分野で使用される生体センサなどとして使用され得る圧電素子を用いた圧電式センサ、それを用いたセンサシステムや運動検知方法に関するものであり、特に呼吸数或いは心拍数の計測装置として使用され得る圧電式センサなどに関するものである。
【背景技術】
【0002】
従来、呼吸数の計測には、呼吸バンドを胸に巻いて、その収縮を歪センサにより測定する方法や、呼吸マスクやマウスピースを用いて、呼気を測定する方法が用いられている(特許文献1、特許文献2参照)。一方、心拍数を計測するには、心電図による方法や、加速度検出器を使った方法が用いられている(特許文献3参照)。
【特許文献1】特開平7−8472号公報
【特許文献2】特開平9−299353号公報
【特許文献2】特開平8−280636号公報
【発明の開示】
【発明が解決しようとする課題】
【0003】
しかしながら、特許文献1や特許文献2の方法は、計測用のケーブルが必要であったり、呼吸マスクやマウスピースでは外観上の問題があることから、通常の業務や日常生活において使用するには適していない。
【0004】
また、心電図による方法は、安定したデータが得られる利点があるが、体表面に電極を付けなくてはならないことや計測用のケーブルが必要であること、さらに測定時の姿勢が制限されることなどから、通常の業務や日常生活において使用するには適していない。
【0005】
さらに、加速度検出器を使った特許文献3の方法は、1cm×2cm×0.5cm程度の小さな加速度検出子を人体上の1点に装着し、この部分の加速度を無線によって測定器へ飛ばす様にしたものであるが、加速度検出器で測定したデータを無線で測定器に飛ばすための装置が必要になることや加速度検出器を動作させるための電源などが必要となる。
【課題を解決するための手段】
【0006】
上記課題に鑑み、本発明の圧電式センサは、運動検出対象の運動に応じて変形運動を起こす様に設置された圧電素子を含む圧電構造体(圧電バイモルフ素子など)と、前記変形運動により生じる電気エネルギーを用いて変形運動に対応して発光する発光素子を備えることを特徴とする。
【0007】
また、上記課題に鑑み、本発明のセンサシステムは、上記の圧電式センサと、前記発光素子からの光を受光する受光手段と、受光手段で受光した信号を処理して運動検出対象の運動状態を検知する信号処理手段を備えることを特徴とする。さらに、本発明の運動検知方法は、上記の圧電式センサを運動検出対象に取り付け、運動検出対象の運動にしたがって発光する前記発光素子からの光を受光し、受光した信号を処理して、運動検出対象の運動状態を検知することを特徴とする。
【0008】
また、上記課題に鑑み、本発明のセンサシステムは、上記の圧電式センサと、前記発光素子からの光を受光する受光手段と、受光手段で受光した信号を処理する信号処理手段と、信号処理手段で得られた結果をセンサの使用者にフィードバックする手段を備えることを特徴とする。前記信号処理手段は、ストレスや感情など、人の心の状態を推定するための信号処理を行い、その処理結果を知らせる通知手段を有する様にもできる。
【発明の効果】
【0009】
本発明によれば、人や機械などの運動検出対象に取り付けるセンサ自体がセンシングするのに電源を必要とせず、さらにセンサ内部で発生する電気エネルギーを用いて光通信をすることから、比較的シンプルな構成で使用しやすいセンサ、センサシステム、運動検知方法を実現できる。
【発明を実施するための最良の形態】
【0010】
以下、本発明の実施の形態を明らかにすべく、図1〜図7を参照して具体的な実施例について詳細に説明する。
【実施例】
【0011】
(実施例1)
図1は、本発明の実施例1に係る心拍数などの計測装置として使用可能な圧電式センサを示す概略図である。この圧電式センサでは、ゴムバンド6に固定された圧電バイモルフ素子1を含む部分と、カードホルダー5上に固定された2つの発光素子2がリード線3によって結ばれている。ゴムバンド6は、圧電バイモルフ素子1を含む部分が人の左胸部表面にほぼ接触する様に、人の胸部の周りに取り付けられる。本実施例ではゴムバンド6を用いたが、圧電バイモルフ素子1を含む部分が人の左胸部表面にほぼ接触する様に固定できるのであれば、他の方法、例えば絆創膏の様なシールを用いることもできる。
【0012】
カードホルダー5は、カードホルダー5に取り付けられたストラップ4を人の首にかけることで、発光素子2が人の正面方向から見える様に設置される。本実施例ではストラップ4を用いたが、発光素子2が人の正面方向から見える様に設置されるのであれば、カードホルダー5の取り付け方法は他の方法でもよく、例えば、ピンやクリップを用いることもできる。
【0013】
リード線3は、圧電バイモルフ素子1で発生した電気エネルギーを発光素子2に供給するためのものである。図1ではリード線3の長さを短くするために、ストラップ4の中を通って発光素子2に接続する構成になっている。
【0014】
図2は圧電バイモルフ素子1と発光ダイオード(発光素子)2の配線を示す回路図である。圧電バイモルフ素子1は、図2に示す様に2枚の圧電素子7を貼り合わせた構造を持つもので、圧電素子7に変位が与えられると起電力が生じるものである。2枚の圧電素子7(これらの分極方向は同じにしておく)を貼り合わせたものを両端部を支持して中央部を上から押すと、上側の圧電素子7が縮み下側の圧電素子7が伸びる。そのため、上側の圧電素子7の上下に生じる起電力の向きと、下側の圧電素子7の上下に生じる起電力の向きは逆になり、全体として生じる起電力は、それぞれの圧電素子7で生じる起電力の和となり、一定の方向を持つ(したがって、2つの発光ダイオード2の一方が発光する)。逆に、2枚の圧電素子7を貼り合わせたものを両端部を支持して中央部を下から押すと、上側の圧電素子7が伸び下側の圧電素子7が縮むため、全体として生じる起電力の向きは上記方向と逆向きになる(したがって、2つの発光ダイオード2の他方が発光する)。なお、圧電素子7としては、圧電セラミックスが用いられる。圧電バイモルフ素子1は、圧電モノモルフ素子などと比べると比較的大きな電力を効率よく取り出すことができる。
【0015】
発光素子2としては発光ダイオード、特に高輝度の発光ダイオードを用いる。発光される光は、可視光線を用いてもよいし、照明条件によって可視光線を認識するのが難しい場合(日常生活ではよくあることである)や、発光している光が目障りであるなど不都合がある場合には、赤外線を使用するとよい。本実施例では、赤外線発光ダイオードを用いる。赤外線発光ダイオードは、図2に示す様に、2つの圧電素子7からなる平面状の圧電バイモルフ素子1に対して2つの赤外線発光ダイオードが設置される。2つの赤外線発光ダイオード2は、図2に示す様に、反対向きに設置されているため、上述した様に、圧電バイモルフ素子1が運動検出対象の運動により一方の方向に変形すると2つの赤外線発光ダイオードのうちの1つが発光し、反対方向に変形すると2つの赤外線発光ダイオードのうち発光しなかったもう一つの赤外線発光ダイオードが発光する。こうした発光素子2を用いることで、電気信号を増幅することなく光に変換し、信号を無線で伝達できる。
【0016】
一般に、外力により圧電バイモルフ素子1が一方向に変形した場合、圧電バイモルフ素子1は弾性変形により元の形状に戻る。変形した時と元に戻ろうとする時では圧電素子7の伸縮が逆になるため、生じる起電力は逆になる。よって、一方向の変形でも元の形状に戻る弾性変形の場合は、2つの赤外線発光ダイオード2が連続して発光する。
【0017】
2つの赤外線発光ダイオードの発する赤外線の波長を異なるものにすることによって、2つの赤外線発光ダイオードの発光を区別できるため、発光間隔を測定できる。心拍の振動周期は、2つの赤外線発光ダイオードの発光する時間間隔と相関があり、また心拍の振動の振幅は、発光強度と相関があるため、発光間隔と発光強度を測定することによって、心拍の振動に関する情報が取得できる。図3に、1つの圧電バイモルフ素子1と2つの赤外線発光ダイオード2をリード線3で結んだ図を示す。
【0018】
図4は、本実施例の圧電バイモルフ素子1を備える構造部分を示す原理説明図である。図4(a)は内部の構成の上面図、図4(b)は内部の構成の圧電バイモルフ素子1の長手(縦)方向断面での断面図、図4(c)は内部の構成の圧電バイモルフ素子1の横方向断面での断面図である。図4に示す様に、圧電バイモルフ素子1が、筐体8の内部に設置された支持台9に、ネジなどで取り付けられ、片持ち梁の状態になっている。圧電バイモルフ素子1の自由端付近には、振動伝達棒10が備わっており、振動伝達棒10の末端には接触体11が取り付けられている。
【0019】
図4の様に、接触体11が人の皮膚表面13と接する様に筐体8をゴムバンド6(図4では図示せず)などで胸部に固定すると、接触体11が人の皮膚表面13の動きによって上下する。すると、その上下の動きが振動伝達棒10を介して圧電バイモルフ素子1に伝わり、圧電バイモルフ素子1を上下に動かすので、圧電バイモルフ素子1が変形し、電力を発生させる。2つの発光素子2は、図2の様に、逆方向に取り付けられているので、圧電バイモルフ素子1が上方向に動くときには一方の発光素子2が発光し、下向きに動くとき(この実施例の場合は元の状態に戻るとき)にはもう一方の発光素子2が発光する。この2つの発光素子2の発光強度と発光時間間隔から、人の皮膚表面13の振動状態(この場合、心拍の状態)を知ることができる。
【0020】
筐体8は、プラスチックなどの軽くて人体に安全なものから構成される。また、筐体8の底面は、接触体11が上下できる様に底上げされており(図4(c)中の破線参照)、さらに振動棒10が通るための開口部12が筐体8の底面に設けられている。筐体8の大きさは、接触体11が人の皮膚表面13の動きによって上下する様に、圧電バイモルフ素子1の大きさなどを考慮に入れたうえで、適切に選択されている。
【0021】
振動伝達棒10および接触体11は、プラスチックなど、容易に外力によって変形しない軽量な材料で作られている。図4で示す様に、振動伝達棒10の一端は、圧電バイモルフ素子1の自由端付近に接着剤などで固定されており、もう一方の端は接触体11に接着剤で固定されている。振動伝達棒10および接触体11が共にプラスチックの場合には一体化したものであってもよい。また、振動伝達棒10の長さは、図4(c)に示す如く、接触体11が人の皮膚表面13と確実に接触するべく筐体8から少しはみ出る位置に来る様にする長さになっている。
【0022】
図5は、本実施例の圧電式センサを含むセンサシステム18の概略構成を示す図である。使用者16の前面部に取り付けられた発光素子2から発せられる光は、使用者16の前方部に設置された受光器14によって受光され、受光された信号は、信号処理部15に送られる。受光器14は、発光素子2が発光する光に対応したカメラなどが使用される。本実施例では、赤外線発光ダイオードを使用しているため、赤外線カメラやCCDカメラなどが用いられる。
【0023】
信号処理部15では、ウェーブレット解析などの周波数解析や画像処理を行い、2つの発光素子2の発光強度と発光時間間隔から、使用者16の心拍の状態を測定することができる。さらに、信号処理部15でパターン認識を行わせることによって、使用者16のストレス度や感情など、人の心の状態を推定・判断することができる。この推定においては、例えば、人の心の状態と発光素子の発光態様との対応関係を予め調べておいて、それをデータとしてメモリに記憶しておき、そして受信信号が入ってきたらそのデータに基づいて信号処理部15で信号処理して人の心の状態を推定・判断すればよい。データ処理装置には、例えば、パソコンを用いることができ、信号処理部15には、例えば、DSP(Digital Signal Processor)やソフトウェアによる信号処理を用いることができる。
【0024】
この信号処理部15で得られた結果を、使用者16にフィードバック手段17を用いてフィードバックするために、この結果を使用者16にそのまま音声や文字、画像などで知らせたり、この結果に基づいた気の利く行為を使用者16に対して行うことができる。例えば、本実施例の生体センサを身に付けた使用者16が、オフィスや自宅でパソコンを使って作業している場合を考える。信号処理部15で得られた判断結果が、使用者の心の状態は「ストレス度が大きい」であった場合、インターネットからストレス解消法に関するページを検索して画面に表示したり、「5分間の休憩を取りましょう」とディスプレイの画面に表示したのち、ディスプレイ画面がサスペンドモードに切り替わるなど、使用者16の周囲にある機械が使用者16にストレスを緩和する様な働きかけることを行うのである。この使用者16への働きかけの結果、使用者16の心の状態を望ましい状態にすることができる。
【0025】
上述の実施例では、圧電式センサを、使用者の生体信号を計測する生体センサに適用したが、上記の如き構成の圧電式センサは、動物、機械などの物体の表面等の運動状態ないし振動状態を検知するセンサとしても用いることができる。また、圧電構造体は片持ち梁の状態で設置されていたが、必要な変形運動が生じるならば、両持ち梁の状態など、その他の支持形態で支持されてもよい。
【0026】
上記の如く、本実施例によれば、人や機械などの運動検出対象に取り付けるセンサ自体がセンシングするのに電源を必要とせず、さらにセンサ内部で発生する電気エネルギーを用いて光通信をすることから、通常の業務や日常生活において、使用者が、通信用のケーブルや電源コードなどによる束縛感や電源の重量などによる不自由さ(装着違和感など)を感じるのをなくせる。また、使用者の生体信号を計測できる経済的かつ小型の生体センサの提供が可能となる。
【0027】
(実施例2)
図6は、本発明の実施例2に係る呼吸数などの計測装置として使用可能な圧電式センサを含むセンサシステムを示す概略図である。本実施例では、圧電バイモルフ素子1と発光素子2が腹部前面部に設置されており、使用者16の呼吸により圧電バイモルフ素子1が変形して電力を発生し、この発生した電力により発光素子2が発光する。発光素子2から発せられた光は、使用者16の前方部に設置された受光器14によって受光され、受光された信号は、信号処理部15に送られる。その後の処理については、実施例1とほぼ同じである。
【0028】
図7は、図6の腹部前面部を上から見た断面図である。図7に示す様に、圧電バイモルフ素子1を含む構成部分はズボンなどの布19と人の皮膚表面13(この場合は腹部の皮膚表面)の間に設置される。また、発光素子2はズボンなどの布19の外側に設置され、圧電バイモルフ素子1とリード線3(これは、ズボンなどのボタン孔等を通される)によって接続されている。
【0029】
圧電バイモルフ素子1は、筐体8の内部に設置された支持台9にネジなどで取り付けられ、片持ち梁の状態になっている。圧電バイモルフ素子1の自由端付近には、振動伝達棒10が備わっている。また、接触体11が人の皮膚表面13に接触する様に取り付けられており、人の皮膚表面13の前後の動きに応じて、接触体11も前後に動く様になっている。そして、この動きにより振動伝達棒10を介して圧電バイモルフ素子1が変形され、電力が発生する様になっている。
【0030】
発光素子2は実施例1と同じであり、発光ダイオード、特に赤外線発光ダイオードを用いる。筐体8は、プラスチックなどの軽くて人体に安全なものから構成される。また、筐体8には、接触体11が前後に移動できる様に、接触体11の一部11aを格納するためのスリット8aが設けられている。接触体11の大きさについては、人の皮膚表面13に埋もれずに、人の皮膚表面13の前後の動きに応じて前後する様な大きさに選択されている。
【0031】
振動伝達棒10および接触体11は、プラスチックなど、容易に外力によって変形しない軽量な材料で作られている。振動伝達棒10の一端は、圧電バイモルフ素子1の自由端付近に接着剤などで固定されており、もう一方の端は自由端となっている。
【0032】
使用者16が呼吸すると、使用者16の腹部が前後に動き、その動きが接触体11を前後に動かして振動伝達棒10を介して圧電バイモルフ素子1を変形させ、電力を発生させる。そして、その電力により発光素子2が発光するので、使用者16の腹部前面部に取り付けられた2つの発光素子2の発光状態から、使用者16の呼吸に関する情報が得られる。例えば、信号処理部15で発光素子2の発光する光の発光強度および発光時間間隔を算出し、それらを用いて各種演算処理をすることで、呼吸数などを得ることができる。
【0033】
この信号処理部15で得られた結果を、使用者16にフィードバック手段17を用いてフィードバックするために、この結果を使用者16にそのまま音声や文字、画像などを用いて知らせたり、この結果に基づいた気の利く行為を使用者16に対して行うことができる。これらについては、実施例1で述べた通りである。その他の点は実施例1と同じであり、実施例2においても、実施例1と同様な効果が得られる。
【図面の簡単な説明】
【0034】
【図1】本発明の実施例1の圧電式センサを示す概略図である。
【図2】圧電バイモルフ素子と発光素子(赤外線発光ダイオード)の回路図である。
【図3】1つの圧電バイモルフ素子と2つの発光素子(赤外線発光ダイオード)をリード線で結んだ構成を示す図である。
【図4】本発明の実施例1の圧電式センサの原理説明図である。
【図5】本発明の実施例1の圧電式センサを含むセンサシステムの概略構成を示す図である。
【図6】本発明の実施例2の圧電式センサを含むセンサシステムの概略構成を示す図である。
【図7】図6の腹部前面部を上から見た断面図である。
【符号の説明】
【0035】
1・・・圧電バイモルフ素子(圧電素子を含む圧電構造体)
2・・・発光ダイオード(発光素子)
7・・・圧電素子
13・・・人の皮膚表面(運動検出対象)
14・・・受光器(受信手段)
15・・・信号処理部(信号処理手段)
17・・・フィードバック手段
18・・・センサシステム

【特許請求の範囲】
【請求項1】
運動検出対象の運動に応じて変形運動を起こす様に設置された圧電素子を含む圧電構造体と、前記変形運動により生じる電気エネルギーを用いて変形運動に対応して発光する発光素子を備えることを特徴とする圧電式センサ。
【請求項2】
前記圧電素子を含む圧電構造体は、二枚の圧電素子を貼り合わせた構造を持つ圧電バイモルフ素子で構成されている請求項1に記載の圧電式センサ。
【請求項3】
前記発光素子が発する光の波長が赤外線である請求項1に記載の圧電式センサ。
【請求項4】
前記運動検出対象が人体であり、人の呼吸または心拍を検出できる様に圧電構造体が設置されている請求項1乃至3のいずれかに記載の圧電式センサ。
【請求項5】
請求項1乃至4のいずれかに記載の圧電式センサと、前記発光素子からの光を受光する受光手段と、受光手段で受光した信号を処理して運動検出対象の運動状態を検知する信号処理手段を備えることを特徴とするセンサシステム。
【請求項6】
請求項4に記載の圧電式センサと、前記発光素子からの光を受光する受光手段と、受光手段で受光した信号を処理する信号処理手段と、前記信号処理手段で得られた結果をセンサの使用者にフィードバックする手段を備えることを特徴とするセンサシステム。
【請求項7】
前記信号処理手段は、人の心の状態を推定するための信号処理を行い、前記フィードバック手段は、この処理結果を知らせる通知手段を含む請求項6に記載のセンサシステム。
【請求項8】
請求項1乃至4のいずれかに記載の圧電式センサを運動検出対象に取り付け、運動検出対象の運動にしたがって発光する前記発光素子からの光を受光し、受光した信号を処理して、運動検出対象の運動状態を検知することを特徴とする運動検知方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2006−230715(P2006−230715A)
【公開日】平成18年9月7日(2006.9.7)
【国際特許分類】
【出願番号】特願2005−49888(P2005−49888)
【出願日】平成17年2月25日(2005.2.25)
【出願人】(000001007)キヤノン株式会社 (59,756)
【Fターム(参考)】