説明

外気冷房システムおよびデータセンタ

【課題】外気冷房システムにおいて、外気の湿度が急激に変動した場合でも、外調機から室内への給気の湿度が急激に変動しないように制御し、室内環境の最適化を達成する。
【解決手段】給気206が所定の温湿度になるよう、予め設定された複数の運転モードから最適なモードを判定し、ダンパー(116〜119)、冷水バルブ156、加湿給水バルブ154の開度を調整するにあたって、外気201、給気206、還気207の温湿度を計測し、モード境界を超えるかどうかを判定し、境界を越えれば見極め時間を設定する。更に境界を越える前のモードで運転したときの給気206の湿度を予測し、予測値が許容湿度範囲の上限値もしくは下限値を超えるかを判定し、超える場合は即時にモードを変更する。見極め時間が経過した後、一度も境界を越える前のモードに戻らなければモードを変更し、一度でも境界を越える前のモードに戻ればモードは変更しない。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、冬期および中間期(春・秋)に外気を活用する外気冷房方式を有する空調システム(外気冷房システム)とこのような外気冷房システムを備えたデータセンタに係り、特に、年間を通じて冷房運転が必要となるデータセンタなど、高発熱負荷を有する環境における外気冷房システムとこのような外気冷房システムを備えたデータセンタに係る。
【背景技術】
【0002】
地球温暖化問題に対する関心が高まる中、情報通信分野においてもグリーンITによる省電力化が緊急の課題となっている。特に、飛躍的に増加する情報を柔軟かつ豊富なコンピューティングリソースを用いて処理するクラウドコンピューティングにおいては、統合や仮想化によるITプラットフォームの集約、高集積化がその効率的運用に不可欠である。このような背景において、ITプラットフォームの根幹をなすデータセンタの需要は世界規模で急速に拡大しており、データセンタ全体の電力消費量の増大が課題となっている。
【0003】
国内におけるデータセンタ消費電力の平均的な内訳は、IT機器49%、空調設備29%、給電設備15%、その他(照明など付帯設備)7%であり、設備機器(空調および給電)がIT機器に匹敵する電力を消費している。したがって、IT機器のみならず設備機器、特に総電力の約30%を占める空調設備の省電力化が求められている。
【0004】
データセンタでは年間を通して冷房運転となるため、冬期ならびに中間期(春・秋)等の外気温度が比較的低温な時に、外気を直接サーバ室へ導入し冷房に利用する外気冷房方式による空調電力の削減が近年注目されている。
【0005】
このような外気冷房方式による空調システムについては、例えば特許文献1や特許文献2に提案されている。
【0006】
例えば特許文献1では、還流する室内空気の温度とその室内空気の絶対湿度から外気冷房で吹き出される給気の温度と絶対湿度を設定し、他方導入する外気の温度と絶対湿度の状態から還流空気の加湿量を決定すると共に還流空気と外気の混合量を制御している。
【0007】
また、特許文献2では、上流からフィルター、冷却コイル、送風ファンと、冷却コイルの上流又は下流に加湿器とが順次配置される電算室用空気調和機において、戸外から外気を取り入れて冷却コイル或いは加湿器で空調するとともに、外気が電算室に適する雰囲気の場合にはそのまま電算室に導入し戸外に排出し、外気の温度が所定値よりも低い場合であって外気のエンタルピが所定値よりも大きい場合、及び、外気の温度が所定値よりも高い場合であって外気のエンタルピが所定値よりも大きい場合以外は外気を導入している。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2003−148782号公報
【特許文献2】特開2010−261696号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
しかし、特許文献1,2において提案されている方法では、以下の課題を解決することができない。
【0010】
例えば、外気冷房運転中に外気の湿度が急激に変動をした場合に、この影響により外調機からサーバ室へ吹出す給気の湿度も変動をしてしまう。
具体的には、突発的な豪雨により外気の湿度が急激に上昇をした場合、外調機からサーバ室へ吹き出される給気の湿度も上昇し、サーバ室内の管理許容湿度範囲の上限値を逸脱することになる。高湿な外気がサーバ室内へ給気されると、外気中に含まれる塵埃や海塩粒子などの浮遊粒子や二酸化硫黄ガスや硫化水素ガスといった腐食性ガスがIT機器内の回路基板上に付着し、相対湿度が100%に満たない環境であっても、化学凝縮による結露現象により回路基板上で電解質溶液を生成し腐食を引き起こす。回路基板の腐食はIT機器の信頼性を大幅に損なうことになる。
一方、外気の湿度が急激に低下した場合は、外調機からサーバ室へ吹き出される給気の湿度も低下してしまい、サーバ室内の管理許容湿度範囲の下限値を逸脱することになる。低湿な外気がサーバ室内へ給気されると、IT機器内の回路基板上で静電気放電を引き起こし、IT機器の誤作動の原因となってしまう。
【0011】
また、現在稼働している外気冷房システムでは、外気の温湿度が急変し運転モードを自動で切り替える場合、運転モードの境界を超えた直後には運転モードを変更せず、運転モード境界を超えた後のある一定時間内は運転モードの変更可否を見極める時間帯とし、見極め時間の経過後に運転モードを変更している。この見極め時間の設定により外気変動時の空調運転制御の不安定性を改善するなどしている。
しかしながら、特に外気湿度が急激に変動するような場合には、見極め時間が経過するまでの間は、湿度が高い若しくは低い給気がサーバ室内に供給されてしまうため、特許文献1等と同様に前述のような信頼性を損なうとの問題を解決することができない。
【0012】
そこで本発明は、冬期および中間期(春・秋)に外気を活用する外気冷房方式を有する空調システムにおいて、外気を用いた冷房運転中に外気の温度または湿度が急激に変動した場合であっても、外調機から室内への給気の湿度が急激に変動しないように制御して、室内環境の最適化を達成することができる外気冷房システムと、このような外気冷房システムを備えたデータセンタを提供することを目的とする。
【課題を解決するための手段】
【0013】
本発明者らは、上記課題を解決できる外気冷房システムを新たに発明した。
【0014】
本発明は、外気を清浄化し温度および湿度を調節した給気を室内へ供給するための空調機である外調機と、外気および前記室内からの還気を循環させるための空気搬送ダクトと、屋外からの外気の導入および屋外への排気を行うための外気取入口および排気口と、外気の温度および湿度の状況に応じて外気と還気の混合、外気の除湿、加湿、冷却の少なくとも1つを行う複数の運転モードを予め設定しておき、前記外気取入口から導入した外気の温度および湿度の状況に応じ、運転モードを判定する演算制御装置とを備え、この演算制御装置の運転モードの判定結果に基づいて運転モードを変更し、前記外調機から前記室内に供給される給気を所定の温度および湿度に調整する外気冷房システムにおいて、前記演算制御装置は、前記外気取入口から導入した外気の温度または湿度の状況が変動して現在の運転モードの境界を超えたとき、運転モード変更の見極め時間を設定する第1機能と、前記外気取入口から導入した外気の温度または湿度の状況が変動して現在の運転モードの境界を超えたとき、前記外気の温度および湿度の状況に基づいて、現在の運転モードにおいて前記外調機から前記室内に供給される給気の湿度を予測する第2機能と、前記外気取入口から導入した外気の温度または湿度の状況が変動して現在の運転モードの境界を超えたとき、前記第2機能で予測した給気の湿度が予め設定した室内の管理許容湿度範囲の上限値を超えずかつ下限値を下回らない場合は、前記見極め時間経過後に、運転モードを変更し、前記第2機能で予測した給気の湿度が予め設定した室内の管理許容湿度範囲の上限値を超えるまたは下限値を下回る場合は、前記見極め時間を待たずに、直ちに運転モードを変更する第3機能とを有することを特徴とする。
【発明の効果】
【0015】
本発明によれば、冬期および中間期(春・秋)に外気を活用する外気冷房方式を有する空調システムにおいて、外気冷房運転中に外気の温度または湿度が急激に変動した場合であっても、外調機から室内へ吹出す給気の湿度が急激に変動することを抑制することが可能となるため、外気冷房運転時でも室内環境の最適化を図ることができる。
【図面の簡単な説明】
【0016】
【図1】本発明の実施の形態を有する外気冷房システムをデータセンタに適用した場合の構成図である。
【図2】本発明の実施の形態を有する外気冷房システムの機能構成の概略図である。
【図3】本発明の実施の形態を有する外気冷房システムにおける年間運転モードの一例を、湿り空気線図上に示した説明図である。
【図4】本発明の実施の形態を有する外気冷房システムにおける運転フローを示した説明図である。
【図5】本発明の実施の形態を有する外気冷房システムにおいて、外気の湿度が急激に変動した場合の運転モードの一例を湿り空気線図上に示した説明図である。
【図6】一般的な構成の外気冷房システムを適用したデータセンタを説明するための構成図である。
【図7】一般的な構成の外気冷房方式を説明するための湿り空気線図である。
【図8】本発明の実施の形態を有する外気冷房システムにおいて、外気湿度が急激に上昇した場合の給気湿度の変動履歴の一例を示した説明図である。
【図9】本発明の実施の形態を有する外気冷房システムにおいて、外気湿度が急激に減少した場合の給気湿度の変動履歴の一例を示した説明図である。
【図10】本発明の実施の形態を有する外気冷房システムを適用したデータセンタにおいて、外調機から給気をサーバ室内へ直接吹き出す横吹き出し方式を示した構成図である。
【発明を実施するための形態】
【0017】
本発明の実施の形態を、本発明の外気冷房システムをデータセンタに適用した場合を参照して以下に説明する。
【0018】
図1は本発明の実施の形態を有する外気冷房システムをデータセンタに適用した場合の構成図、図2は本発明の実施の形態を有する外気冷房システムの機能構成の概略図である。
【0019】
システムの機器構成は、外気201を清浄化して、更に温湿度を調節した冷気(給気206)をサーバ室101へ供給するための空調機である外調機151、外気201およびサーバ室101内のラック106内に搭載されたIT機器からの還気207を循環させるための空気搬送ダクト(109〜113)、屋外から外気201を導入するための外気取入口114、屋外へ還気207を排気202するための排気口115、外調機151へ冷水158を供給するための冷凍機161および冷水ポンプ157等から成る。外調機151内には塵埃フィルター160、冷却コイル(熱交換器)155、水気化式の加湿器153および送風ファン152が装備される。
【0020】
外調機151から送風される冷気(給気206)は、二重床(フリーアクセス)104の床下を経由して床面100に設けた開口部(グレーチング)105からコールドアイル102へ吹出され、ラック106内のIT機器へ供給される。そのIT機器背面からの暖気は、コールドアイル102と分離されたホットアイル103内から循環ファン108により排出される。サーバ室101内に複数のラック106の列を配置する際、ラック106前面(入気側)を互いに向き合わせた冷気エリアであるコールドアイル102とラック106背面(排気側)を互いに向き合わせた暖気エリアであるホットアイル103を交互に配列させ、空調効率を向上させている。
【0021】
空気搬送ダクト(109〜113)には循環風量を調整するためのダンパー(116〜119)が設けられている。また、外調機151内の冷却コイル(熱交換器)155へ供給される冷水の流量を調整するため、冷水バルブ156が設けられており、水気化式の加湿器153には加湿給水の流量切換えを行うための加湿給水バルブ154が設けられている。
【0022】
また、外気取入口114とダンパー116との間(外気位置)、外調機151の入口側、外調機151の出口側(給気位置)、循環ファン108の上流側(還気位置)に温湿度計(251〜254)を設置し、さらに、外調機151の出口側(給気位置)には、露点温度計255を設置している。
【0023】
演算制御装置300は、温湿度演算装置301、給気湿度予測装置302、運転モード判定装置303から構成される。
【0024】
図2に示すように、本実施形態では、外気用温湿度計251、外気と還気を混合したものの温湿度を測定する温湿度計252、給気用温湿度計253および還気用温湿時計254から、外気201、外気と還気を混合したもの、給気206ならびに還気207の温度および湿度を計測し、演算制御装置300の温湿度演算装置301により温度(乾球温度、湿球温度、露点温度)、湿度(相対湿度、絶対湿度)に加えて、比エンタルピを算出する。
【0025】
給気湿度予測装置302では、温湿度演算装置301で算出された外気、給気および還気の温湿度ならびに比エンタルピに基づき、運転モード境界を越える前の運転モードにより運転した場合の給気206の湿度を予測する。また、外気201の湿度が急変した場合には、変動後の外気201を利用して現行の運転モードで運転した場合の給気206の湿度が運転モードの境界を超えるかどうかを判定し、更には運転モード境界を超えた後のある一定時間内は運転モードの変更可否を見極める時間帯とするため、見極め時間を設定する。
【0026】
温湿度演算装置301で得られた外気、給気および還気の温湿度ならびに比エンタルピと、給気湿度予測装置302で得られた給気の予測湿度から、運転モード判定装置303によって、予測値が予め設定したサーバ室101内の管理許容湿度範囲の上限値を超えずかつ下限値を下回らないときは、見極め時間経過後に、変動後の状態に適した運転モードが維持されていれば、変動後の状態に適した運転モードに変更するよう判定し、見極め時間中に一度でも運転モード境界を越える前の運転モードに戻っていれば、運転モードの変更は行わず、運転モード境界を越える前の運転モードを継続するよう判定する。また予測値が予め設定したサーバ室101内の管理許容湿度範囲の上限値を超えるまたは下限値を下回るときは、見極め時間の経過を待たずに直ちに運転モードを変更するよう判定する。この運転モードは、サーバ室101内へ供給する給気が所定の温度および湿度になるように、予め設定されている複数の運転モードのうち、最も適した運転モードを選択するように判定する。
【0027】
その後、その判定結果を給気温湿度制御装置304および給気露点温度制御装置305へ送信し、所定の給気206の温湿度設定値になるよう、ダンパー(116〜119)、冷水バルブ156および加湿給水バルブ154の開度を調整する。
【0028】
なお、本実施形態では、温湿度演算装置301、給気湿度予測装置302および運転モード判定装置303が演算制御装置300を構成する。また、給気湿度予測装置302が第1機能,第2機能を有し、運転モード判定装置303が第3機能を有する。サーバ室101内に供給される給気を所定の温度および卒戸に調整することを給気温湿度制御装置304および給気露点温度制御装置305が担う。しかし、本発明はこの態様に限定されるものではない。
【0029】
次に運転モードについて説明する。図3は年間を通しての運転モードの一例を、湿り空気線図上に示した説明図である。
これは、サーバ室101への給気206の乾球温度を20℃、給気206の相対湿度の推奨範囲を40%以上(下限値)60%以下(上限値)、サーバ室101からの還気207の乾球温度を35℃とした場合の説明図であり、外気201の温湿度状況が湿り空気線図上のどの位置にあるかにより、運転モードは以下の(1)〜(5)の5種類に大別される。
【0030】
(1)外気還気混合・加湿運転モード
(1)は、外気201の乾球温度が給気206の乾球温度20℃よりも低く、且つ、外気201の絶対湿度が給気206の絶対湿度の下限値(相対湿度で40%に相当)より高く、絶対湿度の上限値(相対湿度で60%に相当)より低い場合か、または、外気の比エンタルピが給気206の比エンタルピの推奨範囲の下限値よりも低く、且つ、外気201の絶対湿度が給気206の絶対湿度の下限値(相対湿度で40%に相当)よりも低い場合の運転モードである。
外気201の乾球温度が給気206の乾球温度20℃よりも低く、且つ、外気201の絶対湿度が給気206の絶対湿度の下限値(相対湿度で40%に相当)より高く、絶対湿度の上限値(相対湿度で60%に相当)より低い場合は、外気201と還気207を混合することで給気206を所望の温湿度条件に調製する。この場合、ダンパー116、117および118を開き、ダンパー119を閉じることにより、外気201と還気203を混合し、外調機151内の送風ファン152によりそのままサーバ室101内へ給気する。この間、冷凍機161ならびに加湿器153は稼動させない。
また、外気の比エンタルピが給気206の比エンタルピの推奨範囲の下限値よりも低く、且つ、外気201の絶対湿度が給気206の絶対湿度の下限値(相対湿度で40%に相当)よりも低い場合は、外気201と還気203を混合した後、加湿器153により加湿を行うことで給気206を所望の温湿度条件に調製する。この場合、ダンパー116、117および118を開き、ダンパー119を閉じることにより、外気201と還気203を混合し、外調機151内の加湿器153により加湿をした後に送風ファン152によりサーバ室101内へ給気する。この間、冷凍機161は稼動させない。
【0031】
(2)外気冷却除湿・再熱運転モード
(2)は、外気201の比エンタルピが還気207の比エンタルピの推奨範囲の上限値よりも低く、且つ、外気201の絶対湿度が給気206の絶対湿度の上限値(相対湿度で60%に相当)よりも高い場合の運転モードである。
この場合、ダンパー116、117および119を開き、ダンパー118を閉じる。外気201を外調機151内の冷却コイル(熱交換器)155により冷却凝縮させることで除湿をし、除湿後の絶対湿度が給気206の絶対湿度の上限値に等しくなるまで冷却をする。その後、冷却した外気と還気205を混合させることで再熱し、送風ファン152によりサーバ室101内へ所望の温湿度条件に調整した給気206を給気する。
【0032】
(3)外気冷却・加湿運転モード
(3)は、外気201の比エンタルピが給気206の比エンタルピの推奨範囲の上限値よりも高く、且つ、還気207の比エンタルピの推奨範囲の上限値よりも低く、且つ、外気201の絶対湿度が給気206の絶対湿度の上限値よりも低い場合の運転モードである。
この場合、ダンパー116、117を開き、ダンパー118、119を閉じる。外気201を外調機151内の冷却コイル(熱交換器)155により冷却した後に加湿器153により加湿をし、送風ファン152によりサーバ室101内へ所望の温湿度条件に調整した給気206を給気する。
【0033】
(4)外気加湿運転モード
(4)は、外気201の比エンタルピが給気206の比エンタルピの推奨範囲の下限値よりも高く、且つ、給気206の比エンタルピの推奨範囲の上限値よりも低く、且つ、外気201の乾球温度が給気206の乾球温度よりも高い場合の運転モードである。
この場合、ダンパー116、117を開き、ダンパー118、119を閉じる。外気201を外調機151内の加湿器153により加湿をした後、送風ファン152によりサーバ室101内へ所望の温湿度条件に調整した給気206を給気する。この間、冷凍機161は稼動させない。
【0034】
(5)還気冷却運転モード
(5)は、外気201の比エンタルピが還気207の比エンタルピの推奨範囲の上限値よりも高い場合の運転モードである。
この場合、ダンパー118のみを開き、ダンパー116、117、119を閉じる。外気201の導入量は零であり、還気207を全て外調機151内の冷却コイル(熱交換器)155により冷却をした後、送風ファン152によりサーバ室101内へ所望の温湿度条件に調整した給気206を給気する。
【0035】
次に外気201の湿度が急激に変動をした場合の運転動作について、図4に示す運転フローに基づいて説明する。
【0036】
外気201の湿度が急変した場合において、運転モードの境界を超えるかどうかを演算制御装置300の給気湿度予測装置302にて、判定する(S1)。
このS1で運転モード境界を越えたと判定された場合、S2に進み、運転モード境界を超えた直後には運転モードを変更せず、運転モード境界を超えた後のある一定時間内は運転モードの変更可否を見極める時間帯とするため、給気湿度予測装置302において見極め時間を設定し(S2)、S4へ処理を進める。境界を超えない場合は運転モードを変更せずに運転を継続する(S3)。
その後、給気湿度予測装置302により、給気206の湿度が、運転モード境界を越える前の運転モードにより運転した場合にどうなるかを予測する(S4)。
その後、その予測値が給気206の管理許容湿度範囲の上限値を超えるかもしくは下限値を下回るか否かを運転モード判定装置303で判定する(S5)。
給気206の予測値が給気206の管理許容湿度範囲の上限値を超えるかもしくは下限値を下回る場合は、判定結果を給気温湿度制御装置304および給気露点温度制御装置305へ送信して、ダンパー(116〜119)、冷水バルブ156および加湿給水バルブ154の開度を調整して、即時に運転モードを変更する(S6)。管理許容湿度範囲の上限値を超えずかつ下限値を下回らない場合は、運転モード境界を越える前の運転モードを継続し、見極め時間のカウントを継続する(S7)。
【0037】
その後、運転モードの変更可否の見極め時間が経過した後、運転モード境界を越えてから一度も運転モード境界を越える前の運転モードに戻ることなくそのまま変動後の状態に適した運転モードが維持されているかどうか判定する(S8)。
変動後の状態に適した運転モードが維持されていれば、変動後の状態に適した運転モードに変更する(S9)。見極め時間中に一度でも運転モード境界を越える前の運転モードに戻っていれば、まだ外気の湿度が安定せずに激しく変動していると判断して、運転モードの変更は行わず、運転モード境界を越える前の運転モードを継続する(S10)。
S3,S6,S9,S10の後、スタートに戻り、上述の制御を繰り返す。
【0038】
図5に、上記の運転フローの一例を湿り空気線図上で説明する。外気201の湿度が急変する前の状態を図中(a1)で示す。このエリアは外気加湿運転モード(4)であるため、外気加湿運転モード(4)で運転した場合の給気206の状態(湿度)は、乾球温度を20℃とすると(a2)となる。
このとき、外気201が変動して運転モード(外気加湿運転モード(4))の境界を越えた後の状態を(b1)もしくは(c1)とすると、運転モード境界を越える前の運転モード(外気加湿運転モード(4))で運転した場合による給気206の湿度の予測値はそれぞれ(b2)および(c2)となる。
ここで、給気206の相対湿度の管理許容湿度範囲の上限値および下限値をそれぞれ80%、20%とすると、(b2)および(c2)はいずれもこの管理許容湿度範囲を超えていない。よって、運転モード変更可否の見極め時間を経過した後に、外気の状態が(b1)もしくは(c1)であれば、運転モードを外気加湿運転モード(4)から外気冷却・加湿運転モード(3)(外気が(a1)→(b1)へ変動した場合)へ、外気還気混合・加湿運転モード(1)(外気が(a1)→(c1)へ変動した場合)へ変更をする。
【0039】
また、外気201の湿度が急変して、運転モード(外気加湿運転モード(4))の境界を越えた後の状態が(d1)もしくは(e1)の場合には、運転モード境界を越える前の運転モード(外気加湿運転モード(4))による給気206の予測値はそれぞれ(d2)および(e2)となる。
この場合、給気206の相対湿度の管理許容湿度範囲の上限値および下限値をそれぞれ80%、20%とすると、(d2)および(e2)はいずれもこの管理許容湿度範囲を超えてしまう。したがって、運転モード変更可否の見極め時間が経過するのを待たず、運転モードを即時に変更をする。すなわち、外気201の湿度が(a1)から(d1)へ変動した場合は、運転モードを外気加湿運転モード(4)から外気冷却除湿・再熱運転モード(2)へ、外気201の湿度が(a1)から(e1)へ変動した場合は、運転モードを外気加湿運転モード(4)から外気還気混合・加湿運転モード(1)へ即時に変更をする。
【0040】
本実施形態の特徴的な構成による主な効果を、一般的な構成に係る外気冷房システムと比較しながら説明する。
【0041】
図6は、一般的な構成の外気冷房システムを説明するための構成図である。
システムの機器構成は、外気201を清浄化し温湿度を調節した冷気(給気206)をサーバ室101へ供給するための空調機である外調機151、外気201およびラック106内に搭載されたIT機器からの還気207を循環させるための空気搬送ダクト(109〜113)、屋外からの外気201の導入や屋外への排気202を行うための外気取入口114および排気口115、外調機151へ冷水158を供給するための冷凍機161および冷水ポンプ157等から成る。外調機151内には塵埃フィルター160、冷却コイル(熱交換器)155、水気化式の加湿器153および送風ファン152が装備される。なお、温度計や湿度計などのセンサー類は表示を省略している。
外調機151から送風される冷気(給気206)は、二重床(フリーアクセス)104の床下を経由して床面100に設けた開口部(グレーチング)105からコールドアイル102へ吹出され、ラック106内のIT機器へ供給される。そのIT機器背面からの暖気は、コールドアイル102と分離されたホットアイル103内から循環ファン108により排出される。このような一般的な構成のデータセンタでは、複数のラック106の列を配置する際、ラック106前面(入気側)を互いに向き合わせた冷気エリアであるコールドアイル102とラック106背面(排気側)を互いに向き合わせた暖気エリアであるホットアイル103を交互に配列させ、空調効率を向上させている。
【0042】
このような外気冷房システムでは、例えば冬期の場合には、低温外気201と高温還気207の風量を空気搬送ダクト内のダンパー(116〜119)で調整することで両者を混合し、さらに加湿器153により加湿をすることでサーバ室101への所定の給気206条件(温度・湿度)にコントロールをする。この間、冷凍機161は稼動させる必要がないため、冷房に要する電力は送風ファン152および循環ファン108の消費電力(空気搬送動力)のみとなる。ここまでは本実施形態の外気冷房システムと略同じである。
【0043】
図7に一般的構成の外気冷房方式を説明するための湿り空気線図を示す。図7では東京都における年間8760時間分の温湿度状況を湿り空気線図上にプロットしてある。
仮に外調機151からサーバ室101内への給気206の乾球温度(コールドアイル102内)を20℃、サーバ室101内からの還気207の乾球温度(ホットアイル103内)を35℃、還気207の相対湿度を35%とすると(図7中に図示している枠内)、このときのサーバ室101からの還気207の比エンタルピは約66kJ/kgとなる。よって、外気201の比エンタルピが還気207の比エンタルピ66kJ/kgより低い場合は(冬期および中間期など)、外気201を有効に活用することが可能となる。この場合、外気201の温湿度状況の変動に応じて、外気201と還気207の混合、或いは外気201の除湿・加湿・冷却といった運転モードを自動で切換え、もしくはこれらを組み合わせることにより、所定の給気206の温湿度に調整をする。このように外気201を有効活用することにより、冷凍機161の運転負荷を低減することができる。また、外気201の比エンタルピが還気207の比エンタルピよりも高い場合は(夏期など)、外気201を導入せず還気207を全て外調機151へ戻し、冷凍機161を常時運転させることで還気207を冷却する。
このような一般的な構成の外気冷房システムでは、外気の温湿度が変動した場合、運転モードの境界を超えた直後には運転モードを変更せず、運転モード境界を超えた後のある一定時間内は運転モードの変更可否を見極める時間帯とし、この見極め時間を設定し、見極め時間経過後に運転モードを変更している。
【0044】
図8に外気201の湿度が急激に上昇した場合の給気206の湿度の変動履歴の一例を示す。図8上段に示すように、外気201の湿度がH0で推移しており、時刻t0からt2にかけてH0からH0’へ急激に上昇した場合である。ここでは、図5において外気201の湿度が(a1)から(d1)へ上昇した場合を想定しており、運転モードは外気加湿運転モード(4)から、外気冷却・加湿運転モードエリア(3)を飛び越えて、外気冷却除湿・再熱運転モード(2)へと切り替わる。
【0045】
このとき、図6、図7に示すような一般的構成の見極め時間を設定した外気冷房システムでは、図8中段に示すように、時刻t0からt2にかけて給気206の湿度がH1からH1’に上昇し、外気加湿運転モード(4)エリアを超え、さらに外気冷却・加湿運転モード(3)エリアの境界を越えた時刻t1から運転モード変更可否の見極めが開始される(時刻t3まで)。この間運転モードは外気加湿運転モード(4)を継続し、時刻t3を経過後、外気冷却除湿・再熱運転モード(2)へと変更され、除湿運転が開始される。この場合、給気206が高湿な状態(湿度H1’)が長く続くことになる(時刻t1から時刻t3)。そのため、外気201中に含まれる塵埃や海塩粒子などの浮遊粒子や二酸化硫黄ガスや硫化水素ガスといった腐食性ガスが、IT機器内の回路基板上に付着した際に、化学凝縮による結露現象により回路基板上で腐食を引き起こしてしまう。回路基板の腐食はIT機器の信頼性を大幅に損なうことになる。
【0046】
一方、本実施形態の外気冷房システムによると、図8下段に示すように、給気206の湿度の予測値が給気206の管理許容湿度範囲の上限値(図5では相対湿度80%)になったらすぐに(時刻t5)、運転モードを外気加湿運転モード(4)から外気冷却除湿・再熱運転モード(2)へ変更する。そのため、給気206の湿度上昇(H2→H2’)を最低限に抑えることが可能となると共に、給気206が高湿となる時間が短くなる(時刻t1から時刻t6)。これにより、IT機器内の回路基板の腐食など機器障害の発生を抑制することが可能となる。
【0047】
図9に外気201の湿度が急激に減少した場合の給気206の湿度の変動履歴の一例を示す。図9上段に示すように、外気201の湿度がH0で推移しており、時刻t0からt2にかけてH0からH0’へ急激に減少した場合である。ここでは、図5において外気201の湿度が(a1)から(e1)へ減少した場合を想定しており、運転モードは外気加湿運転モード(4)から、外気還気混合・加湿運転モード(1)へと切り替わる。
【0048】
このとき、図6,7に示す一般的構成の見極め時間を設定した外気冷房システムでは、図9中段に示すように、時刻t0からt2にかけて給気206の湿度がH1からH1’に減少し、外気加湿運転モード(4)エリアと外気還気混合・加湿運転モード(1)エリアの境界を越えた時刻t1から運転モード変更可否の見極めが開始される(時刻t3まで)。この間運転モードは外気加湿運転モード(4)を継続し、時刻t3を経過後外気還気混合・加湿運転モード(1)へと変更される。この場合、給気206が低湿な状態(湿度H1’)が長く続くことになる(時刻t1から時刻t3)。そのため、IT機器内の回路基板上で静電気放電を引き起こし、IT機器の誤作動の原因となってしまう。
【0049】
一方、本実施形態の外気冷房システムによると、図9下段に示すように、給気206の湿度の予測値が給気206の管理許容湿度範囲の下限値(図5では相対湿度20%)になったらすぐに(時刻t5)、運転モードを外気加湿運転モード(4)から外気還気混合・加湿運転モード(1)へ変更する。そのため、給気206の湿度減少(H2→H2’)を最低限に抑えることが可能となると共に、給気206が低湿となる時間が短くなる(時刻t1から時刻t6)。こうすることにより、IT機器内の回路基板上の静電気放電といった機器障害の発生を抑制することが可能となる。
【0050】
以上、本実施の形態により、年間を通じて冷房運転が必要となる高発熱負荷のデータセンタにおいて、外気冷房運転中に外気201の湿度が急変した場合であっても(急激な上昇であっても減少であっても)、外調機151からサーバ室101へ吹出す給気206の湿度が外気の急激な変動に引きずられて変動することを抑制することが可能となる。そのため、外気冷房運転時のIT機器回路基板の腐食や静電気放電によるIT機器の故障、誤動作を防止することができる。よってIT機器の信頼性を大幅に低減させる事態が生じることを強く抑制することができ、データセンタにとって最適な環境を実現することができる。
【0051】
なお、サーバ室101内へ冷気(給気206)を吹き出す外調機151の方式としては、冷凍機161から冷水158を外調機151へ供給する冷水方式だけではなく、フロン系冷媒の蒸発潜熱を利用する直膨方式であってもよい。
【0052】
また、図1に示すような外調機151から給気206を吹き出す方向が二重床104の床下である床吹き出し方式だけでなく、図10に示すような外調機151からサーバ室101内へ直接吹き出す横吹き出し方式でもよい。
この図10に示すような横吹き出し方式の外気冷房システムを適用したデータセンタでは、外調機151から送風される冷気(給気206)は、サーバ室101の壁面に設けた開口部からコールドアイル102へ直接吹出され、ラック106内のIT機器へ供給される。IT機器背面からの暖気は、コールドアイル102と分離されたホットアイル103内から循環ファン108により排出される構造となっている。その他の構成については、図1に示す床吹き出し方式を適用したデータセンタと同じため、説明は省略する。
このような横吹き出し方式のデータセンタにおいても、床吹き出し方式の場合と同様に、外気201の湿度が急変した場合でも給気206の湿度の急激な変化を抑制することができる。
【0053】
また、本発明による外気冷房システムは、データセンタのみならず工場や生産現場など高発熱負荷を有する環境における空調、また、事務所や学校その他公共施設の空調にも適用できるものである。
工場、生産現場、事務所や学校の冷房システムに本発明の外気冷房システムを適用すると、場内や現場環境、室内への給気の湿度の急激な変化が抑制されるため、室内の快適性をより高めることができ、作業性・生産性の向上や、室内機器の健全性を保つことができる。
【符号の説明】
【0054】
100…床面、101…サーバ室、102…ホットアイル、103…コールドアイル、
104…二重床(フリーアクセス)、105…床面開口部(グレーチング)、
106…ラック、107…天井スペース、108…循環ファン、
109,110,111,112,113…空気搬送ダクト、
114…外気取入口、115…排気口、
116,117,118,119…ダンパー、
151…外調機、152…送風ファン、153…水気化式加湿器、154…加湿給水バルブ、
155…冷却コイル(熱交換器)、156…冷水バルブ、157…冷水ポンプ、
158…冷水(往)、159…冷水(還)、160…塵埃フィルター、
161…冷凍機、
201…外気、202…排気、203,204,205,207…還気、206…給気、
251,252,253,254…温湿時計、255…露点温度計、
300…演算制御装置、
301…温湿度演算装置、302…給気湿度予測装置、303…運転モード判定装置、
304…給気温湿度制御装置、305…給気露点温度制御装置。

【特許請求の範囲】
【請求項1】
外気を清浄化し温度および湿度を調節した給気を室内へ供給するための空調機である外調機と、外気および前記室内からの還気を循環させるための空気搬送ダクトと、屋外からの外気の導入および屋外への排気を行うための外気取入口および排気口と、外気の温度および湿度の状況に応じて外気と還気の混合、外気の除湿、加湿、冷却の少なくとも1つを行う複数の運転モードを予め設定しておき、前記外気取入口から導入した外気の温度および湿度の状況に応じ、運転モードを判定する演算制御装置とを備え、この演算制御装置の運転モードの判定結果に基づいて運転モードを変更し、前記外調機から前記室内に供給される給気を所定の温度および湿度に調整する外気冷房システムにおいて、
前記演算制御装置は、
前記外気取入口から導入した外気の温度または湿度の状況が変動して現在の運転モードの境界を超えたとき、運転モード変更の見極め時間を設定する第1機能と、
前記外気取入口から導入した外気の温度または湿度の状況が変動して現在の運転モードの境界を超えたとき、前記外気の温度および湿度の状況に基づいて、現在の運転モードにおいて前記外調機から前記室内に供給される給気の湿度を予測する第2機能と、
前記外気取入口から導入した外気の温度または湿度の状況が変動して現在の運転モードの境界を超えたとき、前記第2機能で予測した給気の湿度が予め設定した室内の管理許容湿度範囲の上限値を超えずかつ下限値を下回らない場合は、前記見極め時間経過後に、運転モードを変更し、前記第2機能で予測した給気の湿度が予め設定した室内の管理許容湿度範囲の上限値を超えるまたは下限値を下回る場合は、前記見極め時間を待たずに、直ちに運転モードを変更する第3機能とを有することを特徴とする外気冷房システム。
【請求項2】
請求項1記載の外気冷房システムにおいて、
前記外調機から前記給気を前記室内の二重床の床下から吹き出させることを特徴とする外気冷房システム。
【請求項3】
請求項1記載の外気冷房システムにおいて、
前記外調機から前記給気を前記室内へ直接吹き出させることを特徴とする外気冷房システム。
【請求項4】
請求項1から請求項3のいずれか1項に記載の外気冷房システムを搭載したことを特徴とするデータセンタ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2013−92298(P2013−92298A)
【公開日】平成25年5月16日(2013.5.16)
【国際特許分類】
【出願番号】特願2011−234354(P2011−234354)
【出願日】平成23年10月25日(2011.10.25)
【出願人】(000005108)株式会社日立製作所 (27,607)
【Fターム(参考)】