説明

塩分濃度差発電システム

【課題】
ほぼ無限に存在する架線等の淡水と、海等の塩水との塩分濃度差を利用した発電システムにおいて、コンパクトなシステムで、大容量の電気エネルギーを取り出したり、任意の高電圧を容易に得られるようにする。
【解決手段】
淡水と塩水をそれぞれ水滴として落下させて空気の絶縁性を利用したり、絶縁体製弁体、弁座、弁箱を用いた弁を会在させたりして、給水路や排水路を介しての電気的短絡を防止し、単位起電力を発生する多数のセル間の電気的短絡を防止する構成を用いる等で解決する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、塩分濃度差発電システム(濃淡電池システム)に関するものである。
【背景技術】
【0002】
【特許文献1】特願2003−130617、特開2004−335312の「要約」には、次のような記載がある。 「海水淡水化設備1の濃縮海水排出管7を濃淡電池8の濃縮海水供給用マニホールド18に接続する。海水淡水化設備1の海水導入管3より分岐させた海水供給管3aを濃淡電池8の海水供給用マニホールド20に接続する。濃淡電池8の交互に並べてある陽イオン交換膜10と陰イオン交換膜11の間に、濃縮海水6と海水2を交互に流すことにより発電を行わせるようにする。これにより濃縮海水6の化学エネルギーを電気エネルギーに変換してエネルギーの有効利用を図るようにする。」
【特許文献2】特願2001−375185、特開2003−176775の「要約」には、次のような記載がある。「海水淡水化装置2で逆浸透圧を利用して海水を淡水化する際に同時に生成された濃縮海水に、これよりも濃度の薄い海水又は淡水などの希釈水を半透膜を介して浸透させ、その正浸透圧エネルギーで濃縮海水側の流量を増加させ、増加した流量で水流発電機26を駆動させて発電する。」
【非特許文献1】平成20年2月6日に、インターネット「のサイト piano.chem.yamaguchi-u.ac.jp/Membrane/chap-5/Chap5-j.html-キャッシュ → [piano.chem.yamaguchi-u.ac.jp/index2.html。]のコンテンツに次のような記載がある。「濃淡電池 図 海水と河水を用いた濃淡電池の模式図。A,Cはそれぞれ陰イオン交換膜、陽イオン交換膜を示す。海水から製塩する場合は、陽イオンと陰イオン交換膜の間に海水を入れ電圧をかけることで、海水と淡水が得られます。 反対に、イオン交換膜の間に海水と淡水を交互に流すと, 図に示すように,Naイオン,塩化物イオンが,それぞれ逆向きに拡散するので電極間に起電力を生じます。 これは濃淡電池と呼ばれ,両側の濃度比を30にすると一対の陽,陰イオン交換膜1m2あたり1.2Wの出力が得られます。 」
【発明の開示】
【発明が解決しようとする課題】
【0003】
上記の文献その他に、陰イオン交換膜と、陽イオン交換膜を左右に平行に並べ、その間隙に海水等の塩水を入れ、両交換膜の外に淡水を入れれば、陰イオン交換膜の左の淡水中に入れた電極が陰極となり、陽イオン交換膜の右側に入れた電極が陽極となり、両電極を外部を通る電線で結べば、陽極から陰極に向かって1V(ボルト)程度の起電力による電流が流れることが知られている。
地球上の広大な海には、大量の塩水が存在する。また、海洋に流れ込む、膨大な太陽エネルギーで生産された河川の淡水も大量であり、その淡水の1%でも、このような発電システムに用いることができれば、膨大な電力が得られることになり、二酸化炭素を出さずに多量の電力が生産できるので、地球温暖化の低減に貢献するところは大となる。
しかし、上記のような一つのセルから成る単位起電力を出すユニットでは、わずかの電力しか得られない(安価で高性能のイオン交換膜の開発が非常に重要ではあるが)。
そこで、多数のセルをコンパクトにまとめた並列セルを造ることが必要である。
しかし、多数のセルを一つの容器に収めて、並列に接続した単位起電力しか出力しないユニットでは、1V程度の出力電圧しか得られず、サイリスターと変圧器を用いた昇圧コンバーターに加えて昇圧するにしても、エネルギー変換効率が必ずしも高くならない。
そこで、直列に接続して数10V〜数100V程度の出力を得ることが望ましい。
直列に接続する際、複数のセルやユニットに、各1系の淡水管路、及び塩水管路を用いて給水すると、プラスチック製の管を用いたとしても、各セル間や、ユニット間の出力電圧が、給水経路内の水を通じて短絡(電気的短絡・ショート)し、直列接続が実現できないことになる。
同様に、各ユニットからの廃水も、一つの淡水排出管路と、一つの塩水排出管路を用いると、各廃水を通じて短絡が起こる。
多数の並列セルを1容器内にコンパクトに設ける場合でも、給水管路・排水管路を通じての短絡が起こりうる。
【課題を解決するための手段】
【0004】
各1枚の陰イオン交換膜と陽イオン交換膜を対向させ、両イオン交換膜間に塩水流下空間を形成させ、各イオン交換膜の外面に接する淡水流下空間を設け、両空間に存在する淡水層間に単位起電力を発生させる塩分濃度差発電セルを、並列または直列に多数接続し大出力を得るシステムにおいて、作動時に等電位を示す以外の、各流下空間に淡水または塩水を供給する給水経路中に、各流下空間相互の電気的短絡を防止するための、点滴落下空間内の電気絶縁体である気体層を介在させるか、断続開閉する、1次側(給水側)と、2次側(排水側)との間が電気絶縁材料(絶縁体)から成る、電気的駆動弁を介在させて成る、塩分濃度差発電システムにより、解決することを中心にする。
なお、断続的に落下する水的間に存在する空気層等の気体層は、通常、10mmあたり、3万ボルト程度の耐圧(絶縁破壊電圧)を有し、短絡防止をする。
また、電気的駆動弁には、電磁弁、電気モーターで弁体を駆動する電動弁、圧電体で駆動するピエゾバルブ等が含まれる。
【発明の効果】
【0005】
本発明を実施すれば、塩分濃度差発電システムの単位起電力発生ユニットを多数、コンパクトに並列または直列に接続した大出力の塩分濃度差発電システム(濃淡電池)が得られ、河川等の大量の淡水と、海水とを用いた、環境汚染の小さい、多量の再生可能電力が得られる利点が生じる。
また、そのシステムに入る淡水と塩水の温度差を利用した発電や、システムを出た後の両水の浸透圧差を利用した発電も行ないうるので、総合的に高効率の発電が可能となる。
また、その出力電力を効果的に利用した船舶や、その推進機、地震探査システム、浚渫装置等も得られる。
【発明を実施するための最良の形態】
【0006】
図1は本発明を実施した、一容器内に、二つのセルが直列に接続されて収められている直列電池堆型ユニットを用いた塩分濃度差発電システムの平面図。
1は、プラスチック、繊維強化プラスチック(FRP)、表面を絶縁被覆した金属等から成る一辺の長さが数10cm〜数m程度の絶縁容器。
2は図示しない前方の給水ポンプに連なり、絶縁容器状にいたる淡水供給管。
3は、その後端に連なり、絶縁体製弁体を用いる等して、給水側と、排水側とを電気的に絶縁した電磁弁。
4は、それに続き、下端は絶縁容器1内の前方に連なる角形の淡水供給筒。
5は、その上壁に取り付けた超音波水位計。
6は、上壁に開けた通気孔。
7は、図示しないポンプに連なる塩水供給管。
8は、それに連なる3と同様の電磁弁。
9は、それに続き、絶縁容器1内の後方に連なる塩水供給筒。
10は、超音波水位計。
11は、通気孔。
なお、供給管2と7、電磁弁3と8を筒4と9の上端につないでもよい。
【0007】
12は、絶縁容器1の左壁前下部に突出した廃淡水排出管。
13は、後下部に突出した廃塩水排出管。
14は、絶縁容器1の左面に突出したマイナス側導電線。(負電極・リード線)
15は、絶縁容器1の右端から前方に突出した雌ねじを切った突起。
16は、後方に凸出した同様の突起。
【0008】
17は、絶縁容器1の右端に、はめ込まれた絶縁体製の蓋。
18は、その右端から前方に突出した円筒孔を開けた突起。
19は、それに通され、突起15にねじ込まれ、蓋及び容器内の各物体を左方に押し付けているボルト。
20は、後方に突出した突起。
21は、それに通され、突起16にねじ込まれ、蓋その他を左方に押しているボルト。
22は、蓋17を貫き、その右方に突出したプラス側導電線。
【0009】
図2は、絶縁容器1の上壁の直下における横断面図。
23は、導電線14の右端に連なる四角形の電極板36を取り囲む4角形(額縁形)のプラスチックや、硬質の合成ゴム・ウレタンゴム・シリコーンゴム・その他から成る絶縁体製の、絶縁容器1の左壁の右側面に接する電極板付点滴装置形成用フレーム。(撥水製材料で造ったり、表面を撥水性材料で被覆したりしてもよい。また、容器1の前後壁の内面を水密化用のゴム膜で被覆した場合には、フレームの前部と後部を除去した形でもよい。)
24は、その右方に接する同様の材質から成り、陰イオン交換膜37の上下前後を囲む、陰イオン交換膜付の点滴装置形成用フレーム。
25は、その右方に接し、同様の材質から成り、陽イオン交換膜39を囲む陽イオン交換膜付点滴装置形成用フレーム。
26は、24と全く同じ材質・構造の陰イオン交換膜付点滴装置形成用フレーム。
27は、その右方の25と全く同材質、同構造の陽イオン交換膜付点滴装置形成用フレーム。
28は、その右面に接し、フレーム26と同材質で、ほぼ同構造をし、電極板41を囲む点滴装置形成用フレーム。
29は、密接する各フレーム23〜28の上縁前部に設けたコの字形の切欠の連続により形成され、淡水供給筒4の下端に連なる左右に長い淡水供給溝。
30〜32は、その底壁にある前後に多数並んだ、上口は4角形で、下口は細い円筒管になった漏斗形をなす、フレーム23の右面と24の査面、25の右面と26の左面、27の右面と28の左面の上部の切欠直下にある陥凹(くぼみ)が左右、合わさって形成されている、淡水点滴ノズル。
33は、各フレーム23〜28の上縁後部に設けた切欠の連続により形成され左右に長い、塩水供給筒9の下端に連なる塩水供給溝。
34〜35は、その底面にある前後に多数並んだ、上口は4角形で、下口は細い円筒管になった漏斗形をなす、フレーム24の右面と25の査面、26の右面と27の左面の上部後方の切欠の直下にある陥凹(くぼみ)が左右、合わさって形成されている、塩水点滴ノズル。
なお、実際には、24〜27のような陰・陽イオン交換膜付点滴装置形成用フレームは、数10枚〜数1000枚並べられる。
また、淡水点滴ノズルや塩水点滴ノズルを、前後方向に数10〜数1000個、並べることもある。
【0010】
図3は、淡水供給筒4の位置における容器1の縦断正面図。
図4は、容器1のほぼ中央の高さにおける横断面図。
図5は、フレーム24の左面の、わずか右方の位置における縦断左側面図。
図6は、フレーム25の左面の、わずか右方の位置における縦断左側面図。
【0011】
36は、導電線14の右端に連なり、フレーム23中にある金属製のマイナス電極板(陰極板)。
これは、炭素製、炭素メッキした金属製、金メッキした銅板、上面を炭素メッキしたプラスチックフィルムを中央で下方に折り曲げた板、耐食性合金板、その他から成る導電性材料製等であってもよい。
36Bは、その右面から突出し、陰イオン交換膜37に右端が接し、図5等に記すように、上下に3本存在し、上段と下段のものは、後端が短く中段のものは前端が短く、それらの上下及び相互間にジグザグ形の淡水流下空間48を形成する、淡水流下空間形成用スペーサー。(この右端のみ絶円被覆してもよいし、全体をプラスチック製にしてもよい。また、その本数を4本以上にしてもよい。)
この材質は、電極板36と同じでもよいが、表面全体に絶縁被覆を施した金属や、プラスチック製でもよい。電極板36を金属箔性にし、左面から金型で右方に押して加圧成型し、突出させてもよい。
37〜38は、電気製塩に用いるもの等と同様の陰イオン交換膜。
39〜40は、電気製塩に用いるもの等と同様の陽イオン交換膜。
41は、導電線22の左端に連なり、フレーム28の中に収められている36と同様の金属製プラス電極板(陽極板)。(左面には、淡水流下経路形成用の突起が存在する。)
41Aは、それから左方に突出したスペーサー。
42〜44は、淡水点滴ノズル30〜32の下方に設けた、それらノズルの形成部材(フレームの材質)の下方の部分により囲まれている淡水点滴落下空間。
45は、中央の淡水点滴落下空間43の下方の淡水流下空間49を左右に仕切る金属製の導電性隔壁。
45Aは、その左面に突出した36Bと同様の淡水流下経路形成作用をするスペーサー。
45Bは、右面に突出したスペーサー。
46〜47は、塩水点滴落下空間の下方において、陰イオン交換膜37と陽イオン交換膜39との間に挿入された塩水流下空間形成用のプラスチック網等から成る隔壁。(フレーム24や26と同材質製にし、フレームに周囲が付着した細い縦糸と、太い横糸とから成る網状構造等にし、フレームと共にこの隔壁を成型してもよい。)
46A〜47Aは、それらの左面に突出した多数のスペーサー。
46B〜47Bは、右面に突出したスペーサー。
48〜50は、各淡水点滴落下空間42〜44の下端に連なる淡水流下空間
51〜52は、塩水点滴ノズル34〜35の下方の塩水点滴落下空間の下に連なる塩水流下空間。
【0012】
53は、図5に記すが、淡水流下空間48の後上部に設けた淡水水位検出電極。(絶縁板を介して2枚の小さな金属電極が存在する等の構造を持つ。)
54〜56は、淡水流下空間の前下端に設けた廃淡水点滴ノズル。
57〜59は、その下方の廃淡水点滴落下空間。
60は、その下端に連なるフレーム23〜28の前下縁の切欠の連続から形成された廃淡水排出溝。
61は、塩水点滴ノズル34の下方の塩水点滴落下空間。
65は、その前上部に設けた塩水水位検出電極。
66は、塩水流下空間の後下端の廃塩水点滴ノズル。
68は、その下方の廃塩水点滴落下空間。
70は、その下端に連なる廃塩水排出溝。
【0013】
次に、図示しないコンピューターで制御されるこのシステムの動作について記す。
図示しない河川等の水源から採水し、濾過し、浄化し、適度に加圧した淡水が淡水供給管2に供給され、海水も浄化されて塩水供給管7に供給される。
コンピューターの制御により、超音波水位計5と10が、淡水供給筒4と9内の水位が設定値以下になったことを検出すれば、電磁弁3または8を開閉して、両筒内の水位を常に設定値に保たせる。
その際、通気孔6と11を経て、筒内の空気が外へ出たり、外危が内部に入ったりする。
淡水供給筒4内の淡水は、その水位で定まる水圧で、下方の絶縁容器1内の前上部の淡水供給溝29に満たされる。
その淡水は、各淡水点滴ノズル30〜32の下端から、水自身の表面張力で給形化した水滴となり、1滴ずつ断続的に、淡水点滴落下空間42〜44の絶縁体である空気中を落下してゆく。(この点滴速度は、ノズル下端の口径、ノズル下端にいたる水深、水の粘性、ノズル内面の形等により定まる。)
これにより、淡水供給溝29内の水と、点滴落下空間以下に貯まる水とは電気的に絶縁され、淡水流下空間48〜50の各々が、淡水供給溝29中の水を経て短絡されることが防止される。(もし、淡水点滴空間42〜44が水で満たされていたとすれば、短絡し、三者の電位は等くなってしまう。)
【0014】
淡水点滴落下空間42〜44内から、下方の淡水流下空間48〜50に入った淡水は、それぞれ3本ずつあるスペーサー36B、45A、45B、41Aの最上部の上の空間に入り、後→下→前→下→後→下→前の経路をゆき、前下方の廃淡水点滴ノズル54〜56に入り、水滴となり、その下方の廃淡水落下空間57〜59内の空気中を落下し、廃淡水排出溝60に入り、廃淡水排出管12を経て、外部にすてられる。
その際、淡水流下空間48〜50中の水と、廃淡水排出溝60中の水とは電気的に絶縁され、淡水流下空間48〜50間の短絡が防止される。
【0015】
廃淡水点滴ノズル54〜56の下端の直径は、淡水点滴ノズル30〜32のそれより、やや小さく造られるか、ノズル数を少なく造られ、淡水流下空間48〜50の最上部にまで、水は貯まる。
もし、その水位が高くなりすぎると、水面が水位検出電極53に接し、コンピューターは、超音波水位計5の検出設定値を低くし、電磁弁3の開放時間を小さくし、淡水供給筒4内の水位を下げ、淡水点滴ノズル30〜32における点滴頻度を小さくする。(水滴一個の大きさは、ほぼノズル下端の口径に支配され、水圧の影響は受けないが、点滴頻度は、水圧の影響を受ける。)
なお、淡水水位検出電極53に水面が接すると、電磁弁3が閉じるようにし、淡水供給筒4内の水位を制御してもよい。
【0016】
いっぽう、塩水供給筒9内の塩水も、塩水供給溝33に入り、塩水点滴ノズル34〜35から水滴となって落下し、塩水流下空間51〜52に入り、スペーサー46A、46B、47A、47Bにそって、前→下→後→下→前→下→後とゆき、廃塩水点滴ノズル66、廃塩水落下空間68等を経て、廃塩水排出溝70に入り、塩水排出管13を経て、外部にすてられる。
この際も、各点滴落下空間内の空気の電気的な絶縁作用により、塩水供給溝33内の塩水や、廃塩水排出溝70中の塩水を通じての塩水流下空間51と52の短絡が防止される。
【0017】
塩水流下空間51〜52の水位が高くなると、塩水水位検出電極65に水面が接触し、検出電流がコンピューターに流れ、超音波水位計10の水面検出設定値が低く設定され、電磁弁8の開放時間が小さくなり、水位を低くし、塩水点滴ノズル34〜35の点滴頻度を小さくする。
【0018】
なお、上例では、淡水供給溝29や塩水供給溝33等をフレーム23〜28の上縁の切欠の連続で形成させたが、フレーム上縁の突出部を削除し、平坦化し、容器1の上壁から下垂する物体で、その突出部の代わりをさせたり、容器1の上壁を上に溝状にふくらませて溝29と33を形成してもよい。
下部の廃淡水排出溝60と、廃塩水排出溝70も同様に形成させてもよい。
各点滴ノズルや、その下方の点滴落下空間をフッ素樹脂その他の撥水性の大きい材料で作製したり、表面を撥水性材料で被覆してもよい。
【0019】
次に容器1外の電線を通じて、マイナス側導電線14と、プラス側導電線22とをつないだ際の電気的な作用について説明する。
その際、陰イオンは塩化物イオン(塩素イオン)で代表し、陽イオンは、ナトリウムイオンで代表して記載することにする。
なお、実用的には、導電線14と22間にインバーターを入れ、昇圧し、交流に変換し、送電線に供給する等することが多い。
塩水流下空間51中に貯まった塩水中の塩化物イオン等の陰イオンは、陰イオン交換膜37を通過して、左方の淡水流下空間48に入り、陽イオン交換膜39を通過したナトリウムイオン等の陽イオンは、右方の淡水流下空間49に入り、イオン流による電流は、淡水流下空間49から、淡水流下空間48に流れることになる。
その結果、マイナス電極板36と、導電性隔壁45との間が一つの起電力ユニット(セル)を形成し、両者間に、1V程度の電位差(起電力)が生じることになる。
また、塩水流下空間52内の塩水中の陰イオンは、左方の淡水流下空間49に入り、陽イオン交換膜40を通過した陽イオンは、右方の淡水流下空間50に入り、一つの起電力ユニットを形成し、導電性隔壁45と、プラス電極板41との間に、1V程度の電位差(起電力)が生じる。
両ユニット(セル)は、直列につながっているので、マイナス電極板36とプラス電極板41との間、すなわち、導電線14と22の間には、2V程度の電位差(起電力)が生じることになる。
電極板36(淡水流下空間48)の電位を0Vとすれば、塩水流下空間51は約0.5V、導電生隔壁45は約1v、塩水流下空間52は約1.5V、プラス電極板41は、約2Vになる。
【0020】
一つの絶縁容器1を右方に延長し、その中に、このようなユニット(セル)を多数設ければ、各ユニットに生じる単位起電力は、そのユニット数(セル数)だけ倍増されることになる。
左右幅1〜2mm程度の間に、一つのユニット(セル)を形成することも可能であるから、一つの絶縁容器1で、数千V、数万ボルトの起電力を得ることも可能になる。
【0021】
なお、各容器1内に多数の直列セルを設け、高電圧を取り出しうるようにする場合の、
淡水(淡水層)、隔壁(導電性隔壁)、陰膜(陰イオン交換膜)、塩水(塩水層)、陽膜(陽イオン交換膜)、等の配列は、例えば、次のようになる。
−−−−−−−−−−−−−−−−−−−−−−−−−
陰極→淡水→陰膜→塩水→陽膜→淡水→隔壁→淡水→陰膜→塩水→陽膜
→淡水→隔壁→淡水→陰膜→塩水→陽膜→淡水→隔壁→淡水→陰膜→塩水
→陽膜→淡水→隔壁→淡水→陰膜→塩水→陽膜→淡水→隔壁→淡水→陰膜
→塩水→陽膜→淡水→隔壁→淡水→隔壁……→淡水→陽極
−−−−−−−−−−−−−−−−−−−−−−−−−
【0022】
上表の各隔壁の左側は、塩素(または塩素ガス)を発生する可能性のある淡水層で、塩素域(陰イオン拡散淡水流下空間)とよび、右側は、水素(または水素ガス)を発生する可能性のある淡水層で、水素域(陽イオン拡散淡水流下空間)とよぶことにする。
図2その他に記す淡水供給溝29を前後の2本に分け、前者に入った淡水は、それにのみ連なる点滴ノズルを経て、塩素域に入り、後者に入った淡水は、専用のノズルを経て、水素域に入り、二種のガスを分離しやすくしてもよい。
廃淡水排出溝60も前後に分け、塩素域の廃淡水は前者に、水素域の廃淡水は、後者に流せばよい。
【0023】
塩素域の廃淡水は塩素が少なく、水素域の廃淡水はナトリウムが多く、両水を多量に海に流すと、海水がアルカリ性に傾くので、その場合には、隔壁を省略したシステムを用いるか、回収した塩素ガスを廃水に細度加える必要がある。
【0024】
なお、導電性隔壁45は、考察を容易にするためと、その左側に塩素ガスを発生させ、右側に水素ガスと水酸化ナトリウムを得るために設けたものであり、それらの採取を求めなければ、スペーサー機能だけを持つ、絶縁体製の網等でもよい。
なお、ボルタ電池等の外部を導電線でつなぐと、電流は、陽極から陰極に流れるが、電池内部では逆に、亜鉛の陽イオンは、陰極の亜鉛板から、陽極の銅板に移動する。
同様に、陽イオン交換膜39〜40から右方に出た陽イオンは、マイナス電極板36側から、プラス電極板41の側に移動し、容器1の外で、電線で結べば、プラス側導電線22からマイナス側導電線14に電線を通じて電流が流れる。(電子流は、その逆になる。)
【0025】
各流下空間の間の電気的な短絡は、前述のように、各点滴落下空間中の空気の絶縁作用により防止されるが、このような多くのユニットを含む絶縁容器を多数設け、その両端の導電線を直列につなぎ、更に高い電圧を得ることもできる。
その際、各一つの淡水供給管と塩水供給管をそれぞれ分岐させて給水することになるが、高電圧になると、一容器内では短絡が起こらなかったとしても、多数の容器がつながると、点滴落下空間内の空気の絶縁破壊が起こりうるので、前術のように、電似弁3や8も電気絶縁性にすることが望ましい。
ただし、各点滴落下空間の上下長を充分大きくすれば、比例して、耐圧性は大きくなる。
【0026】
電力消費量が増加し、導電線36と41を通じて多量の電流が流れれば、塩水流下空間51と52内のイオンの移動も増加し、それら空間内の塩分濃度が低下し、結果的に導電線36と41の電位差が低下するが、それを電位差検出器で常時測定しておき、電位差低下が起これば、コンピューターの制御で、電磁弁3と8の開放頻度が増し、各点滴ノズルからの滴下量が増すようにしてもよい。
【0027】
各流下空間内での水の流動経路を上下にたどるジグザグ経路にしたり、全前後幅をほぼ同時に流下する経路にしたり、その他任意に設計しうる。
発生したガスを速く逃がすため、各流下空間の上下幅を小さくし、ガスは通すが、水は通しにくい微孔を多数有する布、糸、多数の小突起列等にし、前端、または後端が短くなった、ただ1本のスペーサーを用い、水がu字形流路を経て流下するようにしてもよい。
淡水や塩水の流下空間に挿入するスペーサーを、前上部から後下部に走る、1mm径程度のプラスチック細線群と、その逆方向に走るプラスチック細線群を重ねて融着して造った網製にし、廃淡水点滴ノズル54〜56、廃淡水排出溝60等を後下方に設け、廃塩水落下ノズル66、廃塩水排出溝70等を前下方に設ける等してもよい。
【0028】
また、容器1や各フレームを前後に広げて、淡水流下空間48〜50の下端から、少し前へゆき、各流下空間の最上部の高さより、やや低い位置まで上昇する経路につなぎ、それを更に前方に少し伸ばし、更に下に曲げて、7字形の個別流路を形成させ、その直下に廃淡水点滴ノズル54〜56、及び廃点滴落下空間57〜59を設け、廃淡水排出溝60に連なるようにしてもよい。
同様に塩水流下空間51〜52の最下端から後上方に7字形に曲がる流路をつなぎ、容器1内の後上部に位置する廃塩水点滴ノズル等を設けてもよい。
それらの場合、流下空間内の水位は、ほぼ上に向けた流路の最高点の高さに規定されることになる。
【0029】
陰イオン交換膜37を通過して淡水流下空間48に入った塩化物イオンは、マイナス電極板36に電子をうばわれ、園素原子・分子になり、多くは水に溶解する。
陰イオン交換膜38を通過して淡水流下空間49に入った塩化物イオンは、陽イオン交換膜39を右へ通過したナトリウム陽イオンが接している導電性隔壁45に接して、塩素原子・分子になり、多くは水に溶解する。
水に溶けたものは、廃淡水排出管12に入るので、図示しない気水分離タンクに導き、塩素ガスを回収してもよい。
一部は、気化して、淡水点滴落下空間42〜43に入るので、図示しないが、それら空間の上部に設けたフレームの溝状陥凹から成る小排気管を経て、淡水供給溝29の前方に設けたフレーム23〜28の切欠や左右方向の貫通孔の集合から成るガス排気溝を経て、容器1外に取り出すようにする。(ポンプで吸引してもよい。)
ただし、導電性隔壁45を省略した場合には、両イオンが対になり、塩化ナトリウムを形成して、水中にのみ溶解することになる。
【0030】
資源回収の目的から、導電性隔壁45を密閉型の板にし、その左方の水酸化ナトリウムを含む水と、右方の塩素を含む水とを別個の廃淡水経路に導き、容器1外に取り出してもよい。
水素ガスや塩素ガスを多量に取り出すため、他の装置で発電した電圧をマイナス側導電線14と、プラス側導電線22に並列または直列に印加し、エネルギーの加算を図ってもよい。
【0031】
陽イオン交換膜39の右方の淡水流下空間49のうちの左半部に入ったナトリウムイオンは、右方に塩化物イオンが接する導電性隔壁45に接して電子を受け、ナトリウム原子になり、水と反応して水素ガスを発生し、水酸化ナトリウムになる。
陽イオン交換膜40の右方の淡水流下空間50に入ったナトリウムイオンも、プラス電極板41から電子を受け取り、ナトリウム原子になり、水と反応して、水酸化ナトリウムになり、水素ガスを発生する。(ナトリウムイオンの周囲を取り囲む水分子の一部が、まず電子を受けて水素ガスを発生し、同時に生じる水酸化物イオンが、ナトリウムイオンと対になるといってもよい。)
それらのガスの一部は水に溶けたまま、廃淡水排出管12に入るので、気水分離タンクで水素ガスを回収してもよい。
その水素ガスは、導電性隔壁45の右方に生じた淡水点滴落下空間43に塩素ガスと共に入るので、前記の回収管に導くか、導電性隔壁45の左右に別個に設けた淡水点滴ノズルと点滴落下空間を経た淡水が入るようにし、塩素ガスのみ、及び水素ガスのみを回収しうるようにする。
淡水流下空間50に入ったナトリウムイオンは、プラス電極板41から電子を受け取り、ナトリウム原子になり、水と反応して水酸化ナトリウムになり、水素ガスを発生し、一部は水に溶解して廃淡水排出管12に入り、他の一部は淡水点滴落下空間44に入り、図示しないガス排気管を経て、容器1外に導かれる。
ただし、塩水流下空間51〜52内では、塩化物イオンとナトリウムイオンが、等量減少するので、ガスの発生は起こらない。
【0032】
各点滴落下空間には、常に、淡水や塩水に溶けていた大気中からの窒素・酸素、作動で発生した塩素・水素等の気体が存在するが、淡水供給管2や、塩水供給管7に送る水中に、ポンプで予め空気を吹き込み、飽和限度近くまで溶解させておき、点滴落下空間で気化するようにしてもよい。
【0033】
上例では、各点滴ノズルをフレーム23〜28の集合体で形成したが、フレーム23〜28の上縁に設けた淡水点滴ノズル30〜32と、その直下の点滴落下空間42〜44、及び塩水点滴ノズル34〜35と、その直下の塩水点滴落下空間を削除・省略し、容器1の上壁下面に接する点滴ノズル容器を乗せる。
それは、前後に仕切られた浅いプラスチック製箱形で、底壁に、多数の漏斗形点滴ノズルを形成させ、その底壁の撥水性材料で被覆した下面から下方に突出する膜面に平行なスリット(細隙・細隙様貫通孔)状の内空を有する管から成る点滴落下空間を同材料で形成させ、淡水流下空間48〜50や、塩水流下空間51〜52の上縁に接触させ、同様の廃淡水用のノズル容器を各流下空間の下部に取り付け、廃淡水点滴ノズル54〜56等を省略してもよい。
その際、ノズル容器下面の点滴落下空間形成用の管の数を減し、各管の横方向のカバー範囲を左右に広げたり、その管を全部省略してもよい。
その場合、水滴が最初に接する各フレーム等の上縁を刃物状にする等して、水滴が飛散しないようにする。
【0034】
ノズル容器下面の点滴落下空間形成用の管の下端と、流下空間の上縁が、ボルト19、21等の締め付け境度により、食い違うことが起こりうるので、各フレーム上下縁とノズル容器面を凹凸形にして噛み合わせ、かつ、締め付け強度も適正値に選び、食い違いを防いでもよい。
また、例えば、上下×前後が1m角の、プラスチック細線でゆるやかに編んだ網の上下前後に、幅50mmのプラスチックフィルムテープを左右から、加熱・加圧して貼り付け、厚さ0.2mmのかみそりの刃状の枠を形成させ、淡水用のそのような網には、前縁と後縁、上半部と後半部の上縁及び下縁に、幅50mm、厚さ1mmのプラスチックシートやシリコーンゴムシートを貼り付け、かつ、後半部の上端に落ちてきた水滴が飛散しないようにするため、上縁を三角形状にとがらせ、ナイフの刃状にし(針の列状にしてもよい)、淡水用スペーサー付フレームを形成させる等してもよい。(水がナイフによく付着するように、表面を親水性物質で被覆したり、逆に、水滴がきれいに切り裂かれるように、撥水性物質で被覆したりしてもよい。)
塩水用スペーサー付フレームでは、0.2mm厚の枠を貼り付けた網の前縁と後縁及び、上縁と後縁の前半部に、50mm幅で、厚さが1mmのプラスチックシートやシリコーンゴムシートを左右から貼り付け、上端をナイフの刃状にしたものにする。
多数の両フレームを交互に平行に並べ、1m角の陰イオン交換膜と、陽イオン交換膜を交互に、それらフレームの間に挿入した集合体を形成させる。
その集合体の上方100mm程度の高さに、上記の点滴ノズル容器の底面を位置させ、前半部には、淡水の多数の水滴が落ち、集合体上の前半部の各開口から淡水用スペーサー付フレーム中に入り、塩水の水滴は、後半部の開口から、塩水用スペーサー付フレーム中に入るようにする等にしてもよい。
例えば、容器1のゆれ等で、淡水の水滴が塩水用スペーサー付フレームの前半部の上に落ちたとしても、刃物状部分で左右に裂かれ、その左右の淡水用スペーサーの中に入る等となる。
【0035】
淡水供給管2から淡水または普通の海水を供給し、塩水供給管7から海水淡水化の副産物として生産された高濃度塩水を供給する等してもよい。
【0036】
図7は、前例のような点滴ノズルを用いない、多数のセルを内部で並列に接続したユニットを複数個直列につないだ実施例の平面図。
図8は、その7字形排水管湾曲部の高さにおける横断面図。
図9は、淡水供給管72の位置における縦断正面図。
図10は、淡水供給管72の位置における縦断左側面図。
【0037】
71は、底面を撥水材料で被覆した電気絶縁材料製給水容器。
72は、その上面の前上部に設けた淡水供給管。
73は、その右後方の塩水供給管。
74は、上面に設けたステッピングモーター内蔵の電動弁駆動装置。
75は、その内部のピニオンにかみあうラック。
76は、その右端に連なる駆動板。
77〜78は、その前下端と後下端に連なり、給水容器71を左右に貫く絶縁材料製の弁体。
79〜80は、給水容器71の下部に置かれた全く同構造の、各容器内に、二つのセルが並列に接続されて収められている単位起電力しか出さない並列ユニット。
81〜82は、各ユニットの後方に突出したマイナス導電線。
83〜84は、その各右方に突出したプラス導電線。
85は、ユニット79のプラス導電線とユニット80のマイナス導電線をつなぐ連結導電線。
86A〜87Aは、各ユニットの前面に設けた側方から見た形が7字形をなす、塩素域廃淡水排出7字形管。(水位規定と、点滴ノズルとしての機能も持つ。)
86B〜87Bは、それらの各右方の水素域廃淡水排出7字形管。
88〜89は、それらの各右方に設けた廃塩水排出7字形管。
86AC〜89cは、廃淡水と廃塩水の落下点に設けた水滴検出電極。
【0038】
90は、給水容器71中の前半部の淡水供給空洞。
91A〜91Bは、その底壁の左方の塩水域と水素域の淡水供給用貫通孔(ユニット79上)。
92A〜92Bは、右方の塩水域と水素域への淡水供給用貫通孔(ユニット80への)。
93A〜93Bは、弁体77に設けた左右の貫通孔。
94は、給水容器71の後半部の塩水供給空洞。
なお、その底壁には、ユニット79〜80の塩水供給溝に連なる貫通孔が存在し、底壁上の弁体78にも、貫通孔があるが、図示しない。
また、ユニット80内の各部分の符号の記載をほとんど省略する。
なお、給水容器71は、電動弁の弁箱、その底壁は弁座とみなすことができる。
【0039】
95〜99は、電極板、イオン交換膜等を囲む、後から前に並ぶ絶縁材料製のフレーム。
100Aは、その左上部の切欠の連続から成る前後に走る塩素域(陰イオン拡散)淡水供給溝。(図8、10のように、その底面には、フレーム95と99の上部の後面の陥凹から成るスリット状(図では長方形)の下方に連なる貫通孔が存在する。)(この溝は、底面の貫通孔の延長部分とみなすこともできる。)
100Bは、その右方の水素域(陽イオン拡散)淡水供給溝。(その底面には、フレーム97の上部の後面の陥凹より成るスリット状貫通孔が存在する。)
100cは、ユニット80の塩素域淡水供給溝。
100Dは、その右方の水素域淡水供給溝。
101A〜101Bは、ユニット79〜80の右上部の塩水供給溝。
102Aは、ユニット79内の左下部の塩素域廃淡水排出溝。
102Bは、その右方の水素域廃淡水排出溝。
103は、その右方の廃塩水排出溝。
104〜105は、フレーム95と、99に囲まれた、左上隅の張りだし部には、マイナス導電線81が貫通する並列接続用のマイナス電極板(陰極板)。(マイナス導電線が通る左上部のみを金属板製にし、それに連なる他の部分は、炭素繊維製や耐蝕性金属製の網の前後面に、目の粗い発泡樹脂板やプラスチックウール製、ガラスウール製の不織布等を貼り付けたものにしてもよい。)
106は、フレーム97に囲まれた右上隅の張り出し部にプラス導電線83が貫通するプラス電極板(陽極板)。
107A〜107Bは、ユニット80内の左下部の塩素域・水素域廃淡水排出溝。
108は、その右方の廃塩水排出溝。
109〜110は、フレーム96と、99に囲まれた陰イオン交換膜。
111〜112は、フレーム97と、98に囲まれた陽イオン交換膜。
【0040】
(1) 図示しない水源と電磁弁から、淡水供給管72を通じて、給水容器71内の淡水供給空洞90に淡水が供給され、塩水供給管73を通じて塩水供給空洞94に塩水が供給される。
その淡水は、弁体77の貫通孔93Aから、直下の貫通孔91Aのみを通じて、塩素域淡水供給溝100Aに入り、それに満たされ、溝の底面の二つのスリット状貫通孔を流下して、マイナス電極板104と、陰イオン交換膜109との間の塩素域淡水流下空間に入り、また、等電位である陰イオン交換膜110と、マイナス電極板105の間の塩素域淡水流下空間にも入る。
(2) ついで、図示しないコンピューターが駆動装置74内のステッピングモーターを動かし、ラック75が少し右進し、駆動板76、弁体77〜78も右進し、弁体77の貫通孔93Bが貫通溝92Aにいっちし、ユニット80の塩素域淡水供給溝100Cに入り、その下方に流下する。
(3) ついで、駆動装置74が働き、弁体77と78が右進し、貫通孔93Aが貫通孔91Bにいっちし、水素域淡水供給溝100Bに給水され、プラス電極板106の前後の等電位の水素域淡水流下空間に流下する。
(4) ついで、貫通孔93Bが貫通孔92Bにいっちし、淡水がユニット80の水素域淡水供給溝100Dに淡水を給水し、その下方に流下する。
(5) ついで、図示しない弁体78の左方の貫通孔が塩水供給溝101A上にある塩水供給空洞94の貫通孔にいっちし、塩水が塩水供給溝101Aに入り、陰イオン交換膜109と、陽イオン交換膜111の間、及び陰イオン交換膜110と、陽イオン交換膜112の間に流下する。
(6) ついで、図示しない弁体78の右方の貫通孔がユニット80の塩水供給溝101B上にある塩水供給空洞94の貫通孔にいっちし、塩水供給溝101Bに塩水が入り、その下方の二つの、陰イオン交換膜と、陽イオン交換膜の間に流下する。
なお、ここで、塩素域淡水供給溝や、水素域淡水供給溝等を経て、それぞれ、複数の等電位の流下空間が電気的につながっているが、等電位箇所間であれば、電流が流れることはない点が本発明に関して重要な点である。
【0041】
ユニット79〜80内の各流下空間に入った水のうち、塩素域の淡水は、塩素域廃淡水排出溝102A、または107Aに入り、7字形管86Aまたは87Aを経て、外気中に滴下される。
同様に、水素域流下空間を流下した淡水は、水素域廃淡水排出溝102B、または107Bに入り、7字形管86B、または87Bを経て、外気中に滴下される。
【0042】
同様に、ユニット79と80の塩水流下空間を流下した塩水は、廃塩水排出溝103、または108と、7字形管88、または89を経て、外気中に滴下される。
【0043】
このようにして、ユニット79〜80内を淡水と塩水が通過するが、淡水供給溝100〜塩水供給溝101の各上端より、やや低い位置に、廃淡水排出7字形管86〜89の上部の湾曲部があるため、各排出管からの水滴落下と共に、各供給溝内の水位が低下してゆく。
ついに、水滴検出電極86AC〜87BCのいずれかに水滴が落下しなくなると、その情報がコンピューターに入り、駆動装置74が働き、弁体77〜78が動き、貫通孔93A、または93Bが、貫通孔91A〜92Bのいずれかに連なり、減少した塩素域淡水供給溝100A〜100Bのいずれかに、淡水が供給される。
もし、水滴検出電極88C〜89Cに水滴が落ちなくなると、弁体78の図示しない貫通孔が対応する塩水供給空洞94の底壁の貫通孔に連なり、塩水供給溝101A、または101Bに塩水を供給する。
(個々の流路の水滴検出電極を省略し、全廃淡水の流量計と、全廃塩水の流量計のみを設け、一定速度で弁体77〜78を左右に動かしてもよい。)
【0044】
塩水流下空間中の塩化物イオンは、陰イオン交換膜109または110を通過して、塩素域の淡水流下空間に入り、マイナス電極板104または105に電子を与え、電子は、導電線81をマイナスに荷電させる。
ナトリウムイオンは、陽イオン交換膜111または112を通過してプラス電極板106の前後の水素域淡水流下空間中に入り、該プラス電極板から電子をうばい、該電極板と、導電線83をプラス1V程度に荷電させる。
【0045】
このようにして、一つのユニット79内のプラス電極板106の前後に並列に接続された、それぞれ1V程度の起電力を生じる二つの塩分濃度差電池のセルが生じることになる。
また、ユニット79と80は、同構造であり、マイナス導電線82と、プラス導電線84の間にも1V程度の電位差を生じ、ユニット79と80の起電力は、連結導電線85で直列に連なっているので、マイナス導電線81と、プラス導電線84との間に、2V程度の起電力(出力)を得られることになる。
このようなユニットを更に多数左右に並べ、給水容器71、弁体77〜78その他を長くし、高い出力電圧を得ることもできる。
【0046】
また、各ユニット内に多数の並列セルを設け、大電流を取り出しうるようにしてもよい。
その場合の、左右方向に並べた陰極(陰極板)、淡水(淡水層)、陰膜(陰イオン交換膜)、塩水(塩水層)、陽膜(陽イオン交換膜)、陽極(陽電極板)、等の配列は、例えば、次のようになる。
−−−−−−−−−−−−−−−−−−−−−−−−−
陰極→淡水→陰膜→塩水→陽膜→淡水→陽極→淡水→陽膜→塩水→陰膜
→淡水→陰極→淡水→陰膜→塩水→陽膜→淡水→陽極→淡水→陽膜→塩水
→陰膜→淡水→陰極→淡水→陰膜→塩水→陽膜→淡水→陽極→淡水→陽膜
→塩水→陰膜→淡水→陰極→淡水→陰膜→塩水→陽膜→……
−−−−−−−−−−−−−−−−−−−−−−−−−
【0047】
上表の中で、 (陰極→淡水→陰膜→塩水→陽膜→淡水→陽極) の範囲が、一つのセルになっているが、1容器内に、このセルを上表のように、交互に左右逆転しながら、詰め込み、全陰極を、その一隅を貫通する1本のマイナス導電線でつなぎ、全陽極を、その他隅を貫通する1本のマイナス導電線でつなげば、一容器内に数千の並列接続セルを収めたユニットも得られる。
その出力は、昇圧コンバーターで昇圧して用いればよい。
ただし、逆転して並べたセルの隣接する同名電極板の片方は通常省略する。
【0048】
上例において、もし、弁体77〜78を金属製にしたり、省略したりすると、給水容器71内の水を通じて、塩素域と、水素域の電位差、及びユニット79内の水と、80内の水が短絡路となって電気的短絡が起こる。
また、塩素域淡水供給溝100Aと、水素域淡水供給溝100B間等の隔壁を省略すると、マイナス電極板104〜105と、プラス電極板106とが、両溝の水を通じて短絡する等となる。
また、隔壁の省略により、両供給溝に上がってくる塩素ガスと、水素ガスを分離して回収することはできなくなる。
【0049】
ユニット79〜80を水平面内で90°左回転させた状態に位置させ、淡水供給空洞90内に更に隔壁を設け、全半部を塩素域淡水供給溝100Aと100C専用の給水空洞にし、後半部を水素域淡水供給溝100Bと100D専用の給水空洞にし、底壁の貫通孔91Aと92Aを前半部に設け、貫通孔91Bと92Bを後半部に設け、弁体77も前後の二つ設け、それぞれに貫通孔91A〜92Bに対応する貫通孔を設けてもよい。
【0050】
更に次のように、弁の構造を変えてもよい。
ユニット79〜80を、それぞれ左回りに90°、水平面内で回転させた位置を取らせるが、給水空洞90は二分しない。
全ユニットの上端を平坦化し、全ての淡水流下空間の上端を給水容器71の底面の前半に接する固有のスリットを設け(塩素域か水素域かの駆別なく)、給水容器の底壁にもそれに通じるスリット状の多数の貫通孔を設ける。
また、塩水が流下する空間の上方には、給水容器71の底面に接するスリットを設け、給水容器71の底壁に、それに通じるスリット状の多数の貫通孔を設ける。
弁体77と78には、各一つのスリット状貫通孔を設ける。
【0051】
ここで、弁体77〜78を左方から、右進させ、弁体77〜78のスリットの一つが淡水供給空洞90、または塩水供給空洞94の底面の一つのスリットにいっちするごとに、直下の一つの淡水または塩水の流下空間に、ある程度水圧が加わった淡水または塩水が、前後に長い水滴を形成して、送り込まれるようにする。(この場合、各フレーム95〜99をゴム製にし、スリットの下端は、通常は閉じているが、加圧された水が上から入ると開くようにしてもよい。)
弁体のスリットが淡水供給空洞の右端に達すれば、弁体が左進に転じ、左端にいたれば右進に転じることを反復し続けるようにし、図1〜6の実施例で記したと同様の、点滴ノズルと同等の作用を表すようにする。
このような電動弁を用いて、ユニット79〜80内に、直列接続型のセルを多数収めてもよい。
これらの場合、流下空間集合体の下面にも、同様の電動弁の弁体を設ける。
【0052】
弁体77〜78をプラスチック製や、ゴム製の、給水容器71内に収まるエンドレスベルトにし、前後縁にパーホレーションやシンクロベルトのような歯を設け、給水容器71の前面と後面に取り付けたステッピングモーターの軸に連なる歯車で駆動するようにしてもよい。
その場合、スリット状の貫通孔では、変形しやすいので、前後方向に並ぶ多数の小孔の列にしてもよい。
【0053】
更に電動弁の構造を変形した場合を次に記す。
ユニット79を多数(例えば100個)電気的には直列につなぎ、円形に並べ、給水容器71を樽形(または輪状)の円形給水容器にし、その底壁には、全流下空間上に位置する放射状に並ぶ多数のスリットを設ける。
その底壁上に、駆動装置で、ゆっくり1方向に回転する円盤形の1枚の円形弁体を乗せ、円形弁体の上面に同心円状の4個の円筒形の隔壁を設け(給水容器の上壁から下垂させてもよい)、各隔壁間に、下方の塩素域淡水供給溝100A、水素域淡水供給溝100B、塩水供給溝101Aに対応する3本の円形水槽を形成させ、各水槽の底面に、各1本のスリットを設ける。
円形給水容器の底壁に、多数の放射状の淡水滴下用スリットを設ける。
円形給水容器の上方から、各水槽に、淡水と塩水を供給する。
巡回する円形弁のスリットが、円形給水容器の底壁の放射状の淡水滴下用スリットと、塩水滴下用スリットに、いっちするごとに、下方の流下空間に、淡水及び塩水が補給されるようにする。
【0054】
これにより、常に順次、全ユニットに対して、三つの円形水槽の各スリットから、淡水が塩素域淡水供給溝と、水素域淡水供給溝に供給され、塩水が塩水供給溝に供給されることになる。
【0055】
この場合、円形弁体上の淡水水槽を1本化し、下壁のスリットも1本にし、その下方の位置の異なる塩素域・水素域淡水流下空間に、順次、給水するようにしてもよい。
【0056】
この円形給水容器内の円形水槽の代わりに、半径方向に伸びた回転する絶縁材料製の淡水供給管と塩水供給管を設け、その先端は下方に向け、かつ下端にスリット状の貫通孔を設けたノズルを形成させ、このノズルが給水容器底壁上を回転してゆくようにしてもよい。
この底壁の貫通孔は、円周方向の幅をやや大きくしてもよい。
また、ノズルへの各給水は、電気絶縁性の電磁弁を用いて断続してもよい。
【0057】
上記のように、全実施例を通じて、空気層や絶縁体で、淡水供給管系内及び、塩水供給管系内での短絡防止を行なう。
また、架線と、海がつながっているので、淡水・塩水両供給管系間の絶縁体による短絡の防止を行なうが、両水系間の電気抵抗が充分大きければ、弁体77と78からの給水等、両系の同時点給水を行なってもよい。
【0058】
円形給水容器を用いる場合、各ユニット内の各フレームを外周に近ずくほど、分厚くし、各ユニットを円弧形にしてもよいが、ユニット数を多くして、長方形のままでもよいようにする方が望ましい。
【0059】
水流速度を増すため、給水容器71の上下長を大きくし、水深を増したり、給水容器の上面を電磁弁でふさいだ状態で、淡水供給空洞90と、塩水供給空洞94の上方にポンプで弱く加圧した空気を送りこみ、内部の水面を適度に加圧したり、給水容器の下方から給水し、上部に貯まった空気の圧縮圧を利用したりし、かつ、各廃水用7字形管86A〜89の排出口下端を低くし、更に細くして、サイホンの原理による負圧が加わるようにしたり、ポンプで吸引圧を加える等してもよい。
【0060】
上例では、電動モーターで弁体を駆動する電動弁を用いたが、次のように、弁体、弁座、弁箱が絶縁体で造られ、内部に水が入っていても、弁口が閉じている時には、その一次側(給水側)と、二次側(排水側)が電気的に絶縁される電磁弁を用いたもので発電システムを構成してもよい。
例えば、多数の並列接続セルを内蔵した100個のユニットを設け、それらを直列に接続する。
一つの淡水水源と、一つの塩水水源に連なる、各1本の淡水給水本管と、塩水供給本管を設ける。
淡水供給本管には200個の上記のような電気絶縁性の電磁弁を介して200本の分枝管を取り付け、そのうち100本は各ユニットの塩素域の淡水供給溝に給水し、他の100本は、水素域の淡水供給溝に給水するようにする。
塩水供給本管には100個の電磁弁を介して100本の分枝管をつなぎ、各ユニットの塩水供給溝に給水する。
各ユニットの塩素域の廃淡水排出管と、水素域の廃淡水排出管に、各1個の電磁弁をつなぎ、排水する。
各ユニットの廃塩水排出管にも、各1個の電磁弁をつないで排水する。
多数の電磁弁のうちの、ただ1個のみが短時間、順次開き、給水路系内での短絡、排水路系内での短絡、両系間での短絡、淡水路系と塩水路系間の短絡等の電気的短絡を防止しながら、淡水または塩水をいずれかのユニットの、いずれかの給水溝及び流下空間に供給することを反復する動作をコンピューターの制御により行なう。
【0061】
なお、自然状態で、河水が海に流れこんだ際、塩分のイオンが淡水中に拡散し、イオンの運動の際の水分子への衝突で、混合水の温度は、少量上がるものと考えられるが、このような塩分濃度差発電システムを用いると、その温度上昇度が、小さくなり、電気エネルギーに変換され、種々の電気機器で消費され、そこで熱に変わり、空気等に移動し、大部分は、それから宇宙空間に、熱放射として逃げることになり、自然状態での海水温上昇による、温暖化効果より、エネルギー終始としては、わずかながら小さくなるものと考えられる。
上記の濃淡電池(塩分濃度差発電装置)において、陽イオンまたは陰イオンがイオン交換膜を通過して、淡水中に入ると、塩やナトリウムの原子にかえるが、それにより、その原子の持つ化学エネルギーが低下し、熱運動エネルギーも小さくなり、淡水の温度低下が起こるものと考えられる。(水温・電流・その他を高感度で実測する研究をすることが望ましい。)
【0062】
通常のイオン交換膜は、イオンはよく通すが、水分子はほとんど通さない。
そこで、イオンの通る微孔をやや大きくしたり、水分子が通る微孔をイオンの通過孔の付近に設けたりして、イオンも水分子も通すようにした膜を造り、陰イオン交換膜109〜110や、陽イオン交換膜111〜112として用いる。
陰イオン交換膜109と110に、マイナス電極板104と105を密接し、陽電極板106の厚みを増して、陽イオン交換膜111と112に密接させる。
陰イオン交換膜109と、陽イオン交換膜111との間、及び、陰イオン交換膜110と、陽イオン交換膜112の間には、塩水供給空洞94から、塩水を流すが、淡水供給空洞90からの淡水は、一切流さない。
このようにして二つの電池セルが形成される。
【0063】
このセルのマイナス導電線81と、プラス導電線83とを電線で短絡すると、両イオン交換膜間に流した塩水中の塩化物イオンは、陰イオン交換膜を通過して、マイナス電極板104に接して電子をうばわれ塩素原子になり、熱運動で多くは陰イオン交換膜の微孔を経て塩水中にもどり、ごく一部は、同じ陰イオン交換膜を通過した少量の水分子間に入りこみ、やがては、別の微孔を経て、塩水中にもどるようになる。
陽イオン交換膜を通過したナトリウムイオンのプラス電極板に接して電子を与えられ、ナトリウム原子になり、多くは熱運動で同じ微孔を通って塩水中にもどり、塩水中の水分子と反応し、水素ガスを発生させ、水酸化ナトリウムになり、ごく一部は、微孔を通過した付近の水分子間に入り、水素ガスを発生させ、水酸化ナトリウムとなり、やがて、微孔を通り、塩水中にもどる。
このようにして、外部導電線に、ある程度の電流が流れる。
【0064】
これらの場合、淡水に塩が溶けこんだ状態の海水は、淡水単独の状態より、多くのエネルギーを持っており、また、熱エネルギーも持っている。それらが電気エネルギーとして、このような構成で、ある程度取り出されることになるとみなすことができる。
【0065】
陽極板の付近の水素域で発生する水素は回収して、燃料電池その他に用いればよいが、塩素は、廃水に加え、ナトリウムと反応させて塩化ナトリウムにもどし、海に投機することが望ましい。
【0066】
陰イオン交換膜ばかりを多数平行に並べ、一つおきの間隙に淡水と塩水を交互に流し、淡水流下空間に陰電極板を入れ、塩水流下空間に陽極を入れた場合(これらの陰・陽を逆転させてもよい)でも、ある程度の起電力は生じるが効率はわるい。
その他、種々の設計変更が可能である。
【0067】
通常の電気製塩システムでは、淡水が得られるので、それと海水を利用して本発命を用いて発電し、電気製塩のための電力にしたり、海水淡水化システムから出る濃厚塩水を塩水供給管7に加えてもよい。(特許文献1、2参照)
【0068】
次のような並列接続ユニットも可能である。
例えば、上下幅1m、左右長99mの陰イオン交換膜の後に、陽イオン交換膜を置き、その間に、同サイズの不織布製の塩水流下空間形成用のスペーサーを挟み、両イオン交換膜の前後に、淡水流下空間形成用のスペーサーを重ね、更に前に金属箔製の陰極板を重ね、後には、陽極板を重ねる。
この7重層材を1mピッチで前後にジグザグに折り重ね、上下幅が1.2mの上下壁がない「ロの字形」の絶縁容器の中間の高さにつめこめば、容器内の左端には陰極板の端がきて、右端には、陽極板の端がきて、容器の左右壁を貫く導電線につなぐことができる。
底面に多数のスリットを有する深さ10cm 、前後幅が50cmの、淡水供給溝容器と、同様の塩水供給溝容器を、ジグザグ折りセットの上面に重ね、淡水流下空間形成用スペーサーには淡水を、塩水流下空間形成用スペーサーには塩水を供給するようにする。
また、ジグザグ折りセットの下面に接する、上面に多数のスリットを有する廃淡水排出溝容器と、廃塩水排出溝容器を接触させる。
【0069】
次のようにして、ロール型の並列接続ユニットを得ることもできる。
上記の7重層材を鉛直に立つ、太めの陰極導電棒に巻き付け、金属管製陽極内につめこみ、電気絶縁体製のマニホールドを介して、淡水と塩水を供給したり、排出させたりしてもよい。
ただし、陰極棒に接する左端を除いて、陰極板の前面に陽極板との短絡防止用の絶縁塗料を塗り、左回転する陰極棒にそれらを巻き付けてゆく。
これらの並列接続ユニットの出力も、コンバーターやインバーターで昇圧し、50〜60ヘルツの交流に変換し、更に変圧機で昇圧して送電線に送ったり、多数のユニットを直列につないで昇圧し、インバーターで交流に変換して送電する等する。
【0070】
上記の図1〜10に記すシステムに供給する淡水と塩水は、通常、数℃程度の温度差があり、その総熱エネルギーは、水の比熱と、流量と、温度差の積であらわされる値で、かなりの多量であり、それを有効に利用することが全システムのエネルギー効率を高めることになる。
しかし、例えば、一つの銅と、コンスタンタンによる熱電対素子の常温付近における温度差1℃当りの起電力は、40μV(百万分の40ボルト)程度にすぎないので、半導体素子を用いた昇圧コンバーター等で昇圧するとしても、数10V程度の収合起電力を得たい。
それには、素子を10万個程度直列に接続する必要がある。(温度差5×10万×40μV=20V)
次にそのような多数の素子を直列につなぎうる、比較的安価に製産しうる、前述のシステムに前置する、熱電堆発電システムについて記す。
【0071】
図11は、LSI等のように、多数の熱電対素子を直列につないだ大規模直列熱電堆発電システムの縦断左側面図。
113は、その上部に設けた上下に広がった扁平な淡水供給管。
114は、その下部の塩水供給管。
115〜116は、それらの後面と前面に接し、かつ直列につながれた大規模直列熱電堆。
117〜118は、それらの表面を覆う断熱材。
【0072】
淡水は、淡水供給管113を経て、前述の淡水供給管2や72に送られ、塩水は、塩水供給管114を経て、前述の塩水供給管7や73に送られるが、その間に、多数の直列に接続された熱電対を含む大規模直列熱電対115〜116を加温または冷却し、両水の温度差が5℃程度であれば、それぞれ、10V近くの起電力を発生し、両者の直列起電力として、20V程度の集合起電力が得られる。
その際、断熱材117〜118は、外危温が、両熱電堆に及ぶのを防ぐ。
【0073】
図12は、大規模直列熱電堆115を作製する真空蒸着装置システムの縦断左側面図。
119は、真空容器。
120は、図示しない固定装置で固定された、縦・横1m程度、厚さ0.1〜1mm程度のプラスチックフィルムや、表面を絶縁被覆した金属板等から成る蒸着基板。
121は、右方の蒸着源。
122〜123は、上下に並んだモーター付の巻き取りドラム。
124は、それらに巻き込まれた厚さ0.1mm程度のステンレス鋼・銅・その他の金属板にリソグラフィー等により、縦方向に走る多数のスリットを設けて成るシャドーマスク。(図示しないが、前後縁には、写真フィルムのようなパーホレーションが設けられる。)
125〜126は、そのパーホレーションにかみ合う歯車が付き、コンピューターで制御されるステッピングモーターを用いた駆動装置も付いたローラー。
【0074】
蒸着源121には、複数の加熱装置があり、それぞれに銅、コンスタンタン、2酸化ケイ素等がセットされており、コンピューター制御で順次、それらの蒸着材料の蒸気を発生し、巻取ドラム122〜123や、ローラー125〜126を駆動し、シャドーマスク124を順次1コマずつ、精度よく駆動し、設計通りの蒸着パターンを基板120の右面に形成してゆき、大規模熱電堆115または116を作製する。
【0075】
図13は、熱電堆作製の第1工程で基板120の表面に銅製薄膜電極群が形成された場合(半製品)の正面図。
127は、蒸着源121で蒸発した銅の蒸気が、蒸着パターンを形成するシャドーマスク124の多数のスリットを通して基板120に凝着して成る、基板上の上半部に蒸着で形成された、縦長の銅製電極群。(例えば、その厚さは、数10〜1000nm程度、横幅は1mm以下でもよい。蒸着以外のスパッタリング、CVCA法、電気化学メッキ法、その他を用いてもよい。)
127Aは、それらの各右下端から下方に伸びた幅がせまい接続部。
127Bは、その下端から左方に少し伸びた接続突起部。
【0076】
図14は、第2工程で、図13の表面に蒸着された半製品の正面図。
図示しないコンピューターにより、モーター付の巻き取りドラム122〜123や、ローラー125〜126が働き、シャドーマスク124を1コマ引き下げ、次のパターンを蒸着させる。次の工程でも、同様に、1コマずつシャドーマスクが引き下げられる。(同パターンの際には移動しなかったり、前に使用したパターンの部分にもどったりもする。このようにパーホレーション付のシャドーマスクは、歯車付ローラーによって、正確に位置ぎめされて、重層パターンの蒸着が、容易に、急速に行なわれる。)
128は、銅製電極127と、基板の下半部にまで及んで蒸着されたコンスタンタン製電極群。
128Aは、その上下の中間の接続部。(この部分は、導電性の大きい銅製にしてもよいし、コンスタンタン上に銅を重ねたものでもよい。)
【0077】
図15は、第3工程の半製品の正面図。
129は、その上部と、接続部を覆う2酸化ケイ素その他の材料から成る絶縁膜。
129Aは、その延長部。
【0078】
図16は、第4工程の半製品の正面図。
130は、前工程の半製品の上を覆う、コンスタンタン製電極群128と同形の銅製電極群。
130Aは、その接続部。
【0079】
図17は、第5工程の半製品の正面図。
131は、銅製電極129の接続部と下半部を覆う絶縁膜。
131Aは、その接続部。
【0080】
図18は、第6工程の半製品の正面図。
132は、それらを覆うコンスタンタン電極。
132Aは、その接続部。
【0081】
図19は、第7工程の半製品の正面図。
133は、その下部を覆う銅製電極。
133Aは、その右上端に連なる接続部。
133Bは、その上端から右方に少し突出し、基板上に着き、更に、隣接する各銅製電極127の接続突起127Bの上に重なって蒸着され、隣接部に直列接続している接続突起部。
ただし、最右側の接続突起は、基板120の面に付着する。
【0082】
図20は、基板120の右面への蒸着が完成したものを左に倒して拡大した縦断正面の模式図。
【0083】
なお、実際には、1m角の基板120に、横幅1mm弱の電極群を1千個設け、各部に、前記のように50セットの直列接続された熱電対を形成させる等すれば、一面の基板に5万個の直列接続熱電対が形成される。
重層数を増すには、コンスタンタン製電極128〜絶縁膜131の4層から成る1セットを多数セット重ねればよい。
接続突起部127Bにハンダズケ等で、一つのリード線をつなぎ、接続突起部133Bに、もう一つのリード線をつなぎ、かつ、熱電堆115〜116を直列に接続すれば、10万個が直列接続されることになり、温度差5℃で、20V程度の起電力が得られることになる。
【0084】
なお、銅電極127その他の主要部分より、横幅が、やや小さい接続部Aを設け、それに接続突起部127A等を設けることにより、発電に寄与する部分を広く取れる利点がある。 接続部を主要部と同じ幅にすると、接続突起部127Bが左方に突出するため、各主要部間を広くあけねばならないことになり、発電有効面積が小さくなる。
【0085】
なお、基板に接する銅製電極群127と、最表面の銅製電極群133とを分厚くして抵抗を減らし、電流通過による発熱量を低減してもよい。
熱電対の材料として、クロメル:コンスタンタン、その他の組み合わせを用いてもよい。
各接続部127Aその他を長くすれば、離れた部分の温度差を利用することもできる。
【0086】
淡水供給管113と塩水供給管114を上下幅が1m程度で、横方向が10〜100m程度の2枚のプラスチックフィルムの上・中・下に融着線を設けたフレキシブルチューブにし、真空容器内の前後2箇所のドラムに巻き、フィルムの上下縁に設けたパーホレーションにかみ合う歯車が付いたローラーを介して、基板120の位置に少しずつ露出させ、全長にわたって、数万個の直列に連なる熱電対群を形成させ、フィルムチューブ内に淡水及び塩水を通し、温度差を利用するようにしてもよい。
この場合、熱電対の重層枚数を比較的少くしてもよい。
【0087】
熱電堆115のような大規模熱電堆の上半部に黒色塗装をほどこしたり、太陽電池を貼り付けたりして日光の吸収による加温を高め、下半部にはアルミニウムメッキしたプラスチックフィルムを貼り付ける等し、日光にさらし、上半部と、下半部の温度差を生じさせ、熱電発電を行なってもよい。
この場合、下半部にも黒色塗装をほどこし、上下の中央で折り曲げ、両者間に断熱層を設け、一面は日光にさらして高温化し、別の面は、うちゅうその他の空間に向けて放熱を図り、熱電発電をしてもよい。
【0088】
このような大規模直列熱電堆は、比較的安価に製造でき、水・空気・土地・日光照射部等の温度さをも電力に変換することができ、従来の火力発電所や原子力発電所の温廃水と大気や海洋水との温度差による発電その他、上記以外の用途にも利用しうる。
【0089】
この大規模直列熱電堆に通電し、ペルチェ効果により、上半部に発熱させ、下半部を冷却し、冷却部を冷却機に利用する等してもよい。
【0090】
この大規模直列熱電堆のように、パーホレーション付のシャドーマスク124と、その駆動装置の巻き取りドラム122〜123や、歯車付ローラー125〜126を用いた真空蒸着装置(スパッタリング装置等も含む)や、それを用いた製法は、熱電堆以外の製造にも用いうる。
【0091】
上記、図1〜10の廃塩水排出管13等には、かなりの塩分が残された廃塩水が排出され、廃淡水排出管の廃淡水も廃塩水と同塩分濃度にはならない。
図1〜10に記すシステムにおいて、淡水と塩水の濃度差が大きいほど、起電力が大きいので、原水からのエネルギー採取量を大きくしようとして、塩水から淡水へのイオン移動量を大きくしすぎると、起電力の低下が起こるので、河川や海からの採水に要するエネルギーや、パイプライン建設コスト、運転コスト等も加味して、原水からのエネルギー採取量を定めればよいが、いずれにしても、廃塩水と、廃淡水との塩分濃度差には、かなりの差が残される。
この差を利用して次のように浸透圧利用の発電システムを作動させ、高効率化を図ることが望ましい。
図21は、浸透圧発電システムの横断面図。
134は、円筒形の金属その他から成る耐圧容器。
135は、その左後部に連なる塩水供給中継管。
136は、耐圧容器の左端に連なる淡水供給管。
137は、耐圧容器内に多数(数万本以上)存在する海水淡水化等にも用いる半透膜(浸透膜・逆浸透膜)から成る中空糸膜。
138は、淡水排出管。
139は、耐圧容器の右前部に連なる塩水排出管。
140は、それに連なるタービン。
141は、その回転軸に連なる発電機にも電動機にもなりうる発電電動機。(タービン軸と発電電動機の軸との間に、摩擦クラッチや減速歯車セット等を挿入してもよい。)
142は、同じ軸に連なるロータリーポンプ、歯車ポンプ、軸流ポンプ等を用いた塩水供給高圧ポンプで、その排出側には、塩水供給中継管135が連なる。(歯車系で減速したレシプロポンプを用いてもよい。)
143は、その給水側に連なる塩水供給管。
【0092】
始動の際は、図示しない始動スイッチを押すと、蓄電池から、図示しない淡水供給ポンプに給電され、淡水供給管136→中空糸膜137→淡水排出管138に淡水が流れ、かつ、発電電動機141にも給電され、それを回転させ、内部が空のタービン140と、ポンプ142が回転し、塩水供給管143を通じて、塩水がポンプから塩水供給中継管135を経て、耐圧容器134内に供給される。
【0093】
その結果、中空糸膜の半透膜面を通過して、膜内から膜外の耐圧容器内の塩水中に、多量の淡水が拡散し、その塩水を希釈し、増量させ、数10気圧にも及ぶ浸透圧を発生させる。
この高圧希釈塩水は、塩水排出管139を経て、出力駆動装置であるタービン140内の細いノズル先端から、高速度のジェット水流になり、タービンブレードに当り、回転させ、図示しない排出管を経てタービン外に出るが、高速でタービン軸を回転させ、連動する発電電動機141に発電させ、その出力の一部は図示しない送電線に送られ、他の一部は過大電流を適正値にする制御回路を経て、蓄電池に充電される。
また、タービンの回転は、ポンプ142も回転させ続けるので、絶えず耐圧容器内に塩水を供給し続ける。
【0094】
このようにして、タービン140は回転し続け、発電電動機141から送電が、続けられる。
停止させるには、淡水供給ポンプへの給電を止めたり、塩水排出管139に挿入した図示しない電磁弁を閉じる。
【0095】
このしすてむにおいて、タービン軸に連なる発電電動機も、ポンプも回転運動をするだけであり、騒音発生量が小さく、エネルギー効率が大きく、始動装置も簡素で、経済性もすぐれ、大規模発電にも、小型船舶に積載し、電動水進機を動かすような用いかたにも使用できる、浸透圧発電システムが構成される。
なお、タービン140の軸に、淡水供給管136への給水ポンプもつないでもよい。
半透性中空糸膜の代わりに、布製スペーサーを内蔵した面状半透膜製袋等を用いてもよい。
耐圧容器134内の希釈塩水を139とは別の塩水排出管を設け、連動する自動切替の機械式や電磁式の弁が付いたピストンエンジン(レシプロエンジン)のシリンダー内に導き、それを往復運動させ、そのピストンロッドの外端に該エンジンのピストンより直径がやや小さいピストンがつながるレシプロ型ポンプをつなぎ、エンジンの往復運動でレシプロポンプを同様に往復運動させ、高エネルギー効率で、高圧塩水を耐圧容器134内に送り込むようにしてもよい。(同一ピストンロッドに中空糸膜137内に淡水を送り込むレシプロポンプのピストンをつないでもよいが、低水圧でよいため、このピストンの直径は大きくてもよい。また、このピストンロッドの動きを回転運動に変換し、発電機または発電電動機を動かしてもよい。)
【0096】
絶縁材料製にした淡水供給管136内と、淡水排出管138内に、仕切板を内蔵させて2分し、中空糸膜137群を2群に分け、それぞれに電気的に絶縁した水路を形成させ、第1水路につながる中空糸膜群は陰イオン交換膜製にし、第2水路の中空糸膜は陽イオン交換膜製にし、かつ、各中空糸膜内に細い金属線を入れ、排出管外まで導き、陰・陽の導電線にする。
塩水排出管139の前端をタービン140にはつながないで排水路につなぐ。
このようみして、前述と同様の起電力を発生する濃淡電池ユニット(セル)を形成させてもよい。
そのような多数のセルの各導電線を直列につなぎ、その出力電力を蓄電池に一部充電し、一部は他に送電し、一部で発電電動機141を回し、ポンプ142で、各容器内に塩水を供給したり、別のポンプで淡水を供給するようにしてもよい。
【0097】
図22は、代替エネルギーとして淡水を積載し、前述の塩分濃度差発電システムで得た電力を有効利用した推進機その他を動作させる、石油等の燃料油消費量が少ない海洋浚渫船の平面図。
144は、通常の船舶のように、運航時の水流抵抗が小さくなるための外形をなす、左端に設けた船尾アダプター。
145は、その甲板に取り付けた推進方向変更装置。
146は、それに連なり、下方は海水中に入っている、電撃爆発推進機。
147は、船尾アダプターの右側にねじ止めされている直方体形の淡水タンク。
147Aは、その甲板に設けた操船パネル等がある操船室。
148は、淡水タンクの右側にねじ止めされている、通常の船舶のように、運航時の水流抵抗を小さくするための外形をなす、船首アダプター。
149は、その甲板の左方に取り付けた排水管駆動装置。
150は、埋め立て区域に伸びた排水管。
151は、排水管と船首アダプター内の送水ポンプをつなぐホース。
152は、そのポンプと浚渫本管駆動装置をつなぐホース。
153は、甲板の右方に取り付けた浚渫本管駆動装置。
154は、それから右方に伸び、下垂し、更に右方に曲がっている浚渫本管。
155は、その先端に取り付けた浚渫端管回転装置。
156は、それから右方に伸びた、先端は閉じた浚渫端管。
157は、その先端の上面に設けた多数の小孔。
【0098】
図23は、浚渫船の左半部の拡大縦断正面図。
図24は、浚渫船の右半部の拡大縦断正面図。
158は、船尾アダプター144中に設けた前述のような塩分濃度差発電システム。
159は、推進方向変更装置1の下部のモーター。
160は、電撃爆発推進装置中にある、サイリスター・昇高圧コイルその他から成る、塩分濃度差発電システム157の出力を数万ボルトに昇圧する昇圧回路。
161は、その出力電圧の蓄積用高圧コンデンサー。
162は、その蓄積電力を次の各装置に、順次に送るサイリスター等を用いたスイッチング回路 。
163は、左端が開いた金属管から成る多数の爆発電極管。
164は、その右端の内部に設けたセラミック等から成る絶縁管。
165は、その内部に保持され、両端が左右に突出した棒状電極。
166は、船尾アダプター144の右壁の内面に取り付けたフランジ付の円筒形の防水ボルトホルダー。(左端には、内向きのフランジが付いており、ボルトの頭部が、非使用時に、脱落するのを防いでいる。)
167は、その中に収められている防水ボルト。その右端は、とがり、かつ、ねじが切られている。左端の頭部には、六角レンチで回すことができるように六角柱状のくぼみが付いている。(軸の右端をフクロナットに差し込む際、右端が多少上下前後に動いてもよいようにするため、頭部をホルダー内面と同直径の球面をなすようにしてもよい。)
168は、ボルト頭部の右側のワッシャー。(その内径をボルトの軸径より、やや大きくして、軸の右端が多少上下前後にずれても適応しうるようにしてもよい。あるいは、外径をやや小さくしてもよい。)
169は、ワッシャーの右側のタイヤ用ゴム等、硬質ゴムその他から成る円筒形の、船尾アダプターと貯水タンクとの間激を通じて、海水が船尾アダプター内に侵入することを防ぐためのパッキング。
170は、その右側のワッシャー。
171は、淡水タンク147の左壁内面に取り付けられたフクロナットで、ボルト167の右端がねじこまれている。
172は、淡水タンク147の右壁内面に取り付けられたフランジ付の円筒形の防水ボルトホルダー。(165のものと、やや形識を異にするものを例示している。)
173は、その中に収められているボルトで、軸の右端は、とがり、ねじが切られており、頭部の外面は六角形をなし、頭部の右端にはホルダーの外面に接する、非使用時に、ホルダーから脱落するのを防止するための、内向きのフランジが付いている。(これらのフランジは、ボルトの頭部に小さなねじで止めつける等すればよい。)
174は、ねじの軸の左端を囲むパッキング。
【0099】
175は、船首アダプター148の左壁内面に取り付けたボルト173の右端がねじこまれているフクロナット。
176は、排水管駆動装置149の下部のモーター。
177は、浚渫本管駆動装置の下部のモーター。
178は、浚渫本管駆動装置153内において、浚渫本管154の左端の上部に付いている半円形板
179は、その下方の歯車状の半円形板。
180は、それにかみ合う図示しないモーターに連なる歯車。
【0100】
181は、浚渫端管回転装置155内において、浚渫端管156の左端に、端管軸に垂直に取り付けられた歯車。
182は、それにかみ合う上部の歯車。
183は、その軸に連なるモーター。
184は、船首アダプター148の甲板下に設けたホース152内の水をホース151に送る送水ポンプ。
【0101】
このシステム全体は、船舶として自己運航し、操船室147A内の人により操船され、港等に入り、図示しない内蔵ポンプ等により、淡水タンク147内に淡水を貯留させる。
淡水タンク147内の淡水と、周囲の海洋から採取された塩水は、船首アダプター148内の塩分濃度差発電システム158に送水され、生じた電力が船内で利用される。
その電力は、船尾アダプター144に取り付けた電撃爆発推進機146中の昇圧回路160で数万ボルトに昇圧され、高圧コンデンサー161に充電される。
操船室から推進操作をすると、スイッチング回路162内の多数のスイッチング素子が順次切り替わり、爆発電極管163と、棒状電極164に数万ボルトのコンデンサー161の充電圧を印加し、両者の対向面間に存在する海水中で放電し、スパークを起こし、急速に爆発的に水蒸気が発生し、衝撃波となり、爆発電極管内の海水を左端から海中に押し出し、その反作用で、電撃爆発推進機146に加わる力は、船全体を船首側に押す。(水蒸気が冷えて水に帰り、収縮すると、海水はゆっくりした速度で爆発管内に入り、次の爆発に備えるが、爆発管の管壁や右端に海水がしんにゅうするための弁を設けてもよい。)
下方の爆発電極完での爆発が終ると、直ちに、上方の爆発電極にスイッチング回路162からの電圧印加が行なわれ、次には、図示しない他の爆発電極間内での爆発が行なわれ、ついには、最初の爆発電極完への電圧印加が行なわれることを持続的に反復する。
なお、実際には、爆発電極管の内径を10mm〜100mm程度の任囲の値にし、10行、10列の100本、または、それ以上配置し、順次に爆発させる。
この場合、一つの大きな爆発電極管を用いるよりも、小型のものを多数用いる方が、騒音が小さく、コンデンサー161の容量を小さくしうる。
【0102】
コンデンサー161よりずっと大きな容量のコンデンサーをも設け、スイッチング回路162に、同時に全電極に通電するモードも選びうるようにし、船が海底の土砂上に乗り上げた際等に、全爆発電極管から同位相の衝撃波を発生させ、大きな推進力を得るようにしてもよい。
そのような波面が一平面化した面積の大きい(あたかも、レンズ系で直径を大きくしたレーザーパルスのような)衝撃波面が、海底に向かって発射されるようにケーシングの方向を変えた装置を造り、海底からの反射波を捕える多数の音波センサーを設け、解析用コンピューターも設け、高分解能のソナー・地震探査装置を得てもよい。
【0103】
なお、各爆発電極管を六角形にし、ハニカム状に多数並べてもよい。
逆に、爆発管の隣接間隔をやや広めに取ることもある。
棒状電極165の左端を円錐形にとがらせてもよい。
各爆発管の内部に、管内面から絶縁され、かつ、絶縁体小片を挟んだ2枚の小短冊形金属電極板を設け、両短冊形電極に通電するようにしてもよい。
【0104】
電撃爆発推進機146で、このようにして生じた推力により、船は船首方向に進むが、方向を変える場合には、モーター159に通電し、推進方向変更装置145を鉛直軸の周囲に回転させ、電撃爆発推進機146の方向を変えて船の進行方向を変える。
ただし、船尾アダプター144に、通常の船舶と同様の電動機や内燃機関で駆動するプロペラ型の推進機や、梶を取り付けたり、操船室147Aを船首アダプター148に設けたりしてもよい。
操船指令の電気信号は、各アダプター間をつなぐ接続ケーブルで、電車の車両間を接続するように、つながれる。
直方体の淡水タンク147をタグボート等で、そのまま曳航すれば水流抵抗が大きくなるので、簡易に着脱できる船首アダプター144と、船尾アダプター148を接続して、水流抵抗を減小させているが、自ら推進機能を持たないが、運搬したい特許第3757378「人工陸地用モジュール」に記す浮遊性構造物等を、ねじ止めし、焔隔地へ運ぶのに用いる等のこともできる。
その場合、タグボートで曳航するようにし、推進機等を省略してもよい。
【0105】
また、塩分濃度差発電システム158の出力電力は、次のような浚渫作業にも利用される。
浚渫端管回転装置155中のモーター183を回転させると、歯車182、歯車181、浚渫端管156が90°回転し、多数の小孔157が前方に向く。
ついで、送水ポンプ184を作動させると、海底の堆積層上にある浚渫端管156の先端付近から、土砂混じり海水が、小孔157を経て、端管156内に吸引され、浚渫本管154→152→送水ポンプ184→ホース151→排水管150を経て、排水管の先端から埋め立て区域に流れ落ちる。(排水管の先端につないだホースを経て、埋め立て区域に土砂入り海水を送ることもある。)
【0106】
モーター177を回転させれば、排水管駆動装置149が鉛直軸の周囲に回転し、排水管150の方向を変えることができる。
また、海底を円弧状に捜査するため、モーター177に通電して、ジョイント作用をする浚渫本管駆動装置153、浚渫本管154、浚渫端管156を鉛直軸の周囲に回転させることができるが、小孔157から海水が吸引されるため、前方に向く推進力が生じ、モーター177に、それほど大きな電力を供給しなくてもすむ。
それらの管を45°程度前方に走査した後、浚渫端管回転装置155に通電し、浚渫端管を管軸の周囲に180°回転させ、小孔157を後に向けると、土砂混じり海水の吸引力が逆方向に働き、各管は後方の推進力を受ける。
モーター177の回転方向も逆転し、走査方向を切替える。
90°ほど扇形面の走査をすれば、また逆転させることを反復する。
同時に船をゆっくり右進させれば、海底の土砂面は、しだいに削られてゆく。
【0107】
浚渫端管156の先端を上げ下げするには、浚渫本管駆動装置153の内蔵モーターに通電し、歯車180と、半円形板179を回転させればよい。
なお、実際には、浚渫本管154は直線状にし、その先端に浚渫端管回転装置を上下方向に回転させる装置を取り付け、それに浚渫端管回転装置155を取り付け、海底面に対する浚渫本管及び、浚渫端管の傾斜を任意に変えうるようにする。
海水吸引時に、小孔157の付近に多数の針状突起を設けたり、小孔の各直径や向きを変えたりして、乱流を発生させ、付近の土砂を撹拌したり、浚渫端管回転装置155を駆動し、浚渫端管を細かく往復回転させ、小孔を上下運動させてもよい。
【0108】
上面の小孔157をふさぎ、浚渫端管156の前面と後面に小孔を設け、該端管の内部を前後に仕切り、前半部または後半部の水路を遮断しうる電動弁を設けてもよい。
小孔を前面に設けた端管と、後面に設けた端管とを、前後に並べて固定し、両管を交互に浚渫本管154につなぐ電動弁を設ける等してもよい。
【0109】
淡水タンク147内の淡水は、石油等より、はるかに消費量が大きいので、同様の淡水タンクを多数、船首アダプターと、船尾アダプター間につないでもよい。
その際、各アダプター、淡水タンク等の間を、ボルト167や173と、171や175でねじどめし、自由に着脱しうるようにする。
なお、実際には、このような防水ボルトと、フクロナットの締結装置は、各接続壁面に多数設けられる。
【0110】
塩文濃度差発電システム158を適当な懸架装置を介して船内に取り付け、船のゆれにより、落下する水滴の位置がずれるのを防いでもよい。
あるいは、点滴落下空間の上下長を長くしたものや、水滴の位置ずれが起きても支障がない、図7〜10に記すような、並列接続セルを多数含むユニットを多数直列に接続して用いてもよい。
【0111】
消費地から生産地に向かうオイルタンカーその他の船舶では、往路または復路の積み荷が少なく、船倉が空費されるので、そこに大きな軟質プラスチックを 用いたビニール袋等を入れ、淡水を積載し、それを用いて、塩分濃度差発電をし、燃料油を使用するエンジンの駆動軸につないだ電動モーターや発電電動機に通電し、燃料油の消費量を節約してもよい。
その場合、前後端が細くなった紡錘形の大きなビニール袋や硬質軽量タンクに淡水を入れ、本船から伸びた吸水ホース、または、1〜数本の平行な、可撓管製、あるいは、ユニバーサルジョイントで両端を本船とタンクにつないだ硬質管製の給水管で曳航しながら、淡水を発電に利用してもよい。
あるいは、これらの淡水を供給されて働く、塩分濃度差発電装置と、大出力の電動推進機を設けた安価な多数のリースのタグボートを用い、オイルタンカーをその内蔵淡水が消費しつくされる範囲の湊間を補助曳航するようにしてもよい。
【0112】
上記の浚渫用船舶を発電用その他のダム湖に浮べ、固底の浚渫に用いてもよい。
その場合、排水管150の先端に取り付けた長いホースをダムの水門を通して外部に垂らし、ホースの下端を湖水面より低くすれば、サイホンの原理により、送水ポンプ184に電力を供給しなくても、小孔157から吸いこんだ水が排出されることになり、浚渫本管駆動装置153の駆動用モーター177に加える電力も少なくてすむ利点がある。(水流でタービンを回し、その減速歯車を経た力で、浚渫本管駆動装置153を回転させることもできる。)
船舶の甲板に降る雨水を淡水タンク147等に蓄え、塩分濃度差発電システム158に用いてもよい。
内陸部の塩湖の塩水と、それに流入する河水を用いて発電してもよい。
図25は、淡水タンク147の前壁に取り付けた塩分濃度差発電システム158の発生する塩素ガスと、水素ガスを用いて海底下の地震探査を行なうシステムの拡大縦断面図。
185は、淡水タンク147の前壁。
186は、それに取り付けた油圧シリンダー。
187は、その中のピストン。
188は、それから伸びた湾曲したピストンロッド。
189は、その右端に取り付けたガソリンエンジンと同様の内燃シリンダー。
190は、発電システム158から発生する水素ガスに空気または塩素ガスを加えて送る送気ホース。
191は、それに連なる電磁弁。
192は、スパークプラグ。
193は、内燃シリンダー内のピストン。
194は、シリンダー下端の内面に設けたピストンのストッパー。
195は、内燃シリンダーの下端に連なる衝撃波発生用シリンダー。
196は、ピストン193のピストンロッドの下端に連なる、上下方向の多数の細い通気孔を有するハニカム構造の硬質材料から成るピストン。(下面が平坦な半球形や円錐形にすることもある。)
197は、その下方にあり、水面に浮かんでいる、直径1m、厚さが20mm程度の(上面に硬質金属薄板を貼り付けてもよい)、水より比重が小さいポリプロピレン等の材質から成る円盤形の衝撃波発生盤。
198は、その下方のシリンダー内面に突出した多数の小突起から成る、衝撃波発生盤197が下方に脱落するのを防ぐストッパー。(シリンダー内面に周囲が固着したハニカム構造盤にしてもよい。)
199は、点線で示した海面。
【0113】
油圧シリンダー186内に図示しない管を通じて油を出し入れし、ピストン187を適宜必要な高さに保ち、ピストンロッド188に連なるシリンダー189、195その他も必要な高さに保持される。
塩素ガスと水素ガスは電磁弁191を開き、ピストン187を中ほどの高さに押し下げ、内燃シリンダー189内に入る。(シリンダー内面に、弾性ストッパーを設ける等して、ピストンの中間位置を設定してもよい。)
ついで、スパークプラグ192に通電し、内燃シリンダー内の混合ガスに着火し、爆発的な燃焼を起こさせると、シリンダー内の燃焼ガスは急激に膨張し、ピストン193に連動するピストン196は、その下方の空気を通気孔を通じて上方に押しやりながら、急速に加速され、下降し、衝撃波発生盤197に衝突し、立ち上がりが急峻で、かつ、直径が大きいため、遠くへいっても、比較的広がりの小さい衝撃波パルスビームが、衝撃波発生盤197内→シリンダー195内の海水中→その下方の海水中→海底の地層内を伝搬し、種々の界面で反射し、図示しない音波センサーに入り、コンピューター処理により、各界面の深度や、その連続から成る界面の形が記録される等する。
【0114】
この場合、硬質のピストン196が急速度で衝撃波発生盤197に衝突するので、その界面には、立ち上がりの速い波長の短い、強い衝撃波が発生し、測定対象界面からの分解能の高い反射波が得られる。
なお、塩水と水素の混合ガスを、通気孔をふさいだピストン196と、衝撃波発生盤の間に入れ、それに点火して爆発させ、直接、衝撃波発生盤の上面を加圧してもよい。
塩分濃度差発電システム158の電力でコンプレッサーを動かして得た圧縮空気を、電磁弁181を開いて、シリンダー189内に送りこみ、ピストン193と196を急速に下降させてもよい。
シリンダー189内に、船舶に積載したプロパンガスと空気(または酸素)を送りこみ、爆燃させてもよい。
衝撃波発生盤197を、硬質金属容器製にし、その中に、硬質材料製のハニカム構造体や、低比重液体を入れたりし、水に浮かぶ円盤にしてもよい。
この地震探査装置を児上で用いる場合には、衝撃波発生シリンダー195の下端と、衝撃波発生盤197の直下の高さにビニール膜等を張り、その間に水を入れ、水入り太鼓状にし、下端を地面に当てて用いればよい。
あるいは、衝撃波発生盤以下のシリンダー内に水入りビニール袋を収めてもよい。
【0115】
鼻づまりの際等、鼻孔から淡水を水根で排出する鼻洗浄(鼻うがい)を行なうことがよくある。それにより、鼻腔内の浄化、花粉症の場合の花粉の除去、気道を狭めている鼻汁の除去によるいびきの軽減等に有効なことが多い。
しかし、単純に水道水を用いたのでは、鼻腔粘膜への刺激が強く、痛みが起こる。
それは、淡水による粘膜への浸透圧刺激のためと、温度が体温より低いためである。(特に浸透圧刺激の影響が大きい。)
従って、病院等での鼻洗浄では、体温低度に加温した、浸透圧刺激がない、0.9%の生理的食塩水を用いる。
次のものは、一般の人が簡単に生理的食塩水を造ることができ、その食塩の一部を利用して、図1〜10に示す濃淡電池(塩分濃度差発電システム)を働かせ、その電力を利用する鼻洗浄装置である。
【0116】
図26は、濃淡電池を用いる鼻洗浄装置の平面図。
図27は、その縦断正面図。
200は、容量400ml程度のプラスチック製の生理的食塩水容器。
201は、その右上縁に取り付けた蝶番。
202は、それに連なる蓋。
203は、その内面に設けた壁面が傾いた食塩収納ポケット。
204は、容器200の第2底壁。
205は、その下の第1底壁との間の空気室。
206は、その右方の貫通孔上に設けた右端のみを接着した膜状弁体。
207は、第2底壁の左方の狭い三つの貫通孔の上に取り付けた詳細構造は図示しないが、左方から(陰極→塩素域淡水流下空間→陰イオン交換膜→塩水流下空間→陽イオン交換膜→水素域淡水流下空間→陽極)が並ぶ濃淡電池。
208は、その塩素域淡水流下空間の上に取り付けた点滴ノズルと点滴落下空間のセット。
209は、塩水流下空間の上に取り付けた、プラスチック製の食塩投下管。
210は、水素域淡水流下空間の上に取り付けた発泡樹脂製の水流制限体。
211は、図示しない堂電線とスイッチを介して、濃淡電池の陰極と陽極に連なる容器の左面に取り付けたモーター。
212は、その下部に取り付けた遠心ポンプ。
213は、その排水孔に連なる軟質ビニール管。
214は、その上端に取り付けた先端は細くなった洗浄ノズル。
215は、それと平行に並ぶ排水ノズル。
216は、その下端に連なるビニール管。
217は、二つのノズルが差し込まれ、両端は上に伸びた軟質樹脂で被覆された鼻挟み。
218は、その右端を保持する、容器の左面から突出した挟み状の突起。
【0117】
使用者は、洗面台の前に立ち、容器200を棚の上におく等し、計量スプーンまたは普通のスプーンを用いて、必要な容量に設計されているポケット203に食塩を満たすと、それは、約4gとなる。
次に、400ml程度の温水(淡水)を容器内に満たし、蓋202を左にたおして閉じると、ポケット内の塩が水中に落ち、直下の食塩投下管209には高濃度の食塩が入り、濃厚食塩水が生じ、その周囲には、生理的食塩水ができる。
ついで、挟み状突起218から、鼻挟み217をはずし、抜け落ちない深さまで、洗浄ノズル214を右の鼻孔に、排水ノズル215を左の鼻孔に差し入れると、鼻孔の左右の鼻翼が鼻挟みで軽く挟まれ、ノズルと鼻孔の間隙からの水漏れが防がれる。
【0118】
容器内の水は点滴ノズルセット208の上端から入り、その下端から徐々に濃淡電池207の塩素域淡水流下空間に入り、やがて空間内を満たし、下部の貫通孔からその下方の空気室205中に滴下されてゆく。
また濃厚塩水が食塩投下管209から、濃淡電池207の塩水流下空間に入る。
また、低濃度食塩水が水流制限体210を通り、徐々に水素域淡水流下空間にも入る。
電池内を通過した水は、それぞれの下方の狭い貫通孔を経て、空気室205に滴下されてゆく。
【0119】
このようにして濃淡電池207内の各流下空間に水が入ってゆき、電池内では塩分の濃度差により、陰・陽のイオン交換膜の作用で、起電力が発生し、モーター211が回り、ポンプ212は、容器200内の第2底壁のすぐ上の高さから、容器内部の生理的食塩水を吸引し、ビニール管213→洗浄ノズル214を通じて、鼻腔内に送り込む。(その際、容器200と蓋202の間隙から空気が容器内に入る。)
使用者は、この時、病院等でも行なうように、口を開けて「ええー」と声を出し続けると、口腔の奥の口蓋垂が上昇し、鼻腔の後端を閉じ、鼻腔に入った水が口腔側に流下するのが防がれ、水は、右の鼻腔→咽頭上部→左の鼻腔→排水ノズル→ビニール管216、の流路を経て、洗面台に排出される。
【0120】
半量程度の水が用いられた時、図示しないスイッチを切って、モーター211を止め、ノズル214〜215を鼻孔から抜き取り、両ノズルを洗面台上に持ってきて、スイッチを入れ、手を用いて、ノズル214から出る水で両ノズルの外面を洗い、ノズル214をビニール管216の下端にさし込み、ビニール管内と、ノズル215内を洗浄する。
第2底壁204上の水がなくなると、容器200を手に持ち、蓋202を開き、上下を反転して、弁体206を自重等で開かせ、空気室205内に貯まった水を排水し、ノズル214〜215を鼻挟み217に差し戻し、鼻挟みを挟み状突起218に取り付ける。
【0121】
別の人が用いる場合には、両ノズルに同サイズまたは異なるサイズのプラスチック製カバーをかぶせてもよい。
【0122】
なお、洗面台の棚の上にAC電源に連なる浅いカップ状のヒーターを設け、その中に400ml程度の淡水を入れたポットを常時乗せておき、水を40℃程度に加温しておき、使用時に容器200に注入するようにしてもよい。
【0123】
旅行の際等に用いる使い捨てタイプとして、400ml程度の容量の4辺形のポリ袋に3.6gの食塩を収めて密封し、上辺の右方には先端が細くなったポリフィルム製のノズルを取り付け、上辺の右方には、フィルム製の逆止弁を内蔵した上端が広がった円錐形の給水管をつけたものを造る。
その給水管を水道の蛇口につなぎ、袋に400mlほどの 水を満たし、生理的食塩水を造り、ノズルを鼻腔に差し、袋を手で握ると、水圧でノズルは膨らんで鼻孔からの水漏れが防がれた状態で、手動力で、生理的食塩水が鼻腔に注入されるようにしてもよい。
【0124】
上記の各実施例において、サイズ、材料、その他を任意に変更・選択しうる。
各請求項に記す発明も、種々の用途に転用しうる。
【図面の簡単な説明】
【0125】
【図1】本発明を実施した一容器内に、二つのセルが直列に接続されて収められている直列電池堆型ユニットを用いた塩分濃度差発電システムの平面図。
【図2】絶縁容器1の上壁の直下における横断面図。
【図3】淡水供給筒4の位置における容器1の縦断正面図。
【図4】容器1のほぼ中央の高さにおける横断面図。
【図5】フレーム24の左面の、わずか右方の位置における縦断左側面図。
【図6】フレーム25の左面の、わずか右方の位置における縦断左側面図。
【図7】点滴ノズルを用いない、並列接続ユニットを複数個直列につないだ実施例の平面図。
【図8】その7字形排水管の湾曲部の高さにおける横断面図。
【図9】淡水供給管72の位置における縦断正面図。
【図10】淡水供給管72の位置における縦断左側面図。
【図11】多数の熱電対素子を直列につないだ大規模熱電堆発電システムの縦断左側面図。
【図12】大規模直列熱電堆115を作製する真空蒸着装置システムの縦断左側面図。
【図13】第1工程で、図13の表面に蒸着された半製品の正面図。
【図14】図15は、第3工程の半製品の正面図。
【図15】第4工程の半製品の正面図。
【図16】第4工程の半製品の正面図。
【図17】第5工程の半製品の正面図。
【図18】第6工程の半製品の正面図。
【図19】第7工程の半製品の正面図。
【図20】基板120の右面への蒸着が完成したものを左に倒して拡大した縦断正面の模式図。
【図21】浸透圧発電システムの横断面図。
【図22】淡水を積載し、塩分濃度差発電システムで得た電力で推進期その他の動作をさせる浚渫船の平面図。
【図23】浚渫船の左半部の拡大縦断正面図。
【図24】浚渫船の右半部の拡大縦断正面図。
【図25】淡水タンク147の前壁に取り付けた塩分濃度差発電システム158の発生する塩素ガスと、水素ガスを用いて海底下の地震探査を行なうシステムの拡大縦断面図。
【図26】濃淡電池を用いる鼻洗浄装置の平面図。
【図27】その縦断正面図。
【符号の説明】
【0126】
1 絶縁容器。
2 淡水供給管。
3 電磁弁。
4 淡水供給筒。
5 超音波水位計。
6 通気孔。
7 塩水供給管。
8 電磁弁。
9 塩水供給筒。
10 超音波水位計。
11 通気孔。
12 廃淡水排出管。
13 廃塩水排出管。
14 マイナス側導電線。
15〜16 突起。
17 蓋。
18 突起。
19 ボルト。
20 突起。
21 ボルト。
22 プラス側導電線。
23〜28 点滴装置形成用フレーム。
29 淡水供給溝。
30〜32 淡水点滴ノズル。
33 塩水供給溝。
34〜35 塩水点滴ノズル。
36 マイナス電極板。
36B 淡水流下空間形成用スペーサー。
37〜38 陰イオン交換膜。
39〜40 陽イオン交換膜。
41 電極板。
41A スペーサー。
42〜44 淡水点滴落下空間。
45 導電性隔壁。
45A〜45B スペーサー。
46〜47 導電性隔壁。
46A〜47A スペーサー。
46B〜47B スペーサー。
48〜50 淡水流下空間形成用の隔壁。
51〜52 塩水流下空間。
53 淡水水位検出電極。
54〜56 廃淡水点滴ノズル。
57〜59 廃淡水点滴落下空間。
60 廃淡水排出溝。
61 塩水点滴落下空間。
65 塩水水位検出電極。
66 廃塩水点滴ノズル。
68 廃塩水点滴落下空間。
70 廃塩水排出溝。
71 給水容器。
72 淡水供給管。
73 塩水供給管。
74 駆動装置。
75 ラック。
76 駆動板。
77〜78 弁体。
79〜80 並列ユニット。
81〜82 マイナス導電線。
83〜84 プラス導電線。
85 連結導電線。
86A〜87A 塩素域廃淡水排出7字形管。
86B〜87B 水素域廃淡水排出7字形管。
88〜89 廃塩水排出7字形管。
86AC〜89C 水滴検出電極。
90 淡水供給空洞。
91A〜91B 貫通孔。
92A〜92B 貫通孔。
93A〜93B 貫通孔。
94 塩水供給空洞。
95〜99 フレーム。
100A 塩素域淡水供給溝。
100B 水素域淡水供給溝。
100c 塩素域淡水供給溝。
100D 水素域淡水供給溝。
101A〜101B 塩水供給溝。
102A 塩素域廃淡水排出溝。
102B 水素域廃淡水排出溝。
103 廃塩水排出溝。
104〜105 マイナス電極板。
106 プラス電極板。
107A〜107B ユニット80の塩素域・水素域廃淡水排出溝。
108 廃塩水排出溝。
109〜110 陰イオン交換膜。
111〜112 陽イオン交換膜。
113 淡水供給管。
114 塩水供給管。
115〜116 大規模直列熱電堆。
117〜118 断熱材。
119 真空容器。
120 蒸着基板。
121 蒸着源。
122〜123 巻き取りドラム。
124 シャドーマスク。
125〜126 ローラー。
127 銅製電極群。
127A 接続部。
127B 接続突起部。
128 コンスタンタン製電極群。
128A 接続部。
129 絶縁膜。
129A 延長部。
130 銅製電極群。
130A 接続部。
131 絶縁膜。
131A 接続部。
132 コンスタンタン電極。
132A 接続部。
133 銅製電極。
133A 接続部。
133B 接続突起部。
134 耐圧容器。
135 塩水供給中継管。
136 淡水供給管。
137 中空糸膜。
138 淡水排出管。
139 塩水排出管。
140 タービン。
141 発電電動機。
142 塩水供給高圧ポンプ。
143 塩水供給管。
144 船尾アダプター。
145 推進方向変更装置。
146 電撃爆発推進機。
147 淡水タンク。
147A 操船室。
148 船首アダプター。
149 排水管駆動装置。
150 排水管。
151 ホース。
152 ホース。
153 浚渫本管駆動装置。
154 浚渫本管。
155 浚渫端管回転装置。
156 浚渫端管。
157 小孔。
158 塩分濃度差発電システム。
159 モーター。
160 昇圧回路。
161 高圧コンデンサー。
162 スイッチング回路 。
163 爆発電極管。
164 絶縁管。
165 棒状電極。
166 防水ボルトホルダー。
167 防水ボルト。
168 ワッシャー。
169 パッキング。
170 ワッシャー。
171 フクロナット。
172 防水ボルトホルダー。
173 防水ボルト。
174 パッキング。
175 フクロナット。
176〜177 モーター。
178 半円形板
179 歯車状の半円形板。
180〜182 歯車。
183 モーター。
184 送水ポンプ。
185 淡水タンク147の前壁。
186 油圧シリンダー。
187 ピストン。
188 ピストンロッド。
189 内燃シリンダー。
190 送気ホース。
191 電磁弁。
192 スパークプラグ。
193 ピストン。
194 ピストンのストッパー。
195 衝撃波発生用シリンダー。
196 ピストン。
197 衝撃波発生盤。
198 ストッパー。
199 点線で示した海面。
200 生理的食塩水容器。
201 蝶番。
202 蓋。
203 食塩収納ポケット。
204 は、容器200の第2底壁。
205 空気室。
206 膜状弁体。
207 濃淡電池。
208 点滴ノズルと点滴落下空間のセット。
209 食塩投下管。
210 水流制限体。
211 モーター。
212 ポンプ。
213 ビニール管。
214 洗浄ノズル。
215 排水ノズル。
216 ビニール管。
217 鼻挟み。
218 挟み状の突起。

【特許請求の範囲】
【請求項1】
各1枚の陰イオン交換膜と陽イオン交換膜を対向させ、両イオン交換膜間に塩水流下空間を形成させ、各イオン交換膜の外面に接する淡水流下空間を設け、両空間に存在する淡水層間に単位起電力を発生させる塩分濃度差発電セルを、並列または直列に多数接続し大出力を得るシステムにおいて、作動時に等電位を示す以外の、各流下空間に淡水または塩水を供給する給水経路中に、各流下空間相互の電気的短絡を防止するための、点滴落下空間内の電気絶縁体である気体層を介在させるか、断続開閉する、1次側(給水側)と、2次側(排水側)との間が電気絶縁材料から成る、電気的駆動弁を介在させて成る、塩分濃度差発電システム。
【請求項2】
各1枚の陰イオン交換膜と陽イオン交換膜を対向させ、両イオン交換膜間に塩水流下空間を形成させ、各イオン交換膜の外面に接する淡水流下空間を設け、両空間に存在する淡水層間に単位起電力を発生させる塩分濃度差発電セルを、並列または直列に多数接続し大出力を得るシステムにおいて、作動時に等電位を示す以外の、各流下空間に淡水または塩水を供給する給水経路中に、各流下空間相互の電気的短絡を防止するための、点滴落下空間内の電気絶縁体である気体層を介在させるか、断続開閉する、1次側(給水側)と、2次側(排水側)との間が電気絶縁材料から成る、電気的駆動弁を介在させて成る、請求項1に記載の塩分濃度差発電システムを用いたことを特徴とする発電法。
【請求項3】
垂直な四角形の陰極板を設け、それと平行に並ぶ同形の、陰イオン拡散淡水流下空間→陰イオン交換膜→塩水流下空間→陽イオン交換膜→陽イオン拡散淡水流下空間→陽極板、これらのセットから成る単位起電力発生セルを、一つの絶縁材料製容器内に、異名極板が隣接する直列状、または、同名極板が隣接する並列状で、多数詰め込んだ塩分濃度差発電システムにおいて、それらのセルの各上端に、セルを囲む絶縁材料製フレームの上縁の切欠、または陥凹から成り、下方の淡水または塩水の流下空間に通じ、上方は、発生したガスの排気管に通じる貫通孔を設け、それら貫通孔の上端に接する、絶縁材料製の、底壁に多数の貫通孔を有する淡水供給用と、塩水供給用の空洞(水槽)を設け、該底壁上に、底壁に設けた貫通孔に、順次連なりうる、電動式の絶縁材料製の弁体を設け、各セルの流下空間の下端に廃水排出用の貫通孔と、それに連なる、上昇部分と、下に向く湾曲部とより成る、7字形の廃水排出管を設けて成る、請求項1の塩分濃度差発電システムに用いる、直列接続型または並列接続型塩分濃度差発電システム。
【請求項4】
第1工程として、絶縁材料製蒸着基板面の上半部に、隣接部には達しない程度、左方に伸びた接続突起部を下端に有する、縦長の多数の平行な銅製電極をメッキし、第2工程として、その接続突起部以外の面及び、基板の下半部にいたるコンスタンタン製電極をメッキシ、第3工程として、その上半部に絶縁体層をメッキし、第4工程として、絶縁体層及び、コンスタンタン露出面に銅製電極をメッキし、第5工程として、その下半部に絶縁体層をメッキし、ついで、第2〜5工程を任意の回数、反復し、最終工程として、直前の工程で露出している金属面及び、第1工程における最左側の接続突起以外の各接続突起部と、最右側のメッキ部の上下の中間部の右側の基板面に、接続突起付銅製電極をメッキして成る、請求項1の塩分濃度差発電システムに供給する淡水及び塩水の温度差を利用する、大規模直列熱電堆発電システム。
【請求項5】
真空蒸着源から蒸発する金属・非金属物質の蒸気を、蒸着パターンをうがった多数のシャドーマスクを順次切り替えて、蒸着基板に、重層蒸着する蒸着装置において、多数の蒸着パターンを長い1本の連続ベルトにうがったパーホレーション付の連続シャドーマスクと、それを1コマずつ送る駆動装置とを設けたことを特徴とする、請求項4に記載の装置の製造に用いる真空蒸着装置。
【請求項6】
耐圧容器内に、水分子は通すが、塩類分子やイオンは通さない、半透膜製の中空糸膜を多数本、両端の外面を相互に固形材料で結合し、かつ耐圧容器内面に固着し、中空糸膜内に低濃度塩水または淡水を連続的に供給する給水系を設け、耐圧容器内の中空糸膜外に高濃度塩水を送りこむ小流量の塩水供給ポンプを設け、中空糸膜内の淡水が浸透して増量した該膜外の希釈された出力塩水を導く管に連なる出力駆動装置を設け、その出力駆動軸に連なる前記の塩水供給ポンプをつないだ発電システムにおいて、出力駆動軸に、発電機にも、電動機にもなる発電電動機をつなぎ、発電電動器の発電出力を充電する蓄電池を設け、該蓄電池の充電電力を始動スイッチを経て、発電電動機に供給する電気回路を設けた出力取り出し回路を設けたこと、または、希釈された出力塩水の一部を出力シリンダーに導き、そのピストンロッドの他端に連なる小直径のピストン及びシリンダーにより、高濃度塩水を耐圧容器内の中空糸膜外に送り込むようにしたことを特徴とする、請求項1に記載の塩分濃度差発電システムの廃水を利用しうる浸透圧発電システム。
【請求項7】
エネルギー源としての船内や曳航する貯水タンクを設け、その内蔵淡水や甲板上に流れる雨水と、船外の海水を用い、前記請求項1の発電システムの出力電力で駆動する推進機を設けて成る船舶。
【請求項8】
請求項1のシステムの電気出力を昇圧して高圧コンデンサーに蓄積し、水中に水平に保持される爆発電極管を設け、その一端内に絶縁管を介して保持された棒状電極を設け、スイッチング回路を経て、前記高圧コンデンサーの蓄積電圧を爆発電極管と棒状電極管に印加し、爆発的に発生した水蒸気を爆発電極管の他端から噴出させる船舶用推進機。
【請求項9】
鉛直に保持された、多数の同サイズの爆発電極管の一端面を一平面内にそろえて平行に並べ、各他端内に、絶縁体を介して保持された棒状電極を設け、全爆発電極管と、全棒状電極とを大容量高圧コンデンサーに、同時に接続し、全爆発電極管内に水蒸気の衝撃波を発生させるようにして成る、船舶の推進装置にも、地震探査装置の音源にもなる、大面積の平面水中衝撃波を発生する請求項8に記載の電撃推進装置。
【請求項10】
上端が閉じ、下端は開放され、海水が入っている衝撃波発生用シリンダーを用いた地震探査システムにおいて、該シリンダー内の水面状に硬質材料から成る衝撃波発生用円盤を浮かべ、該円盤の上方に、請求項1に記載の塩分濃度差発電システムから発生する可念性ガス、または、別のガス源から供給する可燃性ガスの爆発エネルギー、または、請求項1に記載の塩分濃度差発電システムで生産された電力、または、他のエネルギー源から生産された電力で作製された高圧空気を、前記衝撃波発生用円盤の上面に急速に衝突させる装置に加えて成る、地震探査システム。
【請求項11】
推進機を持たない、直方体状の浮遊性構造物(浮体)の平行な二つの端面の一つに密接しうる、同サイズの端面を持つ、通常の船舶の船首と同様の構造をなす、両接触面を結合するためのねじ止め装置を設け、宋銭室を備えた、汎用の船首アダプター、及び、請求項1に記載の塩分濃度差発電システムの出力電力、または、その他のエネルギー源により駆動する推進機と、操舵機を設けた、前記浮遊性構造物の船首アダプターの取り付け面と反対の面に密接しうる、同サイズの端面を持ち、両面を結合するためのねじ止め装置を設けた、汎用の船尾アダプターとより成る、船舶の運航システム。
【請求項12】
請求項1の発電システムで駆動するポンプによる水流や、水位差で流れる水流を流す管路を船舶に設け、その管路の一端を水平方向に方向転換可能にする駆動装置(ジョイント)を介して、端末が海底や湖底に接し、端末の一側面に吸水用小孔を設け、かつ、その位置を変更しうる浚渫管を設け、海底や湖底の土砂と共に、吸引する水流の方向と逆方向の推進力を発生しながら吸水し、船舶外の埋め立て区域に送水する、自動推進浚渫管付浚渫船。
【請求項13】
一定量の容器に入れた0.9%の生理的食塩水を鼻腔内に流し込む鼻洗浄装置において、一定容量の洗浄水容器を設け、該容器の内部に生理的食塩水を作成するのに適した量の食塩収納ポケットを設けるか、製造段階で、予め適量の食塩を容器内に収めておき、それら一定量食塩により、容器中に淡水を注入すれば容易に生理的食塩水が作製されるようにし、該投入食塩の一部を含む、濃厚食塩水を供給する管と、低濃度食塩水を供給する管とを有する、請求項1に記載の塩分濃度差発電システムを設け、その起電力、または手動力で得た揚水力を用い、生理的食塩水容器内の生理的食塩水を、鼻腔に差し入れたノズルに送水するビニール管を設けて成る、鼻洗浄装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate


【公開番号】特開2010−27213(P2010−27213A)
【公開日】平成22年2月4日(2010.2.4)
【国際特許分類】
【出願番号】特願2008−183393(P2008−183393)
【出願日】平成20年7月15日(2008.7.15)
【出願人】(306030231)有限会社藤村電子脳技術研究所 (2)
【Fターム(参考)】